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Abstract—The performance and power efficiency of multi-core
processors are attractive features for safety-critical applications,
for example in avionics. But the inherent use of shared resources
complicates timing analysability. In this paper we discuss a
novel approach to compute the Worst-Case Execution Time
(WCET) of multiple hard real-time applications scheduled on
a Commercial Off-The-Shelf (COTS) multi-core processor. The
analysis is closely coupled with mechanisms for temporal parti-
tioning as, for instance, required in ARINC 653-based systems.
Based on a discussion of the challenges for temporal partitioning
and timing analysis in multi-core systems, we deduce a generic
architecture model. Considering the requirements for re-usability
and incremental development and certification, we use this model
to describe our integrated analysis approach.

Keywords—WCET, multi-core, temporal partitioning, safety-
critical real-time systems

I. INTRODUCTION

While Worst-Case Execution Time (WCET) analysis for
single-core processors is a well studied problem, the analysis
of multi-core architectures poses significant challenges. In
particular the inherent sharing of resources between processor
cores complicates analysis, since for example memory accesses
by other cores constitute random external events that may
have a huge impact on the core-local performance. Usually, a
concept called partitioning is used in domains such as avionics
to avoid unintended interactions between applications in the
spatial and temporal dimension. Unfortunately, the resource
sharing in multi-core processors violates the assumptions of
today’s temporal partitioning implementations.

In recent years, several approaches for timing analysis of
multi-core processors have been proposed. Typical approaches
are the application of deterministic execution models [1],
[2], [3], joint analysis [4], [5], [6], [7] and custom-designed
hardware [8], [9]. Execution models tend to avoid resource
sharing by Time Division Multiple Access (TDMA) schemes,
enforcing resource privatization even though resources would
allow parallel access. Joint approaches analyse in-parallel
executed applications in conjunction to identify possible inter-
ferences. Considering the complexity of single-core analysis,
the scalability of joint solutions with rising number of cores
needs to be proven. Additionally, such an analysis does not fit
the commonly used incremental development and certification
processes of safety-critical application domains. Incremental
processes are required since different applications are often
implemented by different suppliers. Finally, custom hardware
solutions avoid sharing, for instance through TDMA inter-
connects. Unfortunately, considering the trend towards highly

integrated Commercial Off-The-Shelf (COTS) components,
such as Multi-Processor Systems on Chip (MPSoCs), the
potential for modifications to the hardware is fairly limited.

Facing the drawbacks of existing approaches, we propose
a novel integrated approach for multi-core WCET analysis and
temporal partitioning. The contributions of this work are:

Multi-core WCET analysis for independent analysis of
multiple hard real-time applications, enabling true mixed-
criticality workloads while avoiding resource privatisation.
Temporal partitioning based on runtime resource monitor-

ing and enforcement, according to the requirements of safety-
critical application domains.

Following recent trends in embedded and safety-critical do-
mains, we focus on COTS hardware. We target the independent
analysis of applications in order to reduce analysis complexity
and enable incremental development and certification. Further,
we avoid the restriction of resource privatisation in order to
allow the utilisation of parallel resources.

The papers is structured as follows: we discuss the issues
of COTS multi-core systems and introduce our abstract multi-
core model in Section II. Based on this model we propose
our temporal partitioning concept and identify potential is-
sues, especially with respect to the predictability of modern
processor architectures, in Section III. In Section IV, we
discuss implementation aspects. The paper is concluded with
a summary in Section V.

II. ABSTRACT MULTI-CORE MODEL

The main issue of multi-core processors for timing analysis
is non-determinism due to the inherent use of shared resources
[10], [11]. In particular, the parallel usage of a resource
with limited capacity leads to unknown latency variations for
individual requesters [12]. Hence the latency for a specific
access is generally unknown. In the following, we call this ef-
fect shared-resource interference. As a consequence, temporal
partitioning is violated since applications influence each other’s
timing behaviour. This invalidates incremental development
and certification, as applications can no longer be developed
and analysed independently.

To address unknown interference, we define an abstract
multi-core model shown in Figure 1. By abstracting from
resources and applications, we aim to replace unknown inter-
ference with bounded behaviour. Hence, methods based on this
model are independent from concrete resource and application
implementations. Considering most recent multi-core systems,
the model is based on a shared-memory architecture.978-3-9815370-2-4/DATE14/ c©2014 EDAA
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Fig. 1. Abstracted MPSoC architecture model Σ.

