
DARP: Dynamically Adaptable Resilient Pipeline Design in
Microprocessors

Hu Chen, Sanghamitra Roy, Koushik Chakraborty
BRIDGE Lab, Electrical and Computer Engineering, Utah State University

hu.chen@aggiemail.usu.edu, {sanghamitra.roy, koushik.chakraborty}@usu.edu

ABSTRACT

In this paper, we demonstrate that the sensitized path de-
lays in various microprocessor pipe stages exhibit intriguing
temporal and spatial variations during the execution of real
world applications. To effectively exploit these delay varia-
tions, we propose Dynamically Adaptable Resilient Pipeline
(DARP)–a series of runtime techniques to boost power per-
formance efficiency and fault tolerance in a pipelined micro-
processor. DARP employs early error prediction to avoid a
major portion of the timing errors. Using a rigorous circuit-
architectural infrastructure, we demonstrate substantial im-
provements in the performance (9.4–20%) and energy effi-
ciency (6.4–27.9%), compared to state-of-the-art techniques.

1. INTRODUCTION
Rapid miniaturization of transistor devices has introduced

several uncertainties in their operation. Modern micropro-
cessor pipelines experience multiple sources of delay vari-
ations, sometimes manifesting as a timing error [1, 17, 15].
Some of the well studied sources of delay variations include
process variation and aging [17, 15]. To ensure reliable oper-
ation while preserving energy efficiency under delay varia-
tion, two of the most popular techniques applied on micro-
processor pipelines are timing speculation and clock skew
tuning. Timing speculation reduces the guardbands to a point
where errors occur and are recovered using error detection
and recovery techniques like Razor [7]. Post silicon clock
skew tuning is used to adjust the clock skews of the pipeline
registers to allow some stages to borrow time from others
[18]. Combined with timing speculation, clock skew tuning
can be even more effective, as it becomes possible to config-
ure the clock skews more aggressively to allow occasional
errors, thereby improving both performance and energy effi-
ciency [20].

Variation in delays of pipeline stages also depends on spe-
cific applications running on the microprocessor, as well as
dynamic fluctuations in voltage and temperature. For in-
stance, sensitized paths during the execution of real world
applications may exhibit strikingly distinct characteristics than
expected from a purely static timing analysis. However, to
the best of our knowledge, there exist very limited works that
exploit delay variance from real world applications. For ex-
ample, recent works on adaptive clock skew tuning by Ye et
al. and Lak et al. tackle process variation and aging based
delay variation, but do not address the delay variation from real
world applications [20, 11].

In this paper, we employ a circuit-architectural analysis
to investigate and exploit the delay variation seen in sensi-

978-3-9815370-2-4/DATE14/ c©2014 EDAA

tized circuit paths during real world application execution.
We identify two distinct classes of these variations, driven by
workloads: (a) temporal–delay variation within a given pipe
stage during different phases of a program; and (b) spatial–
distinct delay distributions among different pipe stages of a
microprocessor. We also exploit early error prediction, a re-
cently proposed technique that allows us to predict timing
errors many cycles in advance using the instruction program
counter (PC) [16, 19, 4]. We combine early error prediction
with clock skew tuning to propose Dynamically Adaptable Re-
silient Pipeline (DARP), which outlines a next wave of inno-
vation in pushing the energy efficient frontier of pipelined
microprocessor design.

We make the following contributions in this paper:

• We show a striking temporal and spatial variance in the
sensitization of critical paths in a microprocessor com-
ponent, during the execution of real programs (Section
3). Our rigorous analysis integrates architectural simu-
lation data with a gate level logic analyzer to determine
critical paths and critical delays sensitized during pro-
gram execution.
• We propose DARP, a dynamically adaptable resilient

pipeline. In addition to handling the well studied de-
lay variations from process variation and aging, DARP
can adapt a pipeline to the spatial and temporal delay
variations from real workloads. DARP employs pro-
gram phase driven early timing error prediction and
dynamic frequency and clock skew adjustment to ex-
ploit workload specific delay characteristics in pipelined
systems (Section 4).
• Using a rigorous circuit-architectural simulation (Sec-

tion 5), combining synthesized hardware with real world
application execution through architectural simulation,
we demonstrate dramatic improvement in the perfor-
mance (9.4–20%) and energy efficiency (6.4–27.9%), com-
pared to state-of-the-art timing speculation techniques
(Section 6). DARP schemes have negligible core level
power overheads of 0.84% and 3.35%, giving an energy-
efficient alternative for robust pipelines.

