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Abstract—This paper designs and implements the Redun-
dant Multi-Threading (RMT) in a Data-flow scheduled Multi-
Threaded (DMT) multicore processor, called Data-flow scheduled
Redundant Multi-Threading (DRMT). Meanwhile, It presents
Asynchronous Output Comparison (AOC) for RMT techniques
to avoid fault detection related inter-core communication and
alleviate the performance and hardware overheads induced by
output comparison. Results show that the performance overhead
of DRMT is less than 60% even when the number of threads
is four times the number of processing elements. Also the
performance and hardware overheads of AOC are insignificant.

I. INTRODUCTION

As CMOS technology scales ever further, multicore pro-
cessors are becoming mainstream, both in commercial and
research fields. However, their vulnerability is increasing due
to greater hardware complexity, smaller feature size, higher
frequency and lower voltage. Therefore, fault tolerance tech-
niques will need to be considered in all modern and future
processors. RMT is a family of fault tolerance techniques in
which two threads redundantly execute the same program and
compare the results for fault detection. Once a mismatch is
detected, a fault is flagged and a recovery process is started.
RMT was developed after the invention of simultaneous
multithreading (SMT) and makes the overhead of redundant
execution relatively small as the additional threads increase
the efficiency of SMT. RMT has now shifted to multicore due
to the broader fault coverage and the fact that multicore is the
mainstream due to the advances in silicon technology.

The key concepts of RMT are the sphere of replication,
input replication and output comparison. Sphere of replication
defines the protected scope of a physical system. Components
within the sphere of replication are protected by redundant
execution, while components outside the sphere may not be. It
also identifies which input and output values are required for
special handling. In other words, values that enter and exit the
sphere are the inputs and outputs that require replication and
comparison, respectively. In order to feed the corresponding
operations in both master and redundant thread with the same
data, input replication is needed. Otherwise, the threads may
produce different outputs that will be detected and recovered
as if a fault had occurred. Output comparison is the most
important part in RMT and is responsible for fault detection.
Usually, memory store and register update are two types of
output required to be compared. However, the comparison is
done instruction-by-instruction if register update is counted,

which puts pressure on the latency of comparison, especially
with inter-core communication in multicore processors. A fault
in register update can be detected during the memory store
eventually. So most multicore based RMT techniques only
compare the memory store. Furthermore, memory stores are
compressed as fingerprints in order to alleviate the inter-core
communication, which trades fault coverage for performance.

This paper makes contributions in two areas of RMT. First,
we implement RMT technique in a DMT multicore processor,
i.e., DRMT. This poses significant challenges in the design
and the resulting design is described and evaluated in detail.
Results show that the performance overhead of redundant
execution is less than 11%, 30% and 60% when the number
of threads is 1, 2 and 4 times the number of processing
elements respectively. Second, we design an AOC method for
RMT, which eliminates inter-core communication in output
comparison, and halves the buffer size compared to prior
studies. Evaluation shows that the performance and hardware
overheads of AOC are low.

II. DMT OVERVIEW

Commercially, there are two forms of multithreading sup-
ported in mainstream processor designs. The first is hyper-
threading or SMT, which is used in Intel cores, where several
threads drive superscalar instruction issue. The other is the
Sun/Oracle Niagara series of multicore chips, where each
pipeline supports several threads. In Niagara, instructions are
interleaved in the pipeline from all threads until some event
causes a thread to suspend.

Besides these, many other forms of multithreading are
studied in academic field. DMT [1] is one of them, which
is inspired by the idea of data-driven thread execution [2], [3].
The most important feature of DMT is that the thread suspends
if an instruction fails to read data in one of its register operands
and a continuation to the thread is stored in that register until
the data is provided. The key mechanism supporting this is a
synchronizing register file, i.e., all registers are implemented
with read-after-write or data-flow synchronization. When the
current thread suspends, one of the other active threads may be
selected for processing in the pipeline. Hence, DMT provides
support the efficient execution of long-latency operations.

