
Contract-Based Design of Control Protocols
for Safety-Critical Cyber-Physical Systems

Pierluigi Nuzzo, John B. Finn, Antonio Iannopollo and Alberto L. Sangiovanni-Vincentelli
EECS Department, University of California at Berkeley, Berkeley, CA 94720

Email:{nuzzo, jbfinn, antonio, alberto}@eecs.berkeley.edu

Abstract— We introduce a platform-based design methodology that
addresses the complexity and heterogeneity of cyber-physical systems
by using assume-guarantee contracts to formalize the design process and
enable realization of control protocols in a hierarchical and compositional
manner. Given the architecture of the physical plant to be controlled,
the design is carried out as a sequence of refinement steps from
an initial specification to a final implementation, including synthesis
from requirements and mapping of higher-level functional and non-
functional models into a set of candidate solutions built out of a library
of components at the lower level. Initial top-level requirements are
captured as contracts and expressed using linear temporal logic (LTL)
and signal temporal logic (STL) formulas to enable requirement analysis
and early detection of inconsistencies. Requirements are then refined into
a controller architecture by combining reactive synthesis steps from LTL
specifications with simulation-based design space exploration steps. We
demonstrate our approach on the design of embedded controllers for
aircraft electric power distribution.

I. INTRODUCTION

In cyber-physical systems (CPS) computing, networking and con-
trol (typically regarded as the “cyber” part of the system) are
tightly intertwined with mechanical, electrical, thermal, chemical or
biological behaviors (the physical part). The increasing sophistication
and heterogeneity of these systems requires radical changes in the
way sense-and-control platforms are designed to regulate them [1].
In the absence of a comprehensive modeling formalism, a structured
design methodology should be adopted that consistently integrates
existing design techniques, modeling practices and tools to perform
design-space exploration across different domains. Moreover, because
of the safety-critical nature of most CPS applications, methods to
formally and functionally assess system operation and performance
from abstract models all the way down to embedded software
deployment are highly desired.

A severe limitation in common system design practice is the
lack of formal specifications. Requirements are written in languages
that are not suitable for mathematical analysis and verification.
Assessing system correctness is then left for simulations later in the
design process and prototype tests. The inability to rigorously model
the interactions among heterogeneous components and between the
physical and the cyber sides of the system is also a serious obstacle.
Thus, the traditional heuristic design process based on informal
requirement capture, designers’ experience, and the V-model [2] can
lead to implementations that are inefficient and sometimes do not
even satisfy the requirements yielding long re-design cycles, cost
overruns and unacceptable delays.

To overcome the limitations above, several languages and tools
have been proposed over the years to enable checking system level
properties or explore alternative architectural solutions for the same
set of requirements. Among others, we recall generic modeling
frameworks, such as Matlab/Simulink1 or Ptolemy II2, hardware
description languages, such as Verilog or VHDL3, transaction-level
modeling tools, such as SystemC4, and object oriented languages

This work was partially supported by IBM and United Technologies
Corporation (UTC) via the iCyPhy consortium and by TerraSwarm, one of
six centers of STARnet, a Semiconductor Research Corporation program
sponsored by MARCO and DARPA.

1http://www.mathworks.com/products/simulink/
2http://ptolemy.eecs.berkeley.edu/
3http://www.verilog.com/, http://www.vhdl.org/
4http://www.accellera.org/home/

Top-Level Requirements

Model Libraries

Discrete Event (LTL)

Continuous Time
and Hybrid (Simulink)

Simulation-Based Design Space Exploration
(e.g., Simulink/Breach/Cplex)

Reactive

Control Synthesis
(e.g., TuLiP)

Controller

(Hybrid)

Plant Architecture
(e.g., labeled graph)

CSTL

CLTL

Control Protocol

(DE/FSM)

Fig. 1. Contract-based control design flow and tool chain.

for architecture modeling, such as SysML5 and AADL6. Some of
these tools focus on simulation while others are geared towards
performance modeling, analysis and verification. However, an all-
encompassing framework that helps interconnecting existing model-
ing, analysis and optimization tools, each operating on a different
system or component representation, is still missing.