2. RELATED WORK
Previous works most relevant to DARP fall in the broad

categories of timing speculation and clock skew scheduling.
One approach to boost energy efficiency is by operating at
a tighter frequency and detecting and correcting occasional
timing errors after occurrence (e.g., Razor [7] and others [2]).
Another approach aims to employ sensors for just in-time
prediction of timing errors, and advocates time borrowing to
avoid timing errors [6, 8, 3]. More recent works demonstrate
early prediction of timing errors, several cycles in advance, by

FabScalar Toolset

F�������� ���	��
	 �S��	�

(F	S�
� D	���	� E�	��S	� �

F�������� �����	�����

�� ������S��
 E
����
�	
S

��E� ��C����

B	
�
�����

��
�����

D	���
 ������	�

I
 H���	 L����

A
����	�
D	��� D��S����S��
�

I
��S� S� E��

���	��
	 �S��	
��
S
	���	�

N	S���S

Figure 1: Cross-Layer Methodology.

observing the correlation between instructions and their sen-
sitized path delays [16, 19, 4]. In the domain of clock skew
scheduling, recent works by Ye et al. and Lak et al. pro-
pose dynamic techniques to combine with timing specula-
tion through error detection [20, 11]. However, their works
do not consider real workload execution on a pipelined mi-
croprocessor, and are based on random inputs. Our pro-
posed pipeline DARP overcomes this limitation through a
cross-layer theme that considers real program driven circuit
path sensitization. Moreover, we combine early prediction of
timing errors with dynamic clock skew tuning to efficiently
exploit the workload driven circuit delay variances.

3. MOTIVATION
In this section, we demonstrate the wide variance in sen-

sitized path delays in microprocessor pipe stages during the
execution of real applications. Our cross-layer analysis, iden-
tifies two distinct sources of this variance: temporal and spa-
tial. Collectively, these delay variances uncover intriguing
possibilities in the runtime adaptation of various pipe stages
in a microprocessor, boosting performance and energy effi-
ciency of the entire system.

3.1 Sensitized Pipe Stage Delay
There is a strong correlation between a static instruction

and the paths sensitized by each of its dynamic instances
[16]. However, when we analyze different instructions sen-
sitizing specific paths in a microprocessor pipe stage, we ob-
serve a wide disparity in their sensitized delays. For exam-
ple, during a particular program execution, certain instruc-
tions may experience a mere fraction of the clock cycle delay,
meeting the timing with a large margin to spare. On the other
hand, other instructions may experience a much larger delay,
with limited slack. To analyze this intriguing property, we
employ a rigorous cross-layer methodology, outlined next.

3.1.1 Methodology

As instructions from various workloads pass through the
pipe stages, they sensitize different paths, and therefore ob-
serve different logic computation delays. To capture these
characteristics, Figure 1 shows our rigorous cross-layer method-
ology combining architecture level workload simulation with
circuit level timing analysis. We use the RTL modules, con-
figured for the out-of-order Core-1 configuration, from the
FabScalar infrastructure [5]. The modules are synthesized
using Synopsys Design Compiler to obtain a netlist of gates,
Subsequently, we perform architectural simulation of several
real world applications using the FabScalar Co-Simulation
environment, and extract cycle-by-cycle input vectors for var-
ious pipe stage RTL modules. We use these input vectors
with our in-house logic analyzer to obtain the delay charac-
teristics of various pipe stages as instructions flow through

the pipeline.

3.1.2 Results

Figure 2 shows the delay variance on three pipe stages.
The Retire stage graduates instructions from the pipeline, mak-
ing their changes visible outside (Figure 2(a)). For the Exe-
cute stage, we use the delay variance seen in the Simple ALU
(Figure 2(b)). The Issue stage is responsible for scheduling
instructions on various functional units (Figure 2(c)). All the
three figures show the cumulative distribution function (CDF)
plot for the sensitized delay from workload instructions.

