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Abstract—Mission Profiles contain top-level stress information
for the design of future systems. These profiles are refined
and transformed to design constraints. We present methods to
propagate the constraints between design domains like package
and chip. We also introduce a cross-domain methodology for
our corresponding constraint transformation system ConDUCT.
The proposed methods are demonstrated on the basis of an
automotive analog/mixed-signal application.

Index Terms—Mission Profiles and constraints, constraint
transformation, cross-domain constraints, constraints in inte-
grated circuits.

I. INTRODUCTION

Mission Profiles cover specific requirements of systems to

be designed. Eventually, design constraints can be derived

from Mission Profiles and later be refined for usage at different

levels of the design process. These constraints must be spread

and applied across the design systems. Mature methods al-

ready exist for the exchange of digital circuit constraints

(e.g. timing) between different EDA tools. In contrast, for

analog circuits such methods do not exist today due to several

challenging aspects tied to analog constraints. One aspect

is the heterogeneity of the involved constraint types (e.g.

electrical current and IR-drop, geometrical spacing and width).

Therefore, a higher number of relations between constraints of

different types and domains must be modeled and taken into

account. Another challenge is the use of incompatible design

tools from multiple EDA vendors for different design domains

such as board, package and chip. Proprietary constraint sys-

tems for single tools exist, but the propagation and mapping

of constraints from one domain to another is not satisfactorily

solved today. This paper provides an overview about issues

that arise in design flows with constraints that are used in more

than one design domain (so called cross-domain constraints).

Feasible approaches to address these challenges are presented

and discussed.

The broadcast of constraints and constraint modifications

inside a design system across multiple EDA tools requires

well-conceived strategies.
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Furthermore, a strategy is needed to manage rules that can

map constraints and their constraint types from one design

domain, such as board, package and chip, to another.

A system based on rule management is proposed that can

be used for this purpose. In the following subsections the

generation of design constraints driven by Mission Profiles

is described and further the state of the art in constraint

transformation and management is pointed out. Challenges in

cross-domain flows and solution approaches are introduced in

Section II. Our tool ConDUCT and the underlying constraint

model are presented in Section III. In Sections IV and V we

describe the transformation utility of ConDUCT and outline

our concept that uses petri nets. We demonstrate our concept

using the example of a window lifter in Section VI.

A. From Mission Profiles to design constraints

In the course of the project ResCar 2.0, a Mission Profile

Framework has been developed. It provides management and

transformation utilities for Mission Profiles. Mission Profiles

are essential sources of additional design information to con-

sider stress loads. They define stress profiles which must be

covered by the final system [15]. To obtain the necessary

constraints a comprehensive method must evaluate the content

and summarize the contained information. This results in a set

of constraints, each of which represents a critical parameter

that is influenced by the corresponding stress factors.

An example application for Mission Profiles is the relation

between environmental temperature and the required func-

tional loads as the required currents for a window lifter of a

car. Usually small currents are sufficient to move the window

when temperatures are above the freezing point. However, if

the window freezes and the motor gets blocked, higher currents

greater by an order of magnitude are necessary to start the

movement of the window. This critical situation is modeled

via current stress profiles in the dependency of temperature.

The specification defines the required lifetime for the motor

driver IC of the window lifter. The values of the intended

lifetime and the current vs. temperature stress profile are

parameters to calculate or estimate current densities for pins,



Fig. 1: Aluminum conductor paths damaged by electromigra-

tion [3]

transistors or conductor paths. One possibility to obtain a

current density constraint is provided by Black’s Law [2]. It

depicts the relation between lifetime, i.e. mean time to failure,

temperature and current density.

A current density that is too high can cause electromigra-

tion. During electromigration the conductor paths get thinner

by diffusing electrons along the path. Figure 1 shows con-

ductor paths damaged by electromigration. It is one example

for possible failure mechanisms and we use it to demonstrate

our cross-domain constraint methodology in the following

sections. Nevertheless, our approach can be used to take care

of other failure mechanisms.

