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Abstract—Technology scaling leads to significant faulty bit
rates in on-chip caches. In this work, we propose a methodology to
mitigate the impact of defective bits (due to permanent faults) in
first-level set-associative data caches. Our technique assumes that
faulty caches are enhanced with the ability of disabling their
defective parts at cache subblock granularity. Qur experimental
findings reveal that while the occurrence of hard-errors in faulty
caches may have a significant impact in performance, a lot of
room for improvement exists, if someone is able to take into
account the spatial reuse patterns of the to-be-referenced blocks
(not all the data fetched into the cache is accessed). To this end, we
propose frugal PC-indexed spatial predictors (with very small
storage requirements) to orchestrate the (re)placement decisions
among the fully and partially unusable faulty blocks. Using cycle-
accurate simulations, a wide range of scientific applications, and a
plethora of cache fault maps, we showcase that our approach is
able to offer significant benefits in cache performance.

I. INTRODUCTION

Over the last two decades, scaling of CMOS devises has
provided remarkable improvements in performance of
electronic circuits. However, as silicon industry is moving
toward the “end of Moore's Law,” increases in static [3] and
dynamic [4] variations, wear-out failures [20], and
manufacturing defects are affecting the yield and reliability of
ICs [2]. As a result, the toolbox of the system designers must
be always enhanced with new fault-tolerance techniques.

This is particularly true in on-chip caches for two reasons.
First, an increasingly larger portion of the chip area is devoted
to caches and this trend is expected to exacerbate in the many-
core era. Second, caches are built with minimum sized, thereby
prone to failure, SRAM cells. Recent technology roadmaps
pinpoint the vulnerability problem in SRAM cells. According
to [15], the predicted probability of failure (pfail) for SRAM
cells is equal to 2.6e-04 due to random dopant fluctuations in
12nm technology. Furthermore, if we rely on aggressive
voltage scaling techniques below safety thresholds, the SRAM
pfail ramps up exponentially [19]. Therefore, it becomes
critical to devise new fault-tolerant techniques to protect
caches against hard faults. Obviously, these techniques have to
be both scalable and performance effective, especially when
the caches under consideration are close to core.

A significant amount of work targets to address the cache
reliability concerns at the circuit level. Typically, those
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techniques are based on upsizing the memory transistors or by
using alternative SRAM cell designs, such as eight- or ten-
transistor cells [9]. Unfortunately, these techniques incur large
area overheads and require considerable effort to redesign the
underlying cache structure. A class of architectural level
methods for masking out the memory faults relies on inserting
redundant cache elements (blocks or columns) in the cache
array [5,18]. However, due to the limited redundancy that can
be afforded, this approach offers a limited capacity in the
number of defects that can be tolerated (defined by the number
of redundant elements) [1,10]. Another set of methods is based
on the cache block/row/way disabling that is also suitable for
low failure rate situations [12,13]. The usage of error
correcting codes (ECC) to detect/correct the hard errors has
also been proposed. However, the use of ECC is not practical
for hard errors due to their large storage overhead and ECC
repair time penalty rendering them not suitable for the latency-
sensitive L1 caches. Furthermore, in the case of multi-bit hard
errors, stronger ECC is required further prohibiting the in-line
correction due to even larger overheads [19].

As industry moves into the near threshold region
characterized by high fault probabilities, more scalable
solutions are required. Many recent fault tolerant schemes are
based on the concept of disabling cache portions, such as block
or words that include defective bits, and reconfiguring
operational ones (e.g., physical or logical neighborhood
blocks). For example, PADed cache uses configurable address
decoders that are programmed to select non-faulty blocks as
replacements of faulty blocks [16]. The WDIS scheme
combines two consecutive cache blocks into a single cache
block, whereas the BFIX scheme sacrifices a sound cache
block to repair defects in three other blocks [19]. The buddy
cache pairs up two faulty blocks in a cache set to provide a
functional one [8]. The salvage cache follows a similar
approach by using a single faulty block to repair several others
in the same cache set [7]. All those techniques require
significant circuit modifications [1] which may pose a great
burden to the designers of time-sensitive L1 caches.