From these figures, we observe a wide range of sensitized
path delays in these pipe stage modules. Furthermore, vari-
ous workloads also show substantially different delay pro-
files. On a closer inspection, we can broadly characterize
these variations into two major classes:

• Temporal: Within a given pipe stage, different instruc-
tions in a given workload often exhibit substantial vari-
ance. For example in Figure 2(a), we observe that 29%
instructions in bzip exhibit negligible delay in the Retire
pipe stage, whereas 57% instructions in vortex exhibit
similar characteristics.
• Spatial: Different pipe stages exhibit a range of de-

lay profiles. For example, comparing Execute and Is-
sue (Figures 2(b) and 2(c), respectively), we can see in-
triguing distinctions. Across different benchmarks, a
vast majority of instructions exhibit 80% or higher per-
centage of the maximum delay in Issue, whereas only
a limited fraction of instructions experience such high
delay in the Execute stage. Comparing across differ-
ent workloads, we also notice that this spatial delay
imbalance between the Execute and Issue stage is sub-
stantially more pronounced in vortex than in mcf, pri-
marily due to more uniform delay characteristics in the
Execute stage for mcf.

3.2 Significance
Our results above indicate a wide disparity in delay sen-

sitized from different instructions. On the other hand, pre-
vious works have demonstrated striking similarity in delay
characteristics from recurring instances of the same instruc-
tion [16, 19]. Then, a key question is can we simultaneously
exploit both these workload driven behaviors in an unified
manner in a microprocessor pipeline? We strongly believe
this is a genuine possibility and propose our scheme Dynam-
ically Adaptable Resilient Pipeline (DARP). DARP exploits re-
peatability of delay characteristics of a program by substan-
tially tightening the operating frequency and dynamically
predicting upcoming timing errors several cycles in advance.
These timing errors are subsequently avoided through a stall
insertion in the pipeline, radically diminishing the penalty
from error detection and correction with replay. On the other
hand, spatial variances in sensitized delay in the pipe stages
are seamlessly integrated by our low-overhead controller that
dynamically adjusts processor frequency and clock skews in
every epoch. In the next section, we describe our proposed
schemes in details.

4. DYNAMICALLY ADAPTABLE RESILIENT

PIPELINE
In this section, we present an overview of designing a DARP

system and the associated design challenges.

Normalized delay

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 in
st

ru
ct

io
ns

 c
ou

nt

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bzip

gap

gzip

mcf

parser

vortex

(a) Retire

Normalized delay

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 in
st

ru
ct

io
ns

 c
ou

nt

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bzip

gap

gzip

mcf

parser

vortex

(b) Execute

Normalized delay

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 in
st

ru
ct

io
ns

 c
ou

nt

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bzip

gap

gzip

mcf

parser

vortex

(c) Issue

Figure 2: CDF of sensitized path delay variance in several microprocessor pipe stages.

TEPT

Clock Skews {�1:�p}Clock Skews {�1:�p}

F
et
ch

D
ec
o
d
e

R
en
a
m
e

D
is
p
a
tc
h

Is
su
e

R
eg
is
te
r
R

L
S
U

W
ri
te
b
a
ck

R
et
ir
e

E
xe
cu
te

In
st
B

DARP Controller

Error Count
Error

Detection
Recovery

Frequency fFrequency f

C�� C��C�� C�� C��C�� C�� C�� C�� C�� C��

�1 �2 �p�p 1

{�1:�p} f��� D��� c�	
������{�1:�p} f��� D��� c�	
������

Figure 3: DARP Overview.

4.1 DARP Overview
Figure 3 shows an overview of our proposed DARP pipeline

design. The figure shows two major augmentations of a mi-
croprocessor pipeline: (a) Timing Error Prediction Table (TEPT)
in the decode stage coupled with error detection and recov-
ery in every pipeline stage (Section 4.2); and (b) DARP con-
troller design and its auxiliary components (CVD) in each
pipeline stage to adjust the clock skew (Section 4.3). Collec-
tively, our techniques work in tandem to substantially im-
prove the power-performance characteristics of a micropro-
cessor pipeline.