The earlier mentioned Mission Profile Framework allows

defining model transformations that appropriately convert pro-

files to refined models or design constraints. For the following

sections of this paper, it can be assumed that constraints exist

in several design tools each of which handles a different design

domain.

B. State of the Art

Following [5] we define:

Definition 1: Constraint propagation is the derivation of

one or more new constraints from a given set of constraints.

New constraints are generated from existing constraints that

are already part of the constraint set. [5]

We define constraint transformation as a process that

converts constraints using transformation rules. In the course

of constraint transformation design boundaries can be crossed

and new constraints can be generated.

In all following sections we use this meaning of con-

straint transformation in cross-domain methodologies. Con-

straint management and transformation issues were addressed

in different approaches:

In [1] constraint transformation is used only as a pure

hierarchical and top-down methodology. Arsintescu et al. [1]

divide constraints into two classes: Specification constraints

and parameter constraints. Specification constraints k are

input to transformations at the corresponding level. Parameter

constraints p are output of transformations at the same level.

In contrast to Jerke [5], Arsintescu [1] defines constraint trans-

formation as application of a transformation function F that

generates parameter constraints from specification constraints

at the same level:

p = F(k)

Further, the generated parameter constraints are partitioned

into sets and passed to lower levels. The passing to lower

levels is called propagation in [1]. During propagation given

parameter constraints become specification constraints on the

next lower level and are the basis of further transformation on

this lower level.

Dhanwada et al. [4] developed an idea using a genetic

algorithm that replaces the usual constraint transformation

function. It is proposed as a hierarchical top-down approach.

System-level performance values provide target values for

the genetic algorithm. Performance values of the next lower

level components in design hierarchy are also input to this

genetic algorithm. Component performance values are varied

during the execution of the algorithm. This allows evaluating

system level performance values as a function of component

performance values and assures that appropriate values are

chosen as design constraints for components. Krinke et al.

[6] contributed to the generation of hierarchical constraints

by adding a bottom-up and mixed top-down/bottom-up trans-

formation and propagation methodology. Constraints can be

propagated throughout the entire hierarchy. Arsintescu [1],

Dhanwada [4] and Krinke [6] provide solutions inside the

design hierarchy. In contrast, we focus on challenges and

methods that allow constraints to cross design boundaries.

We propose to use petri nets to model constraint transforma-

tion dependencies. There are some similar approaches in the

fields of work flow management and analysis that also base

on petri nets. Salimifard et al. [12] and van der Aalst [14]

give a general description of work flow management: Work

or design steps can be governed in modified petri nets that

are named work flow nets (WF-nets). Tasks are mapped to

petri net transitions. Pre- and post-conditions are represented

as places. The logical work flow is modeled by arcs of the

WF-net. WF-nets can be used to verify and analyze underlying

workflows using petri net methodologies.

Another possibility to take advantage of petri nets in elec-

tronic design is mapping parts or functionalities of the design

to a petri net and applying petri net analysis methods to verify

or implement the design ([7], [11]) or make design decisions

according to calculated metrics [8]. Our approach belongs to

the last category. It provides auxiliary functions to support

the design process but our methods do not control the process

itself. Another main difference is that we map constraint types

and the respective transformation rule system to petri nets. To

govern complexity in electronic design, a design is divided

into smaller design tasks (“divide and conquer strategy”).

Multiple tools work on these tasks and in different domains.

Issues arising from cross-domain constraint usage have been

barely addressed, because existing approaches are limited to

hierarchical systems. In Section II we list some issues that

must be taken care of in a cross-domain constraint flow.



II. CHALLENGES IN CROSS-DOMAIN FLOWS

A. Consistency

Often, several designers work on one project at the same

time in different domains. Some develop the die, some work

on package integration for one or more of such dies and others

create the PCB for the device. Designers can also be located

at different geographical places. In a cross-domain design

flow these aspects need to be considered. The issue can be

summarized as the fact that constraint information needs to

be consistent and fulfill data integrity as any other design data

in a cross-domain design system. It is important to provide up-

to-date information to all designers. There are several different

types of consistency. They result from different policies which

define if a given order of message receiving for write and read

operations is allowed in a distributed system [13]. According

to the chosen type of consistency, corresponding broadcast

algorithms can be applied for event-driven update messages.