The abstracted model Σ = (Π, P,Φ, I) is a tuple com-
prising sets of processes πi ∀i ∈ [0, |Π|), processing elements
(PEs) ρj ∀j ∈ [0, |P |), shared resources φk ∀k ∈ [0, |Φ|)
and Direct Memory Access-capable Input/Output (DMA-I/O)
devices ιl ∀l ∈ [0, |I|). Naturally, a process πi represents a
virtual PE. Each PE implements an arbitrary pipeline archi-
tecture and local caches. While DMA-I/O devices also initiate
memory accesses, they are separated from PEs, since they are
not subject to software scheduling. Finally, the set of shared
resources Φ includes all essential shared resources, such as the
Network-on-Chip (NoC), platform caches or the main memory.

Based on the properties of the elements of Σ, we choose
different representations for each of them. In particular, shared
resources provide some kind of capacity, e.g bandwidth or
memory space. This is abstracted as the resource capacity
κφk

per resource φk. PEs are under control of the underlying
operating system schedule, which assigns processes to PEs. A
set of processes that is scheduled in parallel over the available
PEs is denoted Π||, obviously |Π||| ≤ |P |. A process occupies
a PE for some time and issues a number of requests to shared
resources. The maximum execution time is commonly referred
to as WCET. The maximum number of shared resource
accesses has not yet a defined terminology in literature, hence
we call them Worst-Case number of shared Resource Accesses
(WCRA). The WCRA can also be understood as the resource
capacity or resource usage bound. Respectively, a process is
represented by its WCET τπi and its resource usage bounds
κφk
πi

per used shared resource φk. Since DMA-I/O devices are
not subject to process scheduling, they are only represented by
their WCRA κφk

ιl
.

III. TIMING ANALYSIS AND TEMPORAL ISOLATION

The proposed concept is an integrated approach of WCET
analysis and temporal partitioning. Runtime monitoring en-
forces the resource capacities of processes, which ensures
temporal partitioning. Based on temporal partitioning and the
abstraction of resources and processes, we introduce a WCET
analysis that bounds the interference between processes with-
out detailed information on in-parallel scheduled processes.

A. Temporal Partitioning

Temporal partitioning is a system property that isolates
the timing behaviour of processes from each other. In effect,
the execution of one process does not influence the timing
behaviour of others. For single-core processors this has been

ensured via multiplexing of processor time and careful hand-
ling of Input/Output (I/O) devices that may contend with the
processor on a shared bus [13].

To enforce the resource capacity usage of our model,
partitioning is split into a monitoring and a suspension task.
The monitoring is responsible to track the actual resource
usage of each process and trigger the suspension task once any
process exhausts either of its capacities κφk

πi
. In reaction, the

suspension task must prohibit further usage of the respective
resource by the process. For the purpose of a safe mechanism,
it is required to fulfill functional and temporal transparency.
Functional transparency ensures that the partitioning cannot
be undermined by the processes. Temporal transparency is
required to avoid unbounded influences on the process timing
behaviour.

The monitoring task can either be implemented based
on software instrumentation or by exploiting available hard-
ware support. Software instrumentation would account for
the resource usage on a basic block level. That is, at the
beginning of each basic block the instrumented code incre-
ments a special purpose register, representing the resource
counter, and compares its value against κφk

πi
. Hardware-assisted

implementations can for instance be based on performance
counters, as proposed in [14]. Such counters are available
in most modern architectures, e.g. in PowerPC [15], ARM
[16] and x86 [17]. In addition to performance counters within
the PEs, System-on-Chip (SoC)-based architectures usually
provide platform-wide monitoring facilities with comparable
properties, e.g. the ARM CoreSight architecture [18] or the
Nexus [19] implementation within the Freescale P4080.

Once a capacity violation has been detected, the suspension
task has to ensure that the respective process does not introduce
further interference on the affected resource. Depending on
the target hardware and resource it might be possible to avoid
the usage of only the affected resource, but still allowing the
process to use other resources. However, if this is not possible
or if the respective resource is essential for the process to
deliver its result, the process has to be suspended entirely.