4.2 Exploiting Early Error Prediction
To exploit temporal variance, we maintain a small, dynam-

ically managed table of instructions prone to cause repeated
timing errors in various pipeline stages. We refer this table as
the Timing Error Prediction Table (TEPT). Three central aspects
of early error prediction are described below:
Error Detection: To detect runtime timing errors in various
pipe stages, we protect all the potentially critical paths by
a double sampling flip-flop in their output pins, similar to
Razor [7]. These critical paths are identified by a technique
proposed by Lak et al. [11]. When an error is detected, we ini-
tiate two actions: (a) insert the error causing instruction PC
along with the relevant pipe stage information in the TEPT
to avoid timing errors from the same instruction in the near
future; and (b) initiate an instruction replay to recover from
the fault [7]. During the repeated execution of the same in-
struction, timing errors are avoided as described next.

Error Avoidance: During the decode of an instruction, we
access the TEPT to see if that instruction is likely to cause a
pipeline error. If a matching entry is found, we update the in-
struction meta-data to propagate a stall signal as the instruc-
tion proceeds in the pipeline. When the instruction enters
the pipe stage where it previously caused a timing error, the
stall signal is triggered, thereby allowing the instruction to
occupy that pipe stage for two consecutive cycles. Forward
flow of instructions is avoided for that cycle by recirculating
the inputs to all other pipe stages. Consequently, timing er-
ror from that instruction is avoided, recovering a bulk of the
performance loss. This is possible as pipeline stalls incur at
least 10X lower penalty than an instruction replay in mod-
ern processors. During error avoidance by stalling, a Razor
flip-flop can incorrectly flag an error. However, such a flag is
invalidated by combining with the stall signal.
Dynamic TEPT Management: Entries in the TEPT are man-
aged at runtime to exploit the workload phase behaviors.
Whenever a timing error is detected, we insert the instruc-
tion PC into the table. Recall that the detection of a timing
error implies that no error was predicted from that PC before.
If the table is full, as is expected after a brief table warm-up
period, we search for an eviction entry using a pseudo-LRU
(least recently used) policy. Pseudo-LRU policy is widely
used in modern caches to avoid the complexity of imple-
menting a full LRU policy. Table entries are managed as a
CAM (Content addressable memory), which allows the best
use of the small space available.

4.3 DARP Controller Design
We dynamically exploit the spatial imbalance among pipe

stages using: (a) a system level DARP controller that dynam-
ically determines the clock skew configurations of each pipe
stage; and (b) lower level clock vernier devices (CVD) that
control the clock skews of individual pipe stages. These are
detailed next.

4.3.1 DARP Controller

The role of the DARP controller is to dynamically config-
ure the frequency of the pipeline and the clock skews in every
pipe stage. This is done in hardware using the information
about the timing errors in each pipe stage that are not cov-
ered by early prediction.

Algorithm 1 outlines the operation of the DARP controller.
The DARP controller repeats this algorithm once in each epoch
(every N instructions) to dynamically adapt the pipeline fre-
quency as well as clock skews to resolve the spatial imbal-

Algorithm 1 DARP

Input: {s1 : sp}, f , {n1 : np}
Output: {s1 : sp}, f

1: k ← Pipe stage with max errors; nmax ← nk
2: l ← Pipe stage with min errors; nmin ← nl
3: if nmin == 0 && nmax <= ρ then
4: f ← f + fstep

5: else if nmin >= η then
6: f ← f − fstep

7: end if
8: T ← 1

f

9: navg ← avg(n1 : np)
10: {△1 : △p} ← {n1 : np} − navg

11: for i ← 1 : p do
12: if△i < 0 then
13: si ← si − 001
14: else if△i > 0 then
15: si ← si + 001
16: end if
17: end for
18: Adjust {s1 : sp} to maintain T*p cycles