Our approach uses a central database for persistent storage

of design constraints that ensures additional consistency in

database transactions.

B. Version Control Systems

Beside the issue that data integrity must be ensured it is

also necessary to consider version control systems that are

often used in each single tool. Constraint or design changes

made in the chip design domain should only be propagated if

the current revision of the design and its constraints are valid.

That means if the local revision has not been updated, it is

not guaranteed that design objects of the local revision exist

in later revisions. When constraints are defined in the local

revision for design objects that do not exist in later revisions

anymore, broadcast is not reasonable. Defined constraints

would have a deleted design object as constraint member in

the later design versions. The constraint would be invalid in

later revisions.

On the other hand, incoming update messages should only

cause an update if the correct revision is in use. Listings 1

and 2 demonstrate a solution to take care of this issue. This

strategy is well-known in software engineering and can be

summarized as “get latest [design version] before check in /

check out”.

startOutgoingUpdate(server, design, constrChanges) {

localVersion = getCurrentVersion(local, design);

serverVersion = getCurrentVersion(server, design);

if (localVersion < serverVersion) {

message("Please update design first.");

abort();

}

applyAndStoreChanges(server, design, constrChanges

);

}

Listing 1: Steps to broadcast outgoing constraint updates

startIncomingUpdate(server, design, constrChanges) {

chosenConstr = selectConstr(constrChanges);

localVersion = getCurrentVersion(local, design);

serverVersion = getCurrentVersion(server, design);

if (localVersion < serverVersion) {

message("Please update design first.");

abort();

}

importAndApplyUpdate(server, design,

chosenConstr);

}

Listing 2: Steps to import incoming constraint updates

The following two sections elaborate the structure and ideas

of our cross-domain tool (Section III) and highlight challenges

and solutions regarding cross-domain transformation (Section

IV).

III. CROSS-DOMAIN CONSTRAINT TOOL

ConDUCT stands for Constraint Delivering and Updating

Cross-domain Tool. It uses a database that implements the

constraint model discussed in this section. A project can be

created to store constraints of multiple design domains that

are imported from the corresponding design tools. We use a

constraint model similar to the model of Krinke[6]. However,

the model must be extended to describe domain aspects:

c = (t(c),M(c),P(c),C(c)) (1)

C(c) = {c1, ..,cn} (2)

with

t(c) = constraint type = (type, originTool)

M(c) = members; design objects that c is applied to

P(c) = parameters; set of parameter values

that are used for constraint verification

C(c) = constraints; set of child constraints

The constraint type requires the information in which tool

the original constraint was defined. Constraints are instances

of constraint types. Constraint types define which kind of

design objects are covered by the respective constraint and

how the verification function evaluates constraint parameters.

For cross-domain usage it is necessary to extend the constraint

type by the additional information in which design tool it was

initially defined. Design tools define and verify constraints

with different parameters.

We have to ensure that constraints can be safely synchro-

nized in the corresponding design tool. There are different

underlying constraint models that belong to the respective

tool of the domain. Hence, we extend our constraint model

and define that constraints can also consist of multiple other

constraints.

In most cases the supported recursion depth of constraints

in design tools is one or zero. That means if a constraint

contains child constraints, these child constraints do not have

child constraints themselves. Design tools use these composed



constraints to define so-called constraint sets. Constraint sets

can quickly be replaced by other constraint sets and allow

managing and testing different constraint and technology con-

figurations.

IV. CONSTRAINT TRANSFER AND TRANSFORMATION

ACROSS DOMAINS

ConDUCT enables the transfer of constraint information

from one domain to another. In contrast to pure hierarchical

transformation, we assume that constraints which are defined

for design objects in one domain are transferred to a different

domain to other design objects.

We define a constraint with constraint type t as ct . Constraint

type t consists of the tuple

t = (typeInTool,originTool).

For example, we use

currentChipType = (current,chipTool).

A constraint transformation rule φ that is able to transform

from constraint type ctsource to constraint types cttarget1
, ..,cttargetn

is represented as shown in Equation 3.