In contrast to these approaches, in this work we propose to
deal with the cache reliability problem at a very different level.
Our proposal targets to better utilize the cache fault-free area
by exploiting the low cache block utilization without resorting
to non-scalable redundancy based solutions or to complex
block remapping schemes. In contrast to prior techniques,
striving to substitute every faulty subblock or word with a
sound one is not always necessary, if the executing
applications exhibit specific access patterns. More specifically,
it is well known that caches are very inefficiently utilized
because not all data, fetched into the cache to exploit spatial
locality, is accessed [6,14]. Thus, if someone was able to
predict the to-be-referenced words of a cache block and



accordingly fetch and place those data in the functional
portions of a faulty cache frame (physical cache position), this
will eliminate the need for extra redundant elements and/or the
need for complex remapping mechanisms.

Based on those observations, our attempt to address the
cache reliability challenge is to enhance the L1 faulty caches
with a spatial pattern prediction mechanism that will provide
the necessary information (unused portions of the requested
blocks) to the underlying cache (re)placement logic. More
specifically, we propose a fault tolerant aware (FTA)
(re)placement policy that is able to take into account i) the
faulty portions of the frames belonging into a specific cache set
and ii) the spatial footprint predictions of the just requested
blocks (misses) and issues informed (re)placement decisions in
order to mask out the faulty cache parts. To the best of our
knowledge, this is the first approach that proposes dedicated
fault tolerant aware cache (re)placement policies.

Our approach relies on spatial footprint predictions
(SFPs). While many sophisticated predictors are available
[6,14], the proposed mechanisms are too fine grain, too
complex and storage demanding for our purposes. As a result,
we propose practical, instruction (PC) based, coarse grain
spatial footprint predictors (CG-SFP) with a very limited range
of prediction options. CG-SFP is designed to predict if a whole
cache block or only the left or the right portion of a block will
be accessed. The latter characteristic leads to frugal and
scalable prediction structures requiring less than 128 bytes
storage overhead.

Finally, we extensively evaluate our approach using cycle
accurate simulations, a wide range of scientific applications
(from SPEC2000 and SPEC2006 suite), and a plethora of fault
maps in order to prove the stability of our proposal. Our results
indicate a significant reduction in the resulting number of
misses compared to a conventional cache managed with LRU
replacement decisions. On average, 17.22% reduction in the
reported misses is observed in a 16KB defective cache, 19.64%
in a 32KB, and 21.18% in a 64KB cache.

Structure of the paper. Section II assesses the impact of
defective bits in set-associative data caches and motivates this
study. Section III describes our evaluation framework. Section
IV presents our lightweight CG-SFP. Section V depicts our
fault tolerant aware (re)placement scheme. Section VI provides
our evaluation results. Section VII concludes this work.

II. FAULTY CACHES, CACHE ASSOCIATIVITY AND CACHE
UTILIZATION

Impact of defective bits. Fig. 1 depicts the effect of cache
block disabling technique for various first-level data (DL1)
cache sizes as averaged values for the two benchmark suites
that we consider in this work. Details about the simulation and
benchmark parameters are provided in Section III. The y-axis
shows the relative increase in the number of misses with
respect to a fault-free cache of the same configuration. Each
line in the graph corresponds to a different cache size and
benchmark suite, while three set-associative organizations are
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Fig. 1. The effect of faults in set-associative first-level data caches.

depicted (shown in x-axis). In addition, Fig. 1 shows also the
number of faulty bit-cells for each cache size.

As Fig. 1 illustrates, low associative caches suffer the
most from defective bits independently of the studied cache
size (also noted by other researchers). In 8-way caches, the
resulting increase in the number of misses due to faulty bits is
far below 5% in all cases, whereas in the 4-way counterparts,
the maximum average increase is relatively limited (51.89% in
32KB/SPEC2000 organization). In contrast, the 2-way
configurations exhibit remarkable ramp-ups in the reported
misses varying from 98.02% (16KB/SPEC2006) up to 291.3%
(64KB/SPEC2000). As a result, in the context of this work, we
opt to apply our fault-tolerant aware (re)placement
methodology only in 2-way cache organizations, because 2-
way caches experience the most serious performance
degradation due to defective bits and most importantly this
trend is independent of the executing benchmark suite (as
depicted in Fig. 1). Obviously in direct map caches no-
(re)placement decisions are applicable.