ance in pipe stage delays. Each pipe stage clock skew is con-
figured using a 3-bit skew configuration of its CVD. The in-
put to the DARP controller is the skew configurations {s1 :
sp} for p pipe stages, the frequency f , and the timing error
counts {n1 : np} from the previous epoch.
Tuning Operating Frequency: Steps 1-7 outline our frequency
tuning at each epoch. We first estimate the pipe stages with
the maximum and minimum timing errors (stages k and l).
We tighten the frequency by a step interval (fstep) when nmin
is zero and nmax is lower than a constant threshold ρ. Like-
wise, we relax the frequency when nmin exceeds a lower bound
given by constant η. These steps help us to tighten or re-
lax the operating frequency once in each epoch, based on the
timing error profile of the pipeline in the previous epoch.
Configuring Clock Skews: Steps 9-18 illustrate the dynamic
clock skew tuning. We first calculate the set {△1 : △p}. The

ith element in this set contains the difference between the tim-
ing errors in stage i (ni) and the average timing error navg.
The pipe stages that have timing errors below average get
a reduced clock skew, while the pipe stages with timing er-
rors above average see an increase in the positive clock skew.
The clock skew tuning is done using a 3-bit programmable
CVD, detailed in Section 4.3.2. This dynamic reconfigura-
tion of clock skews ensures that the pipe stages sensitizing
higher delay paths can borrow time from those sensitizing
lower delay paths. This process in turn helps us to further
tighten the frequency in the next epoch. Step 18 readjusts the
clock skews to ensure the total time for a p stage pipeline is
maintained at T ∗ p cycles, T being the time period (step 8).

4.3.2 Clock Vernier Device (CVD)

We use clock vernier devices (CVD) as our clock tuning
elements (Figure 4) [11]. CVDs can generate several skew
configurations based on their input bits. The latches a, b
and c also store the skew configurations to be used in the
next epoch. For example, for a 3-bit input, we can have 8
skew configurations. If we set bit 011 to represent zero skew,
and perform skew increments/decrements in steps of δ, then
we can get the positive and negative skew configurations of
{−3δ,−2δ,−δ, 0, δ, 2δ, 3δ, 4δ}. These skews help us to dy-

a b cD���

Ti� Ts���

��	
�

�i�

C�D

Figure 4: Configuring Clock Vernier Devices using DARP.

namically lend time to pipe stages sensitizing higher delay
critical paths, and borrow time from pipe stages sensitizing
low delay critical paths. To manage the overhead of adding
CVDs, we group multiple flip-flops in a pipe stage to share a
single CVD, using the clustering algorithm proposed by Lak
et al. [11].

4.3.3 Implementation

The clock skew adjustment must be made when the pipeline
is empty to avoid metastability issues [2]. Thus, at the end
of every epoch, we flush the entire pipeline, and run Algo-
rithm 1 to obtain the new frequency and skew adjustments
for the new epoch. The pipeline operation is resumed only
after skew adjustments are applied and the new frequency is
stabilized. To limit the overhead of this operation, we adopt
several strategies. First, we choose a large enough epoch of
100K cycles that can amortize the dynamic adjustment cost
while offering enough opportunities to adapt to the work-

load characteristics1. Second, we use a fairly simple algo-
rithm in hardware to incrementally adjust clock skews and
frequency, avoiding a full blown search. Third, we use a
widely popular dynamic clocking technique that allows a
rapid adjustment of the clock frequency [12]. Combining
these strategies, we limit the overhead of a single dynamic
reconfiguration to within 100 cycles per epoch (overhead of
0.1%).

4.3.4 DARP for Aged Pipelines

Different stages of a microprocessor pipeline may age asym-
metrically over time, as thermal fluctuations are predomi-
nant in the back end of the pipeline [13]. Asymmetric aging
can substantially change the critical delays of certain pipe
stages leading to increased timing errors. The DARP algo-
rithm can automatically adjust the pipeline frequency and
clock skews as the processor ages, as it uses the current tim-
ing error information from each pipe stage.

5. METHODOLOGY
In this section, we describe our cross-layer methodology

for power-performance trade-off analysis of DARP.

5.1 Architecture Layer
Our architectural simulation is based on the FabScalar in-

frastructure [5]. We next provide details of our core microar-
chitecture and specific workloads used in this work.

1A thread is typically scheduled for a 10ms time quantum,
within which we can run our configuration adjustments 300
times assuming a 3GHz clock.