Considering the required functional transparency we pro-
pose an implementation in the operating system layer. Nat-
urally, this avoids bypassing either mechanism. With respect
to temporal transparency and considering additional runtime
overhead of software instrumentation, we favor hardware-
assisted approaches to implement the monitoring. At runtime,
the resource usage bounds κφk

πi
are used to configure a single

monitoring counter per shared resource φk and process πi.
Once either of these counters detects a violation of κφk

πi
it

raises an exception. In reaction, the corresponding Interrupt
Service Routine (ISR) halts the core until the processes on the
remaining cores have finished execution. Applying this policy
to all processes ensures that none of them is influenced more
than specified by the resource usage bounds κφk

πi
.

Obviously, a valid configuration has to fulfill κφk
≥∑|Π|||−1

i=0 κφk
πi
∀k ∈ [0, |Φ|), i.e. each resource φk has to

provide sufficient capacity κφk
to serve all in-parallel schedule

processes πi ∈ Π||.



B. Multi-core WCET Analysis

WCET analysis is required to determine the execution
time demand of each process. Single-core analysis is a well
understood problem and even architectures with complex
pipelines and caches can be analysed [20]. As explained earlier,
the main issue for timing analysis of multi-core processors
is the non-determinism in shared resource access latencies.
Further, high variations between the best-case and the worst-
case increase the severity of the problem and render naive
approaches - which assume the worst-case for every access -
infeasible to gain tight analysis results. The proposed approach
extends existing single-core analysis techniques to additionally
determine the resource usage bound (WCRA) per shared
resource. Based on the single-core WCET and WCRAs we
propose a novel phase, called the interference-delay analysis,
to account for shared resource interferences.

1) Single-core Analysis: Well known approaches to single-
core WCET analysis are end-to-end measurements, static
analysis and measurement-based hybrid techniques. When
applying end-to-end measurements, multiple executions of the
whole process are performed, using their input data to trigger
worst-case behaviour. Static analysis as well as hybrid methods
apply a more or less standard architecture, consisting of control
flow construction and analysis, micro-architecture analysis and
path analysis [20]. First a control flow representation such as a
Control Flow Graph (CFG) is constructed. Information on the
control and data flow are used to annotate constraints to the
CFG and identify infeasible paths. During micro-architecture
analysis the basic blocks of the CFG are annotated with their
maximum execution times. Finally, path analysis is required
to compute the longest path through the CFG, solving an
optimisation problem such as an Integer Linear Program (ILP).
Only the micro-architecture analysis is performed differently
for static and hybrid approaches. Static analysis applies a
model of the target architecture to analyse e.g. pipeline and
cache behaviour. Hybrid approaches utilise measurements on
real hardware to acquire execution times for basic blocks. End-
to-end measurements are not further discussed due to their
similarities to hybrid approaches.

Due to their nature, the techniques significantly deviate
with respect to the tightness of their results and the achieved
assurance. In the context of certification, either of the ap-
proaches can be applied as long as the achieved assurance
is suitable for the assurance requirements of the target appli-
cation, cf. [21].

As already mentioned, in addition to the WCET also the
WCRAs need to be computed. Due to their close relation
it makes sense to apply similar techniques as for single-
core WCET analysis. This needs modification of the micro-
architecture and path analyses phases. To assign WCRAs per
basic block, hybrid approaches can apply similar mechanisms
as used for the described runtime monitoring. On the other
hand, static analysis can for instance use the available cache
hit/miss information to distinguish core-local and shared re-
source accesses. To finally compute the WCRAs over the
whole process, an additional path analysis per shared resource
is required. However, instead of optimising for the longest
execution time, an optimisation problem for the maximum
number of shared resource accesses must be formulated.

In essence, single-core analysis determines the WCET and
WCRAs, while any of the discussed techniques can be applied,
as long as the achieved assurance suits the target application.
Further, since no information on in-parallel scheduled pro-
cesses is required, the single-core analysis can be performed
independently for each process.

2) Interference-Delay Analysis: The interference-delay
analysis computes the maximum possible inter-process inter-
ference and the resulting increase in execution time. Therefor,
the WCRAs κφk

πi
of all in-parallel scheduled processes are

required, abstracting their specific behaviour. The interference-
delay represents the maximum overlap of shared resource ac-
cesses, i.e. the combination of parallel and sequential resource
accesses that leads to the longest possible execution time. It
can be shown that the worst-case overlap occurs, if all requests
are issued in parallel. According to the computed overlap, the
individual accesses of each processes can be combined with
the respective access latencies. The latency δn depends on the
number of in-parallel issued accesses n and has to be safely
determined for the target platform. Finally, the combination of
single-core WCET τπi

and interference-delay constitutes the
multi-core WCET τm of πi, cf. Equation 1.