The MGSim [4] is Alpha-based software simulator of
DMT. Normally an instruction only knows whether all its
operands are ready or not in the third stage of Alpha pipeline
(i.e., read stage). If all operands of current instruction are not978-3-9815370-2-4/DATE14/ c©2014 EDAA



available, the pipeline would need to flush all instructions that
come from the same thread in the previous stages. Then, an
active thread may be rescheduled in the pipeline if there are
ready threads. This means that the context switch costs four
cycles. In order to reduce the overhead of context switch, the
pipeline needs to be aware of the dependent instructions to
long latency operation as early as possible. So a codesign
of compiler and microarchitecture is implemented in MGSim.
The compiler flags instructions that consume data from long-
latency operations. And the instruction fetch stage of pipeline
will switch contexts if a flagged instruction is fetched. This
method reduces the overhead of context switch to zero if there
are enough active threads to be rescheduled.

III. DRMT IMPLEMENTATION

A. Basic Implementation

To provide broader fault coverage, DRMT runs two copies
of a program on separate cores of a multicore processor.
The sphere of replication in DRMT includes pipeline, register
file, thread scheduler and L1 cache. DRMT adopts relaxed
input replication in order to simplify the hardware, i.e., no
special input replication operation is applied. Because fault
recovery techniques can recover the divergence caused by input
incoherence (if required) induced by relaxed input replication.
Furthermore, the most important point is that we have the
same observation with Reunion [5]: relaxed input replication
provides the correct inputs in all cases in our evaluation even
for shared memory multithreaded program.

It is possible in a multithreaded program that more threads
are required than exist in the multithreaded processor. Hence,
thread contexts will be reused when the multithreaded pro-
gram is executed. So a master and redundant threads pairing
mechanism is needed for efficient output comparison. We
implement the thread pairing implicitly during thread creation
in a quasi-lockstep way. The execution of master and redundant
threads are independent. And the overhead of thread pairing
can also be hidden by the multithreading technique, which is
demonstrated in our evaluation.

B. Asynchronous Output Comparison

Unlike the previous multicore based RMT, we use a
Comparison Buffer (CB), added between the L1 and secondary
memory, and shared by a fixed-core pair, to buffer the unver-
ified store values and compare them. Each output should be
stored to both the L1 and the CB, then compared in the CB
before being committed to secondary memory. The operation
of data input is the same as previously: the data comes from
the secondary memory to L1.

The CB comprises a number of sets, which are identified
by the thread identifier. Matching master and redundant threads
use the same set. Each set is a FIFO queue, as all the stores
are committed to the CB in program order, no matter if the
pipeline is out-of-order or in-order. Each entry in a set has
four fields: address, value, mask and flag. The flag identifies
the data as being stored by master or redundant thread.

When a set of the CB receives data, the data will be written
to the set directly if the set is empty. Otherwise, it will check
whether the data received and the head of the set come from

the same thread. If so, the data will be appended to the end
of the set. If they come from different threads, then the data
will be compared. A fault is detected when the data does not
match. If they match, the data will be popped from the set
and written to secondary memory. For a given set of the CB,
one of the master and redundant threads is the producer, and
the other is the consumer. Hence if they run close enough, the
lifetime of a store in the CB could be very short. Any read
requests coming from the L1, will first search the set indexed
by the current thread. Data will be returned if it is available,
otherwise the read request will be sent to secondary memory as
usual. Meanwhile, the CB forwards the other memory protocol
related messages without any extra operations.

The challenge of this CB design is how to suspend a thread
when it writes to a full set in the CB. As the CB is located
between L1 and secondary memory, it is not feasible that the
thread is suspended in the same cycle with the store retired
from memory stage of the pipeline. In order to address this
problem, we design an asynchronous collaboration between the
pipeline and the CB, called AOC. In this solution, each thread
has a counter for its committed store, which is initialized as
the capacity of the set in the CB. The store counter will be
decremented when a store is committed. If the store counter
is decremented to 0 (i.e., the set of CB is full), the incoming
store of current thread cannot be committed any more. The
store will be treated as an instruction that lacks an operand,
and all its predecessors will be flushed from the pipeline if they
come from the same thread. Meanwhile, the current thread
will be suspended. On the other side, the CB will send a
message to the thread if its set pops an entry due to a successful
comparison. When thread receives the message, it increases its
store counter and reschedules itself if it is suspended on a full
comparison set. Obviously, there may be unnecessary thread
suspensions due to the latency of message transfer, however
the architecture tolerates latency and rescheduling is performed
in hardware so has little overhead.