5.1.1 Core Microarchitecture

We choose FabScalar’s Core-1 configuration, with an eleven
stage p = 11 out-of-order superscalar pipeline capable of
fetching, issuing and committing 4 instructions each cycle.
The core uses a two-level cache hierarchy: a 32 KB 4-way
split Instruction/Data L1 cache with a latency of 1 cycle and
an 8MB 16-way L2 cache with a latency of 25 cycles. The
main memory access time is 240 cycles. In each pipeline
stage, we employ a timing-error detection and instruction re-
play mechanism similar to [7] and our proposed DARP en-
hancements (Figure 3). We model cycle accurate timing be-
havior of our proposed architecture under various schemes.

5.1.2 Workloads

We use several SPEC CPU2000 integer benchmarks repre-
senting a range of real world applications, in our analysis.
We simulate these benchmarks for 10ms, which is a typical
time quanta allotted to a thread from the operating system.

5.2 Circuit Layer
In order to evaluate our approach, we use our in-house

statistical timing analysis tool to calculate the propagation
delay of each pipeline stage on every cycle (Figure 1). To
perform gate level timing analysis, we follow several impor-
tant steps. First, we synthesize our implementation with the
Synopsys Design Compiler. Second, to obtain propagation
delay of the sensitized circuit paths, we integrate the delay
characteristics from HSPICE simulation based on the Predic-
tive Technology Model (PTM) for the 22nm node [21], with
the synthesized netlist gate delays. The delay models also in-
corporate the effects of process variation [10]. This method-
ology allows us to obtain the circuit delay characteristics of
a lower technology node than using a standard cell library.
Third, for SRAM based memory modules such as the L1 in-
struction/data cache, the branch target buffer (BTB) and the
conditional branch predictor, we use CACTI 6.0 to get the
timing information [14], and subsequently integrate it to the
circuit delay.

5.3 Timing Error Simulation Methodology
We use a combination of two distinct strategies to simulate

timing errors in the microprocessor pipeline: (1) frequency
over-scaling; and (2) voltage scaling. We increase the fre-
quency and/or scale down to operating voltage to a point,
where timing errors begin to occur in several pipe stages.
Combined together, these two strategies help us to evalu-
ate the power-performance characteristics of our proposed
schemes as well as previous works in the presence of timing
errors.

6. EXPERIMENTAL RESULTS
In this section, we present experimental results of compar-

ing our DARP system with contemporary schemes based on
online clock tuning and timing speculation.

6.1 Comparative Schemes

• Razor: This scheme models one of the most popular
techniques based on timing speculation [7, 9]. Using
this scheme, the operating frequency of a processor can
be raised, by allowing occasional timing errors in vari-
ous stages of the pipeline. These timing errors are de-
tected using double-sampling rear end flip-flops. After

error detection, an instruction replay is triggered to cor-
rect the error.
• Online Clock Tuning with Timing Speculation (OCTTS):

This scheme models recent work to combine clock skew
tuning with timing speculation [20, 11]. Instead of ap-
plication driven sensitized path delays, both these schemes
use random inputs to drive their clock tuning mecha-
nisms.
• DARP: In this scheme, we do dynamic frequency tun-

ing for each benchmark. At each operating frequency,
we readjust the clock skews of the pipe stages to best
exploit the spatial imbalance (Algorithm 1).
• DARP-Pred: In addition to DARP, this scheme employs

a 4K sized timing error prediction table (TEPT) to do
early timing error prediction along the entire pipeline
(Section 4.2). DARP-Pred can avoid most timing-errors
than DARP through early prediction, thereby saving
several costly instruction replays.

6.2 Performance Comparison
Figure 5 shows the performance of our proposed DARP

schemes, compared to Razor and OCTTS. The results are nor-
malized to the Razor scheme. By exploiting the delay varia-
tion due to topology and process variation in a general pur-
pose out-of-order microprocessor, we observe that OCTTS
can boost the application performance over Razor (19% on
an average). Our proposed DARP scheme further improves
the performance of the system by dynamically exploiting the
workload driven spatial imbalance in addition to the previ-
ous factors. DARP-Pred additionally exploits the temporal
delay variance in pipe stages with early error prediction and
avoidance. For example, we notice that DARP-Pred can de-
liver 17.9% and 20% performance improvements over OCTTS
in bzip and gap benchmarks, respectively. On an average,
DARP and DARP-Pred show 6.7% and 13.4% speedups over
OCTTS across these benchmarks. The improvements over
Razor are substantially larger.