It is noteworthy to mention that the presented statistics
reflect the average behavior of the corresponding suites hiding
(for space reasons) the details of individual benchmarks. For
example, in 32KB/4-way caches, 29 out of the 43 studied
benchmarks exhibit an increase in the number of misses by
more than 20% (which is not negligible!). Extending our
approach to higher associative caches is left for future work.

Motivation. As noted, the cornerstone of this work is to
explicitly manage faulty caches according to the spatial
characteristics of the memory blocks. Partially faulty cache
frames can host cache blocks with limited spatial footprints
with minimal or no impact in performance. To quantify the
potential of our approach, we analyzed the spatial locality
footprints of a subset of SPEC2000 and SPEC2006
applications. Fig. 2 plots our profiling results as stacked bars.

The reported statistics are collected when the cache blocks
are evicted from the cache assuming an LRU replacement
policy and fault-free caches. In addition, we assume that the
cache blocks are divided into two equally sized parts. The
vertical axis depicts the percentages of the evicted blocks. The
blue bars correspond to blocks that only 50% of the cached
data is touched by the core, whereas the green bars corresponds
to blocks with 100% utilization. Finally, there are three bars in
each benchmark, one for each studied cache size.

As Fig. 2 indicates, different benchmarks exhibit different
characteristics. More specifically, there are cases like gap,
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Fig. 2. Cache utilization breakdowns for various 2-way cache sizes (from left to right: 16KB, 32KB, and 64KB).



mgrid, wupwise/SPEC2000, namd, hmmer,
cactusADM/SPEC2006 that almost all the requested blocks are
fully utilized (100% usage). At the opposite side,
perlbmk/SPEC2000/64KB exhibits a very different behavior.
All of its blocks have 50% utilization which eventually means
that even cache frames with 50% fault-free parts are able to
accommodate the whole working set without hurting
performance. On average, for the 32KB organizations, in 18
benchmarks (out of 27) at least 35% of the requested blocks
fall into the 50% usage category proving that it is ample room
for optimizations. The question is how it is possible to identify
the blocks with low spatial footprints at run-time and
accordingly drive the (re)placement policy of the faulty caches.
This is the subject of Section IV and Section V.

III. EVALUATION FRAMEWORK

Simulation infrastructure. To evaluate our approach, we
used the SimpleScalar toolset. The simulated processor is a
dynamic 2-issue core. In this work we use our FTA policy to
manage the L1 data caches (we assume that faults are injected
only in DL1s). We use various DL1 sizes, but we limit our
analysis in 2-way caches. Our baseline machine includes a 1-
cycle DL1, a 1-cycle, 16KB/4-way IL1, a 12-cycle, 256KB/8-
way unified L2 cache, and a 200-cycle, 4GB main memory.
The system bus is a 16 bytes wide split transaction bus. The
block size is equal to 32 bytes in L1s and 64 bytes in L2.
Benchmarks. Two benchmark suites, namely SPEC2000
and SPEC2006, comprise our collection of benchmarks used in
this work. However, due to space limitations, we present
detailed results only for specific applications of these suites.
The selected applications are chosen according to the
following criterion: the increase in the number of misses
compared to a non-faulty cache when the block disabling
scheme is employed is more than 50%. This leaves at our
disposal 27 applications (15 from SPEC2000 and 12 from
SPEC2006). In all cases, we simulate 200M instructions after
skipping 1B instructions to avoid unrepresentative startup
behavior.

Baseline LRU (re)placement policy. As noted, we
choose to apply our FTA cache management technique in
DL1s. For a fair comparison, we assume that DL1s are already
managed by a modified version of the LRU (re)placement
algorithm (called baseline LRU). More specifically, the cache
defect map is exposed to the baseline LRU algorithm. Fully
defective cache frames are totally excluded from the
(re)placement decisions. However, partially defective cache
frames can serve as replacement candidates, no matter if the
just-requested-address (requested portion of the block)
corresponds to the sound or the defective physical area of the
target frame. Obviously, in the latter case, the just-requested
cache word will not be eventually located into the cache, but
the portion of the requested block that does not physically
correspond to the faulty cache frame area will be cached.
Finally, in all the other system caches, a conventional LRU
replacement policy is employed.