IV. EVALUATION

A. Methodology

Platform. We evaluate DRMT using MGSim [4], which
is an open source discrete event many-core simulator for on-
chip hardware components. The core in MGSim is equipped
with data-flow thread scheduler. The concrete configuration of
MGSim for the evaluation is shown in table I.

TABLE I: The configuration of MGSim

4 cores
1GHz 6-statge, single-issue, in-order Alpha pipeline
8 threads per core
128KB Private L1 Cache (split I/D), 4-way, LRU, 64B lines
1MB Shared L2 Cache, 4-way, LRU, 64B lines
1 DDR3-1600 channel

Benchmarks. We use 6 Livermore Loops [6] to evaluate
the performance overhead of DRMT, see table II. These 6 loops
are concurrent, i.e., have no loop-carried dependencies. In our
evaluation, each loop has 10,000 iterations. And each loop has
two versions: a multithreaded version and a single-threaded
one. Each iteration of the loop is implemented as a thread in
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Fig. 1: The normalized execution time of DRMT with 1, 2, 4, infinite entries per set or no output comparison.

the multithreaded version. In other words, 10,000 threads run
on the hardware by reusing thread contexts until the iterations
complete. In contrast, the single-threaded loop version is a
single thread that comprises a loop of 10,000 iterations.

TABLE II: The benchmarks

Loop 1. Hydrodynamics fragment
Loop 7. Equation of state fragment
Loop 8. Alternating direction implicit integration
Loop 10. Difference predictors
Loop 15. Casual Fortran
Loop 22. Planckian distribution

B. Results

This section evaluates the performance overhead of DRMT
using one or more logical threads. A logical thread maps to a
single hardware thread if fault detection is not enabled. How-
ever, in redundant mode, a logical thread is further decomposed
into two hardware threads run on different cores. Meanwhile,
we compare the results of multithreaded and single-threaded
versions of the same program to evaluate the overhead of
thread pairing and output comparison. In the evaluation of the
multithreaded program, we find that 2-core and 4-core behavior
are nearly identical, so we do not show 4-core results for the
single-threaded program because of this similarity. Finally, we
estimate the hardware overhead of the CB.

1) Multithreaded Benchmarks: Each multithreaded version
of the benchmarks has 10,000 threads in total. The thread win-
dow1 is the same as logical threads number in DRMT mode.
Figure 1a shows that the average performance overhead is 5%,

1The maximum number of threads that could be run in the same time in
one core.

22% and 44% for 1, 2 and 4 logical threads scenario, respec-
tively. With the one logical thread scenario, the performance
degradation is only between 3-11%. In this case the master
and redundant threads are distributed to two separate cores,
and the number of threads equals to the number of processing
element, which means there is no resources contention. The
performance overhead is mostly caused by thread pairing, see
the results in section IV-B2. The performance overhead is
increased to 8-30% and 7-60% as the number of threads is
2 or 4 times of processing elements in 2 and 4 logical threads
scenario. Even if there is resources contention, the slowdown
of programs in DRMT mode is still far less than 100% in
a platform consisting of single-issue, in-order core. This is
attributed to the latency tolerance of DMT.

Another result shown in figure 1a is that 4 entries per
set of CB are enough for these benchmarks. It can reach the
same performance with an infinite set. Also, the performance
impact of increasing set size is not big, because each thread is
small and only has a few stores in the multithreaded program.
Besides it, we find that there is no performance loss due to
output comparison if the set size is big enough. It is attributed
to the overlapping of thread execution and output comparison.

We also run the evaluation on 4 cores, which is identical to
the result of 2 cores. Figure 1b shows the normalized execution
time of 4 logical threads run on 4 cores, which has the same
distribution with 2 logical threads run on 2 cores. Comparing
the results in figure 1a with 1b, they are nearly the same
except that the performance overhead of the latter is slightly
smaller than the former. It may be because the CB can ease
the congestion caused by concurrent stores better in a more
concurrent stores scenario, i.e., 4 logical threads with 4 cores.