Figure 6 gives further insight on the performance improve-
ment of the DARP schemes. The first and second bar for
each benchmark represents the replay cycles in the OCTTS
and DARP schemes, respectively, while the third bar is for
the replay and stall cycles in the DARP-Pred scheme. These
schemes work at the same frequency and all these cycle num-
bers are normalized to the OCTTS scheme. Since DARP en-
counters much less timing errors, it has a much lower replay
penalty than the OCTTS scheme. On the other hand, DARP-
Pred converts a significant part of the replay penalty (all of it
in some benchmarks, e.g. bzip) into the stall penalty, further
reducing the penalty cycles from the DARP scheme. This is
possible as a majority of the timing errors can be avoided us-
ing early prediction. Using only Razor at the same frequency
incurs substantially higher timing errors and replay penal-
ties, and thus is omitted from the figure.

6.3 Energy-Efficiency Comparison
Figure 7 shows the energy-efficiency of both DARP and

the comparative schemes, in terms of the Energy Delay Prod-
uct (EDP). To search the best EDP for each scheme, we ex-
plore discrete supply voltages in steps of 5%, down to 70%
of the nominal voltage. We see that OCTTS has a notable
EDP reduction, with the average value of 5.8%; while the
DARP schemes show a further energy-efficiency improve-
ment, with the average EDP reduction of 12.7% and 19.8%,

bzip gap
gzip mcf

parser
vorte

x

average

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n
c
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Razor OCTTS DARP DARP-Pred

Figure 5: Performance comparison normalized to Razor.

bzip gap
gzip mcf

parser
vorte

x

averageN
o

rm
a

liz
e

d
 P

e
n

a
lt
y
 C

y
c
le

s

0

0.2

0.4

0.6

0.8

1
Replay Stall OC

TT
S

D
A
R
P

D
A
R
P
-P
re
d

Figure 6: Penalty Cycles from Timing Errors.

respectively, over Razor. This energy-efficiency improvement
stems from three factors: (a) workload specific skew adjust-
ments; (b) early error prediction to avoid timing errors; and
(c) delay reduction discussed in Figure 5. When compared
against OCTTS, the DARP and DARP-Pred schemes show
an average EDP reduction of 7% and 15%, respectively.

6.4 Power Overhead of DARP
The primary power overhead in DARP comes from the

counters in each stage to record timing errors, the DARP
controller (Figure 3) and the 4K sized TEPT for DARP-Pred.
These overheads are estimated relative to the OCTTS scheme.
Hence we exclude the CVDs and buffers for minimum de-
lay padding that are already present in many modern micro-
processors. The power overhead of our schemes, are calcu-
lated by synthesizing the Core-1 from the FabScalar infras-
tructure using the Synopsys Design Compiler with a 45nm
FreePDK library. We add all the hardware enhancements of
the DARP pipeline and estimate the overhead relative to the
core power. Overall, we find a power overhead of 0.84% and
3.35% relative to the core power, for the DARP and DARP-
Pred schemes, respectively. Energy efficiency results pre-
sented in Figure 7 include these overheads.

7. CONCLUSION

bzip gap
gzip mcf

parser
vorte

x

average

N
o

rm
a

liz
e

d
 E

D
P

0

0.2

0.4

0.6

0.8

1
Razor OCTTS DARP DARP-Pred

Figure 7: EDP Comparison normalized to Razor.

We present a novel runtime approach to exploit the vari-
ations in sensitized path delays among various pipe stages
in modern microprocessor designs. Two pillars of our pro-
posed system are early prediction of timing errors from pro-
gram phases, and exploiting a low-overhead controller for
frequency and clock skew tuning. Through a rigorous circuit-
architectural infrastructure, we demonstrate significant im-
provements in the performance (9.4–20%) and energy effi-
ciency (6.4–27.9%), compared to state-of-the-art techniques.