φ tsource→ttarget1,..,ttargetn : ctsource →{cttarget1
, ..,cttargetn} (3)

Transformation rules are provided globally in the system

and can be reused in every new design project.

The flow of constraint transformations in ConDUCT (see

Figure 2) begins when the user, i.e. the designer, starts the

transformation interactively via a user interface. The user

specifies if

• a source constraint generates target constraints of one

specified target constraint type,

• all possible target constraints are generated from given

source constraints or

• all possible target constraints are generated from all

existing constraint sets.

The controller redirects the transformation request to the

constraint transformer. This component receives the constraint

objects from the ConDUCT constraint model, which was

described in Section III. First, the constraint type of a given

source constraint is looked up. Each rule with given source

constraint type is chosen for transformation. The constraint

transformer receives all chosen transformation rules from the

rule manager. Finally, when the constraint target type is found

in a transformation rule or no further matching transformation

rules exist, the rule manager returns all transformation rules

that have been found so far. Then, the constraint transformer

forwards the constraint objects from ConDUCT and the de-

tected transformation rules. The rule interpreter executes the

transformations with the forwarded set of transformation rules

and constraint objects.

Fig. 2: Transformation flow in ConDUCT

V. PETRI NET ANALYSIS IN CONSTRAINT

TRANSFORMATION SYSTEM

Transformation rules provide the possibility to analyze the

given sets of constraints in distributed domains. Statements

can be derived, e.g. which new constraints can be generated

in a given design project and which can not be generated.

In this section we show that reachability analysis in petri

nets can be used to undertake this task. Furthermore, when

constraints can not be generated, it is possible to determine

the constraints and transformation rules that are missing to

generate specific target constraints. This can be done by using

backtracking algorithms. Arsintescu [1], Dhanwada [4] and

Krinke [6] use graphs to visualize transformation flows in

hierarchical systems. To depict relations of constraint types

and transformations appropriately, we decided to use petri

nets considering cross-domain transformations. The advantage

of our approach is that we have a bijective mapping from

the transformation rule set to the corresponding petri net.

The relation between constraint types and transformation rules

can be extracted from the petri net and vice versa. Simple

graphs (used in [1], [4], [6]) need to be modified to store

the assignment of transformation rules to graph edges and

identify constraint type nodes that are generated by the same

transformation. Hence, petri nets can be adapted more easily.

Petri nets are bipartite graphs that are defined as a tuple

(P,T,F,W,M0) [9]:

• P is the set of places

• T stands for the set of transitions
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tsource φ ttarget

Fig. 3: Constraint transformation visualized as petri net

• F provides the set of flow relations

• W is the weight function that maps a weight to each arc

• M0 describes the initial marking

We customize the petri net definition to illustrate the con-

straint transformation rule set and the constraints of the design

project:

• P is the set of constraint types

• T stands for the set of transformation rules

• F provides the set of flow relations from source con-

straint type to respective transformation rules and from

transformation rule to target constraint types

• W is the weight function that maps each arc to value 1

• M0 describes the initial existence of constraints of the

corresponding constraint type

We use our set of transformation rules and the set of

constraints in an active project to build a petri net. Constraint

types are modeled as places P. Note that, e.g., the constraint

type symmetry in a system-in-package tool is interpreted as

a different type than the constraint type symmetry in a chip

design tool. We make this distinction, because constraints

might be verified in different ways and need also different

parameters. The constraint transformation rules are represented

as transitions T . F contains the information which places

are connected to which transitions and vice versa. If there

is at least one constraint of a type, the corresponding place

is marked with a token. The weight function W assigns the

value 1 to all arcs of the flow relation F , because we model

the existence of constraints of the respective type and not the

respective number of constraint instances. Hence, a place can

contain zero or one token. M0 shows which constraint types

are present in the project, before a constraint transformation

starts.

Figure 3 illustrates a constraint transformation from con-

straint type tsource to constraint type ttarget using the transfor-

mation transition φ . We added the token to the tsource place,

because one or more instances of constraints with constraint

type tsource exist.