2) Single-threaded Benchmarks: In order to evaluate the
pressure of set capacity from the store number in a thread, we
modify the multithreaded program to single-threaded program.



In figure 1c, we can find that the performance improvement
via increasing set size is much bigger than multithreaded
program as the single thread program executes less efficiently.
However, we see that 4 entries per set can reach the same
performance as the infinite set size. Loop 8 and 15 are store
intensive benchmarks compared to the other loops, but all of
them achieve the lowest performance overhead when each set
has 4 entries. It shows that the set size is not only decided
by the store number in a thread, but also related to the
committing time difference of a store between master and
redundant threads. When the set size is big enough to tolerate
the communication latency between pipeline and CB, the set
size is strongly related to the speed difference between master
and redundant threads, which decides the lifetime of a store
in the CB. In our evaluation, the workload in each core is
quite similar. It means that master and redundant threads have
nearly the same speed and progress, which does not pressure
the CB. And the 4 entries are the critical size for tolerating
the communication latency between pipeline and CB.

In addition, there is nearly no performance degradation in
the 1 logical thread situation of the single-threaded program if
the set is big enough. Comparing figure 1a with 1c, we find that
thread pairing causes the performance overhead in 1 logical
thread situation of multithreaded program, as there are 10,000
times thread pairings. Similar results can be concluded in the
comparison of 2 logical threads scenarios in single-threaded
and multithreaded program. But the difference of performance
overheads between single-threaded and multithreaded bench-
marks in the 2 logical threads scenario is much smaller than
the 1 logical threads scenario. This is because of that the thread
pairing overhead can also be hidden by multithreading.

3) Hardware Cost: The CB is the main hardware cost
of DRMT. It comprises many sets, which correspond to the
hardware threads in the core pair. Each set has many entries,
which has four fields. As shown in table III, each entry has
137 bits. According to the experimental configuration of the
MGSim (see table I) and the results above, the capacity of the
CBs is nearly 1KB2, which is small.

TABLE III: Length of an entry in comparison buffer

Filed Address Value Mask Flag Total
Bit(s) 64 64 8 1 137

V. RELATED WORK

The research on RMT became popular following the in-
troduction of SMT, as it can benefit from the higher resource
utilization when master and redundant threads co-exist within
the processor. AR-SMT [7] proposed executing two copies of
the same program in an SMT environment first. Then, SRT [8]
improved the performance of AR-SMT using a slack fetch and
branch outcome queue based on speculation and cache locality.
SRTR [9] extends SRT to implement fault recovery. However,
the drawback of SRT(R) is that it does not have scalability
when the number of hardware threads increases.

2A 4-core processor has 2 CBs, each CB has 8 sets as each core supports
8 threads. Meanwhile, according to the above results, 4 entries per set can
reach the lowest performance overhead. So the capacity of CBs is 2*8*4*137
= 8768 bits ≈ 1KB.

Meanwhile, with the emergence of multicore processors,
CRT [10], CRTR [11], Reunion [5], DCC [12], and HDTLR
[13] apply redundant RMT to CMPs. They found that there
were fewer overheads than performing RMT in a single SMT
core, as CMPs mitigate the resource contention found in single
cores. However, all these RMT works are based on SMT
techniques. And the CMP-based RMTs use separate store
buffers for master and redundant threads. The output needed
to be compared is transferred via network, either a dedicated
or existing one.

VI. CONCLUSION

This paper has presented the design and evaluation of the
implementation of RMT in a DMT multicore processor in
detail. The results with 6 Livermore Loops show that RMT
can benefit from DMT, where the performance overhead is
less than 60% even if the number of threads is 4 times the
number of processing elements.

We also presented an asynchronous output comparison
mechanism, which can be used by all RMT techniques. Com-
pared to the previous mechanisms, it has three advantages.
1) It saves the capacity of CB since master and redundant
threads share it. 2) It avoids the output transmission among
cores because the output of both master and redundant threads
are pushed to the CB. 3) It provides complete fault coverage of
the program, as it does not compress the output for comparison.
Evaluation shows that both performance and hardware over-
heads of asynchronous output comparison are insignificant.
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