τm(πi) = τπi
+

δ|Π||| · κπ0
+

x∑
i=1

(
δ|Π|||−i · (κπi

− κπi−1
)
)

(1)

C. Timing Composability

A system is composable with respect to a property, if that
property remains valid on system level once it has been estab-
lished on sub-system level [22]. For single-core WCET analy-
sis timing composability is required for instance if features,
such as pipeline and caches are analysed separately, while
their results are added up to form the WCET. Accordingly,
the proposed approach requires composability, since the final
timing bound is the combination of the results of single-core
and interference-delay analysis.

Unfortunately, so called timing anomalies violate the as-
sumption of timing composability [23]. In effect, if an ar-
chitecture suffers timing anomalies, it is not safe to rely on
local worst-case decisions to compute the global worst-case.
For instance, it is not safe to conservatively assume a cache
miss, if a particular load/store instruction cannot be classified
as either hit or miss. Instead, both paths need to be followed,
which drastically increases the search space and hence analysis
complexity. In [24], architectures are classified as fully timing
compositional, compositional with bounded effects, and non-
compositional based on the presence of timing anomalies.

In general, timing analysis requires a predictable architec-
ture, cf. [25]. Fortunately, hardware manufacturers also provide
multi-core platforms that were designed with analysability
in mind, e.g. [26]. But, if an architecture does not fulfill
the requirements, a deterministic configuration can help to
improve its analysability. This for instance includes Least
Recently Used (LRU) replacement strategies where possible,
partial cache locking to emulate LRU replacement, separate
instruction and data caches with write-through policy, caches
used as scratchpad memories, cache partitioning on shared



caches, static or disabled branch prediction, and Translation
Lookaside Buffer (TLB) pre-loading.

Considering the proposed approach, the single-core anal-
ysis does not pose different assumptions or restrictions with
respect to composability and determinism than existing ap-
proaches. On the other hand, the composition of single-core
and interference-delay analyses requires composability and
bounded latencies, i.e. the applied NoC protocol must not allow
starvation. We argue that variations in NoC access latencies do
not cause processor pipeline timing anomalies, since naturally
even the best-case latency is orders of magnitudes higher than
typical pipeline latencies. Thus, the processor’s pipeline will
drain in any case, while the access is processed. Hence, the
interference delays do not effect pipeline analysis in the sense
of timing anomalies.

IV. IMPLEMENTATION ASPECTS

A. Monitoring Facilities

As discussed in Section III-A, the monitoring can either
be implemented based on available hardware support or by
software instrumentation of the target application. We have
specifically analysed the PowerPC architecture and especially
the Freescale P4080 [27] multi-core SoC, with respect to the
available features. We identified the e500mc [28] processing
cores and the built-in SoC-wide debugging facility as promis-
ing implementation alternatives for non-intrusive monitoring.

The e500mc cores implement so called Performance Moni-
tor Counters (PMCs). These are pipeline-independent counters
which are able to trace certain events within the core. This,
beneath others, includes stall cycles within the execution units,
number of instruction fetches, miss predicted branches and
caching related events. We identified the Bus Interface Unit
(BIU) access event to be of special interest when monitoring
the main memory accesses of an application. According to
the manual and the discussions with the system vendor, the
BIU event covers every access of the core to the shared
interconnect and thus the main memory. This also includes
accesses due to speculative execution. Beneath counting of
events, the PMCs can be configured to trigger an exception
once an overflow is detected. By setting the initial value of
the counter appropriately, it is possible to precisely implement
the described monitoring. Naturally the exception is handled
by an ISR. Accordingly, the suspension routine has to be called
subsequently.