Cache performance metrics. In order to focus on the
actual strength of the proposed FTA scheme, we opt to
illustrate our evaluation results using as metric the relative
reduction of cache misses achieved by our proposal normalized
to the misses reported by the baseline LRU. An interesting
alternative would be to presents the performance
improvements, in terms of IPC, however such approach can be
disruptive in our case because the reported results will be
heavily biased by the cache-miss-penalty-hiding capabilities of
the processor and the overall memory system configuration.
information (2-bit long) from the SRAM array and feeds this

Block disabling schemes and fault model. Our
technique assumes that the cache is equipped with the ability to
disable cache portions (blocks or subblocks) that contain faulty
bits upon permanent error detection [12]. In general, block or
subblock disabling is an attractive option because of its low
overhead e.g., 1-bit per cache block or subblock. This bit
indicator will be called as faulty bit hereafter. In this work, we
assume that the cache disabling scheme is applied in a
subblock granularity (a faulty bit is assigned in every 16 bytes)
in order to keep the area overhead in a reasonable size.
Exploring finer granularities in left for future work. The
detection of the defective subblocks can be done during
manufacturing testing or by BIST-based periodic testing in the
field. Any conventional BIST can be employed to perform
these tests. A detailed description of BIST operation is out of
the scope of this paper.

Another design concern is the choice of the appropriate
faulty model used to study the effect of faults. There are two
main parameters that must be taken into account: i) the number
of faults and (ii) the location of the faults in the memory array.
A detailed study about those issues can be found in [15].
According to [15], 100-1000 random fault maps are sufficient
to obtain accurate average values for the miss rate in faulty
caches. As for the predicted probability of failure (pfail) for
SRAM cells, we set the pfail equal to 1e-03 [15]. Thus, we
randomly produce 100 fault maps according to the above-
mentioned pfail.

IV. COARSE GRAIN SPATIAL FOOTPRINT PREDICTOR

Spatial locality prediction provides the foundation of our
methodology. Several studies have looked at improving the
cache performance by using spatial footprint predictors (SFP)
to detect spatial locality [6,14]. Although successful, the
already proposed schemes are too fine grain and too storage
demanding for our purposes. In contrast to those approaches,
the range of the required predictions in our case is very narrow.
Since in this work, we opt to divide each cache frame of faulty
caches in two equal divisions (each division is marked by a
separate faulty flag), coarse grain spatial footprint predictions
can be issued. In other words, the proposed coarse grain spatial
footprint predictor (CG-SFP) is designed to predict if the
whole cache block or only the left/right portion of a block will
be requested by the core (three decisions in total). The latter
characteristic allows us to design frugal and scalable prediction
structures which are described below.

A. CG-SFP Basic Functionality

The key idea of CG-SFP is to relate a cache block to the
load/store instruction (PC) that accesses the relevant block and
issues a prediction according to the instruction previous
behavior. Fig. 3 depicts the structure of CG-SFP. The predictor
is composed by a context addressable memory (CAM), called
PC History Table (PCHT), that is responsible for storing active
PCs. A second array (SRAM-based), indexed by the CAM, is
the Spatial Footprint History Table (SFHT) which holds the
predicted spatial footprint information for the corresponding
PC. The operation of CG-SFP is as follows:

Lookup. Lookup is the operation that predicts the spatial
footprints of the blocks touched by a PC. It is a straightforward
procedure: the instruction (PC) that brings a new block into the
cache (just missed block) is used as input to PCHT. A PCHT
hit means that this PC has already appeared in the program
execution while a miss indicates that this PC is encountered for
the first time so no prediction can be made. If a match occur,
the PCHT selects the corresponding predicted spatial footprint
information to the FTA module (described in Section V).
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Update. Update is the operation to refresh the predictor with
new information. The inputs to this mode of operation are the
PC and the usage history of evicted blocks. As shown in Fig. 3,
each cache frame is extended with two fields. The first field
(PC field) is responsible to hold the PC that brought the
specific block into the cache and the second field (utilization
field) is designed to keep which subblocks (left, right, or both
subblock) are touched by the core during the lifetime of the
block into the cache. As a result, during block eviction, the two
fields are forwarded to predictor. If no entry exists in the
predictor for the given PC, a new entry is added and the
gathered utilization history is stored in SFHT. If the predictor
already contains information about the particular PC, then the
corresponding SFHT entry is accordingly updated.