When a set of constraints is given, we propose to use topo-

logical sort [10] to determine in which order the constraints are

transformed. The constraint type possessing the lowest number

of dependencies to other constraints is processed first. That

means we first transform constraints of constraint types that

depend on a small number or no other constraint types. After

transformation the place and corresponding transitions in the

petri net are deleted and we repeat the steps until no places

are left.

Petri nets enable an efficient search for parallel paths in

transformation processing. If there is no dependency between

paths of transformations they can safely be parallelized. This is

an advantage that can reduce the execution time of constraint

transformation significantly.

M
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Fig. 4: Window lifter example

VI. RESULTS

Figure 4 illustrates an example application, the window

lifter of a car. It consists of a microcontroller unit, a motor

driver IC, an H-Bridge circuit and the motor itself. In Figure 4

domain boundaries are shown as dashed (chip domain), dotted

(system-in-package domain) and thin line (pcb domain). The

motor driver IC and the H-Bridge circuit can be implemented

on one die that is designed using a chip design tool. Our

system-in-package is composed of the die and the microcon-

troller unit that processes the incoming signals from sensors

and window switches. Additionally to the system-in-package,

the PCB contains a power supply unit. The motor is not located

on the PCB. The system as a whole is designed using three

design tools, one for each domain.

A lot of design tools provide the possibility to manage

constraints in their own constraint manager. Unfortunately,

there is no support to use constraints that are defined in a

chip design tool across the domain boundaries to system-in-

package or PCB design. We assume that in the chip design

tool a current constraint imax on a conductor path was set.

Further, the following set of transformation rules Φ is stored

by the rule manager of ConDUCT:

φ1 : ccurrentChipType →{ccurrentSipType}

φ2 : ccurrentSipType →{cwidthSipType} (4)

φ3 : ccurrentSipType →{cimpedanceSipType}

Transformation rules Φ are declared once and can be

reused for multiple transformations. It has to be considered

that knowledge about connections and equivalence of design

objects in different domains must be obtained from the design

tools. One method to solve this mapping problem could be to

use the same name of the conductor path in chip and system-

in-package domain.

In Section V we have described the generation of petri nets

using all transformation rules in the design project. Given the
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Fig. 5: Example for constraint transformation
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Fig. 6: Reachability graph for the petri net in Figure 5

set of constraint transformation rules Φ (Equations 4), we

are able to generate a petri net that visualizes all possible

constraint transformations (see Figure 5).

Additionally, one transition φc is introduced to copy the

token and enable both constraint transformations φ2 and φ3 at

the same time. We have outlined in Section V that we use the

generated petri nets to perform a reachability analysis. With

the given current constraint imax we obtain our initial marking

for the current constraint type in the chip domain (Figure 5). A

reachability graph can be created (Figure 6) with petri net and

initial marking of the window lifter example as shown in Fig-

ure 6. Every place that contains a token during transformation

means that constraints of that type are generated and added to

the constraint set of the corresponding domain. We execute

our constraint transformations and generate the system-in-

package constraints of types currentSipType, widthSipType

and impedanceSipType.

VII. CONCLUSION

Cross-domain constraint transformation offers the gener-

ation of new constraints. Hence, designers can propagate

constraints to ensure a correct design in all design domains.

Issues like data consistency, usage of version control systems

in design tools and mapping of constraint members from one

domain to another need to be considered in cross-domain

constraint methodologies.

As a solution we introduced our tool ConDUCT that is

based on a unified constraint model and uses a rule-based

transformation method. Furthermore, the analysis of a given

transformation rule set and the design constraints was de-

scribed. We propose to use customized petri nets to obtain

information about transformations that can be parallelized or

missing constraints that are required for the generation of other

design constraints.

Further applications are possible, e.g. the usage of con-

straints in common design steps like floorplanning, routing

or placement. Another application is to contribute to the

generation of simulator stimuli and assertions from constraints.

Our cross-domain methodology is a useful instrument to

propagate stress profiles, trace design constraints and complete

the flow of Mission Profile information down to IC design.
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