While the e500mc PMCs provide a sufficient mechanism
to cover the PEs, it is not possible to differentiate between
accesses to the main memory and platform caches, thus
accounting both with the same access latency. Further, the
core PMCs cannot be used to monitor DMA-I/O devices.
Hence, we further analysed SoC-wide monitoring facilities.
The P4080 implements a Nexus-based [19] debug and per-
formance monitoring architecture. Parts of this architecture
provide similar mechanisms as the core PMCs, i.e. they are
able to trace the NoC requests of connected devices and trigger
a variety of events. For that purpose, they can be used to
monitor DMA-I/O devices as well as cores. However, our
analysis revealed that the implementation only implements a
limited set of tracing units, such that it is not possible to
monitor more than two devices within the system. Since the

P4080 contains eight e500mc cores and a plenty of Peripheral
Component Interconnect Express (PCI/PCIe), serial RapidIO
(sRIO) and network interface units, we did not consider the
debug architecture to monitor processing cores.

Since adequate hardware-assisted monitoring facilities are
commonly available in modern processors [15], [16], [17], we
did not investigate software instrumentation approaches and its
definite overhead due to execution of additional instructions.

B. Operating System and Basic Software

According to the described temporal and functional trans-
parency properties of the partitioning approach, we consider
the operating system and basic software layer as most consider-
able for the implementation. Since software is commonly used
as COTS product, the source code of the underlying operating
system is not necessarily under control of the system integrator.
For that purpose it is desirable to have an operating system
independent implementation of monitoring and suspension.
For that purpose, a custom driver module is considered. This
module is responsible for configuring the monitoring facilities,
e.g. the PMCs, and handle the related exceptions to suspend a
process.

On the operating system side, the PMC exceptions need to
be handled appropriately. For instance, if the BIU events are
used to implement the monitoring, every bus access will cause
the counter to increment. On an exception the appropriate
exception type will be masked to prevent immediate re-
interruption. Accordingly, the first-level ISR has to read the
PMC value and re-configure the counter before enabling the
exceptions again, in order to avoid an infinite loop of excep-
tions. If the source code of the operating system containing
the ISR is not accessible different means for monitoring need
to be used.

During execution of the ISR, the suspension routine needs
to be executed. This routine can, for instance, be implemented
as a callback handler within the monitoring device driver. The
routine itself has to suspend the causing application. Again,
this requires appropriate interfaces to the process management
of the operating system. If this is not possible, the routine can
be implement to postpone execution until the respective PE
is allowed to again access the interconnect and main memory
again.

V. SUMMARY

In this paper we presented an integrated approach for
temporal partitioning and WCET analysis. We discussed a
novel approach to determine the maximum inter-process inter-
ference due to the use of shared resources, which is the main
issue for multi-core timing analysis. Partitioning is used to
bound the maximum resource usage per process. The approach
allows the independent analysis of applications, which enables
incremental development and certification, and software re-use
as it is for instance required in the avionics industry. Further-
more, mixed-criticality workloads with arbitrary hard real-time
applications are supported, which elevates its usability above
approaches that only allow a single real-time application. Ad-
ditionally, the restriction of resource privatisation is avoided,
hence the benefits of multi-core architectures, such as parallel
NoCs, can be fully utilised.



We discussed different ways to implement the proposed
approach. This covered the monitoring as well as the analy-
sis part, considering available monitoring facilities, operating
system dependencies and state of the art analysis techniques,
namely end-to-end measurements, static analysis, and hybrid
techniques. The analysis of monitoring facilities of platforms
revealed essential aspects that have to be considered during
platform selection and monitoring implementation. Also the
required operating system mechanisms influence the decision
towards the target system. Further it has been discussed,
that the modifications to the single-core analysis, as well
as the computation of the inter-process interference can be
implemented based on either of these techniques, showing
the generality of the analysis part of the approach. Since
predictability is a major concern for modern architectures,
we discussed the requirements of composability. In essence,
the approach requires a predictable architecture, similar to
any other timing analysis techniques. Therefore, the single-
core analysis phase does not pose additional assumptions or
restrictions with respect to predictability and composability,
compared to state-of-the-art techniques. We finally argued
the absence of timing anomalies between NoC and pipeline
analyses. The discussion also pointed out that the predictabil-
ity of an architecture can be improved by configuration, if
composability is not initially fulfilled.

We consider the discussed approach a promising alternative
to related solutions. Even though some level of detail is lost by
abstracting the architecture, we believe that reduced analysis
complexity and the independent analysis of applications are
overly dominant properties for the analysis of multi-core-based
safety-critical real-time systems. Especially, since the isolation
of applications is required by the targeted application domains.
Further, the introduced runtime monitoring provides an ad-
ditional safety layer to detect and handle faulty application
behaviour, also considered as safety-nets [29].
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