B. Design Choices and Practical Implementation

The purpose of CG-SFP is to provide the necessary
information to mask out the memory hard faults in the target
cache. In this section we discuss practical CG-SFP
implementations and we show how those design choices
influence the effectiveness of our predictor.

PC and Utilization fields update. As mentioned, each
cache frame should be extended to accommodate two extra
fields: the PC and the utilization history fields. Both fields are
required for the CG-SFP update operation. Consider the PC
field, one obvious design choice is if this information should
be updated every time the specific block residing in the cache
is accessed (experience a hit) by a different PC. In this work,
we decided to update the PC field only during the service of a
miss. First, in this way, the cache critical path (hit path) is not
modified. Second, updating the PC field every time a hit occurs
would increase the cache power consumption. Third and most
importantly, by storing only the “first touch” PC, from the full
sequence of PCs that touch a specific block, the CG-SFP can
be implemented with significantly smaller number of entries.
In addition, in this way the predictor update operation is out of
the critical path (happens only during the service of a miss).
Refreshing the utilization field (in case of a hit) does not also
affect the cache cycle time, because the update of this field can
be performed during driving the sought data to the core (in
parallel to the cache output driver). Moreover, since the

utilization field is 2-bits long, this update task can be
performed by a simple combinational circuit, consisting by a
two-level gate tree, which is negligible.

Predictor size and PC length. The CG-SFP  storage
requirements are mainly defined by the number of predictor
entries and the size of each PC. Obviously, the SFHT table has
a small effect in the storage overheads because each SFHT
entry is 2-bits long. We performed simulations to identify a
reasonable PCHT size, while we reduce the length of the
captured PCs at the same time. The hope is to end up with a
predictor of limited size and a small number of required PC
bits without sacrificing the accuracy of the predictions.

Fig. 4 depicts the results of our analysis for a 32KB/2-way
cache. The horizontal axis is divided into two main parts: the
left part shows the gathered statistics for two predictor
configurations and for the two studied benchmark suites,
whereas the right part illustrates the geometric means over all
the benchmarks for 12 configurations. To distinct each
predictor configuration, we use the following notation: X/Y
meaning X predictor entries and each entry is tagged by Y PCs
bits (we always keep the lower order bits). Each bar in Fig. 4
depicts the percentage of correct, mis, and no predictions.
Considering the per-benchmark statistics, we selected to show
two configurations: 64/8 and 512/27 (no changes observed
with more than 512 entries; 32-bits minus the byte offset).

As Fig. 4 indicates, our CG_SFP predictor reports great
prediction accuracies in the majority of the benchmarks. The
512/27 CG-SFP offers a prediction accuracy of more than 80%
in 18 benchmarks. However, there are cases like perlbmk and
2zip/SPEC2000 in which our predictor fails to offer sufficient
prediction accuracies. One possible solution for this would be
to add in the predictor control logic an appropriate confidence
mechanism, but we leave this analysis for future work.
Interestingly, the 64/8 predictor is also proved very effective
capturing almost the whole strength of the 512/27 predictor.
On average, the 64/8 predictor is able to report 85.1% correct
predictions (out of the total predictions). In the rest of this
paper, we experiment with the 64/8 CG-SFP.

PC sampling. Our prediction scheme requires also
modifications in the cache structure to accommodate the PC
and utilization fields. Although, the selected 64/8 predictor
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relies its predictions in 8-bit long PCs, the total overhead of
enhancing each cache frame with the required extra fields is
still significant. To overcome this problem, we resort to a PC
sampling approach. Not all cache frames should be augmented
with the PC and utilization fields in order to provide safe
update operations. In our design we select to insert the PC and
utilization fields only to a limited number of cache frames
(observation frames). As a first step, we limit the number of
observation cache frames only to the first cache way. Our
experiments reveal that no reduction in the accuracy of the
predictor is observed. Moreover, we further reduce the number
of observation frames by assigning one observation frame
every N cache frames.