Acknowledgment

This work was supported in part by National Science Foun-
dation grants CNS-1117425, CAREER-1253024, CCF-1318826
and donation from the Micron Foundation. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

8. REFERENCES
[1] BORKAR, S. Design Perspectives on 22nm CMOS and Beyond. In Proc. of

46th Proc. of DAC (2009), pp. 93–94.

[2] BOWMAN, K. AND OTHERS Energy-Efficient and Metastability-Immune
Resilient Circuits for Dynamic Variation Tolerance. J. of Solid-State Circ.
44, 1 (2009), 49–63.

[3] BOWMAN, K. AND OTHERS Circuit techniques for dynamic variation
tolerance. In Proc. of DAC (2009), pp. 4–7.

[4] CHAKRABORTY, K. AND OTHERS Efficiently Tolerating Timing
Violations in Pipelined Microprocessors. In Proc. of DAC (2013), no. 102.

[5] CHOUDHARY, N. K. AND OTHERS FabScalar: composing synthesizable
RTL designs of arbitrary cores within a canonical superscalar template.
In Proc. of ISCA (2011), pp. 11–22.

[6] CHOUDHURY, M. R. AND OTHERS TIMBER: Time borrowing and error
relaying for online timing error resilience. In Proc. of DATE (2010),
pp. 1554–1559.

[7] DAS, S. AND OTHERS RazorII: In Situ Error Detection and Correction for
PVT and SER Tolerance. JSSC 44, 1 (Jan. 2009), 32–48.

[8] GHASEMAZAR, M., AND PEDRAM, M. Minimizing the Energy Cost of
Throughput in a Linear Pipeline by Opportunistic Time Borrowing. In
Proc. of ICCAD (2008).

[9] KEITH BOWMAN, E. Circuit Techniques for Dynamic Variation
Tolerance. In Proc. of DAC (2009).

[10] KOTHAWADE, S. AND OTHERS Analysis of Intermittent Timing Fault
Vulnerability. Microelectronics Reliability 52, 7 (July 2012), 1515–1522.

[11] LAK, Z., AND NICOLICI, N. In-system and on-the-fly clock tuning
mechanism to combat lifetime performance degradation. In Proc. of
ICCAD (2011), pp. 434–441.

[12] MCNAIRY, C., AND BHATIA, R. Montecito: A Dual-Core, Dual-Thread
Itanium Processor. IEEE Micro 25, 2 (2005), 10–20.

[13] MESA-MARTINEZ, F. J. AND OTHERS Power model validation through
thermal measurements. In Proc. of ISCA (2007), pp. 302–311.

[14] MURALIMANOHAR, N. AND OTHERS Architecting Efficient
Interconnects for Large Caches with CACTI 6.0. IEEE Micro 28, 1 (2008),
69–79.

[15] PAN, S. AND OTHERS IVF: Characterizing the vulnerability of
microprocessor structures to intermittent faults. In Proc. of DATE (2010),
pp. 238–243.

[16] ROY, S., AND CHAKRABORTY, K. Predicting Timing Violations Through
Instruction Level Path Sensitization Analysis. In Proc. of DAC (2012),
pp. 1074–1081.

[17] SARANGI, S. AND OTHERS VARIUS: A Model of Process Variation and
Resulting Timing Errors for Microarchitects. IEEE Transactions on
Semiconductor Manufacturing 21, 1 (2008), 3 –13.

[18] TADESSE, D. AND OTHERS AutoRex: An automated post-silicon clock
tuning tool. In Proc. of ITC (2009), pp. 1–10.

[19] XIN, J., AND JOSEPH, R. Identifying and predicting timing-critical
instructions to boost timing speculation. In Proc. of MICRO (2011),
pp. 128–139.

[20] YE, R. AND OTHERS Online clock skew tuning for timing speculation. In
Proc. of ICCAD (2011), pp. 442–447.

[21] ZHAO, W., AND CAO, Y. New Generation of Predictive Technology
Model for sub-45nm Early Design Exploration. IEEE Transactions on
Electron Devices 53, 11 (2006), 2816 –2823.