Fig. 5 shows our simulation results when N varies. The
numbers juxtaposed the x-axis corresponds to the value of N.
Due to space restrictions, we give the geometric mean of the
two benchmark suites and three representative cases. The blue
bars in Fig. 5 depict the coverage of the predictions, while the

green ones show the prediction accuracies!. As we can see,
while the coverage remain fairly stable when N varies, the
accuracy results may i) drop as in crafty (six benchmarks
belong in this category), ii) increase as in milk (four
benchmarks), or iii) remain stable as in gromacs (17

benchmarks). Due to those fluctuations?, the average accuracy
stays almost constant. For the rest of this paper, we set the
value of N equal to 16.

Time considerations. Since our target is to increase the
reliability in the latency-sensitive DL1s, we have to be careful
so as to not put any additional delays in the cache access path.
Since the update and lookup of the prediction structures
happen only during the service of a miss, they do not impact
the critical (hit) path of the processor.

Overall Storage Requirements. The memory overheads
introduced by our predictor are: 64 (entries) x 11 bits (for each
entry —8 bits for each PC + 2 bits for the predicted footprint
data + 1 valid bit) = 88 bytes. In addition, per cache frame
modifications are also required. Assuming a 32KB DL1, the
storage overheads are: 1024 frames x 10 bits (for each entry —
8 bits for the PC field + 2 bits for the utilization field) divided
by (2 x 16) (2 because we choose to include those fields only in
the first way, 16 because we consider a sampling rate equal to
16) = 40 bytes. Thus, the total storage requirements is equal to

128 bytes (less than 0.3% in a 32KB cache)3.

V. MANAGING FAULTY CACHES

In this work, we propose the exploitation of low cache
block utilization to explicitly manage defective caches. The
target is to mask out the memory faults by carefully guiding the
cache (re)placement decisions (i.e., to not let the memory

1 Coverage is defined as the percentage of (correct predictions +
mispredictions)/(total possible predictions). Accordingly, accuracy is
defined as (correct predictions)/coverage.

2 Further analyzing those fluctuations is left for future work.

3 We compare our proposal against a faulty cache managed already by the
baseline LRU policy, thus we do not account for the faulty flags.

01: procedure FTA POLICY // for a 2-way cache

02: inputs: prediction, LRU, set fault map

03: outputs: replacement

04: // prediction: 00 (no), 01 (right_subblk),
05: // 10 (left_subblk), 11 (two_subblks)

06: // replacement: way 0, way 1

07: // set fault map: one subblk, three subblks
08: // two subblks same way, two subblks diff way

09: switch (set fault map)

10: case 'one subblk'

11: if prediction == 00 then

12: replacement := LRU ;

13: else if prediction == 01 or 10 then
14: replacement := fault_way ;

15: // way with fault subblk

16: else // prediction == 11

17: replacement := healthy way ;
18: // way with healthy subblks

19: end if

20: case 'two subblks same way' :
21: replacement := healthy way ;
22: case 'two subblks diff way' :
23: replacement := LRU ;

24: case 'three subblks' :

25: replacement := healthy subblk ;

26: return replacement ;
27: // flip-bit is appropriately set in all cases
28: end procedure

Fig. 6. The proposed FTA policy.

faults to manifest themselves at the microarchitectural level).
Our management methodology is performed in two levels
which are explained below.

At the lower level, each faulty cache frame is augmented
by 1-bit (flip-bit). Flip-bit is applicable only when the
corresponding physical frame contains one faulty part
(defective subframe). If flip-bit is set, the sound cache physical
part (subframe) hosts subblocks that normally would be

located at the defective subframe. In contrast, if flip-bit is

clear, the subblock resides in the correct physical location®.

flip-bit allows us to make better utilization of the CG-SFP
predictions, since our underlying FTA policy must not be
aware of the exact physical positions of the requested blocks.

At the higher level, the proposed FTA policy is employed.
Our FTA policy tries to orchestrate the (re)placement decisions
between the fully and partially faulty cache frames by
appropriately skewing the decisions of the baseline LRU
scheme. More specifically, the output of CG-SFP, the decision
made by the baseline LRU, and, of course, the fault map of the
target cache set are exposed to the FTA policy module (Fig. 3).
The FTA module is responsible to select the evicted way and
make this decision available to the cache controller. The cache
control logic is then responsible to handle the rest of the
eviction/insertion operation.

The pseudocode of the proposed FTA policy is depicted in
Fig. 6. On a miss, we search the corresponding cache set.
Based on the faulty status of the target set (line 9), a different
path is followed (switch cases in lines 10, 20, 22, and 24). The
switch case in /ine 20 is invoked when the corresponding cache
set contains two faulty subframes and both subframes coexist
in the same frame. Line 22 is responsible for the sets in which
the two faulty subframes are spread across the two ways and
line 24 shows the pseudocode for the sets in which three faulty
subframes exist. The switch cases in lines 22 and 24 are
inherently managed by the underlying flip-bit.

Obviously, the CG-SFP predictions are utilized when the
accessed cache set contains one faulty subframe (/ine 10). In
this case, the FTA module “sees” two frames which can
accommodate blocks with different spatial footprints. Among

4 This can be achieved by XORing the flip-bit with the MSB of the offset of
the requested block. Only one XOR gate is required in the whole cache.
Locating one flip-bit in each frame requires an extra 64 bytes storage (for a
16KB cache).
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Fig. 7. Reduction of misses achieved in a FTA managed cache normalized to the misses of a conventional cache (averaged results among 100 random fault maps).

those frames, the sound one must host the blocks that will be
fully utilized by the core (/ines 16-17), whereas the partially
faulty frame should be selected for the blocks with 50%
utilization (/ines 13-15). Finally, when our CG-SFP is not able
to issue a prediction (/ines 11-12), our FTA policy chooses to
follow the decision made by the baseline LRU.

VI. EVALUATION

This section presents our evaluation results. As mentioned,
to study the effectiveness of our FTA technique, we randomly
produce 100 fault maps assuming a predicted probability of
failure (pfail) for SRAM cells equal to 1e-03 [15]. According to
the specific pfail the number of faulty bit-cells is 131 in a 16KB,
262 in 32KB, and 524 in a 64KB 2-way cache. Applying the
cache block disabling scheme in a subblock granularity (a
faulty flag is assigned in each cache subframe) ends up with
17% reduction (on average) of the cache healthy storage area.

Fig. 7 shows our overall range of results across all fault
maps. The y-axis in Fig. 7 shows the relative reduction in the
number of misses achieved by the FTA scheme normalized to
the misses occurred in a cache managed by the baseline LRU
scheme. There are three bars attached to each benchmark (one
for each cache size; 16KB, 32KB, and 64KB). Note that each
bar represents the averaged result over all the generated fault
maps. Finally, the x-axis is divided into three groups. The first
two groups illustrate the per-benchmark results of the two
studied benchmark suites, while the rightmost group of bars
depicts the average statistics for each cache size across all
benchmarks.

As Fig.7 indicates our approach shows noticeable
improvements over the baseline LRU. The FTA policy
manages to ameliorate the reported misses by more than 15%
in 21 benchmarks (out of 27) in the 32KB organizations, while
similar improvements can be observed in the other cache sizes.
In addition, there are no cases in which our proposal fails to
reduce the number of misses. The largest benefits are achieved
in equake and fma3d. Those two benchmarks combine both
low spatial footprint memory blocks together with high CG-
SFP prediction accuracies. At the opposite side, mgrid exhibits
the lowest improvements. In mgrid, the majority of the cached
blocks is fully utilized (100% usage), thus there is a limited
potential for improvement. However, even in this case, the
reduction is above 6% in all cache sizes. On average and as can
be seen from the rightmost group of bars in Fig. 7, our proposal
reduces the number of misses by 17.22% in the 16KB cache,
19.65% in the 32KB, and 21.19% in the 64KB cache.

VII. CONCLUSIONS

In this work, we provide a new methodology to mitigate
the impact of permanent faults in first-level faulty data caches.
In contrast to previous techniques, our approach to address the
cache reliability challenge is to enhance the faulty caches with
a spatial footprint prediction mechanism that will provide the
necessary information (unused portions of the requested
blocks) to the underlying cache insertion/eviction logic. To this

end, we propose a dedicated fault-tolerant aware (re)placement
policy that is carefully designed to better utilize the available
fault-free area of the target cache. To facilitate storage-efficient
spatial footprint predictions, we introduce a new class of
coarse-grain, instruction-based spatial locality predictors that
requires minimal hardware overheads. Our experimental
findings for 100 fault maps, a wide rage of scientific
applications from SPEC2000 and SPEC2006 suites, and
various cache sizes reveal significant reductions in the
resulting number of misses (19.38% on average).
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