In this paper, we introduce a methodology for the design of CPS
embedded control protocols that addresses the above issues via a
rigorous process founded on platform-based design (PBD) [3] and
contracts [1]. The notion of contracts originates in the context of
compositional assume-guarantee reasoning, which has been used for
a long time, mostly as a verification mean for software design.
Rigorous contract theories have then been developed over the years,
including assume-guarantee (A/G) contracts [4] and interface theo-
ries [5]. However, their concrete adoption in CPS design is still at its
infancy. The contribution of this paper is twofold: (i) we introduce
a new methodology that uses contracts to integrate heterogeneous
modeling and analysis frameworks for control system synthesis and
optimization, in addition to verification, and (ii) we demonstrate it on
a real-life example of industrial interest, namely supervisory control
design for aircraft electric power systems (EPS). We illustrate the
methodology and its application in Section II and Section III of the
paper, respectively. Finally, we draw some conclusions in Section IV.

II. CONTRACT-BASED DESIGN FOR CPS CONTROL PROTOCOLS

We regard a control system as the composition of a physical
plant, including sensors and actuators, and an embedded controller
that runs a control protocol (logic) to restrict the behaviors of the
plant so that all the remaining behaviors satisfy a set of system
specifications. In particular, we focus on the design of reactive
controllers, i.e. controllers that maintain an ongoing relation with
their environment by appropriately reacting to it. Given a plant
architecture, our goal is to find a controller that satisfies a set of
top-level requirements or declare that no such controller exists.

Following the PBD paradigm, our design flow progresses in two
precisely defined abstraction levels, namely discrete-event (DE) and
hybrid, as shown in Fig. 1. At each level, top-down refinements
of high-level specifications are mapped onto bottom-up abstractions
and characterizations of potential implementations. Each abstraction
layer is defined by a design platform, which is a library (collection)
of components and composition rules. In the top-down phase of
the design process, we formalize the requirements and associate
them to different entities in the system. In the bottom-up phase,
we build a library of components (and contracts) to model (or
specify) both the plant architecture and the controller. We present the
formal underpinnings of our methodology starting with the notion of
components and contracts.

5http://www.omg.org/spec/SysML/
6http://www.aadl.info/aadl/currentsite/978-3-9815370-2-4/DATE14/ c©2014 EDAA

A. Components
A component M can be seen as an abstraction representing an

element of a design, characterized by the following attributes:
• a set of input U ∈ U , output Y ∈ Y and internal X ∈ X

variables (including state variables); a set of configuration
parameters κ ∈ K, and a set of input, output and bidirectional
ports λ ∈ Λ. Components can be connected together by sharing
certain ports under constraints on the values of certain variables.
In what follows, we use variables to denote both component
variables and ports;

• a set of behaviors, which can be implicitly represented by a dy-
namic behavioral model F(u, y, x, κ) = 0, uniquely determining
the values of the output and internal variables given the values
of the input variables and configuration parameters. Components
can respond to every possible sequence of input variables,
i.e. they are receptive to their input variables. Behaviors are
generic and could be continuous functions that result from
solving differential equations, or sequences of values or events
recognized by an automata model;

• a set of non-functional models, i.e. maps that allow computing
non-functional attributes of a component, corresponding to par-
ticular valuations of its input variables and configuration param-
eters. Examples of non-functional maps include the performance
model P(.) = 0, computing a set of performance figures
(e.g. bandwidth, latency) by solving a behavioral model, or the
reliability model R(.) = 0, providing the failure probability of
a component.

Components can be hierarchically organized to represent the system
at different levels of abstraction. A system can then be assembled
by parallel composition and interconnection of components at level
l, and represented as a new component at level l+1. At each level
of abstraction, components are also capable of exposing multiple,
complementary views, associated with different design concerns
(e.g. safety, performance, reliability) and with models that can be
expressed via different formalisms, and analyzed by different tools.
A component may be associated with both implementations and
contracts. An implementation M is an instantiation of a component
M for a given set of configuration parameters. In the following, we
also use M to denote the set of behaviors of an implementation. A
contract is a specification for M, as detailed below.

B. Contracts
A contract C for a component M is a pair of assertions (A,G),

called the assumptions and the guarantees, each representing a
specific set of behaviors over the component variables [4]. An imple-
mentation M satisfies an assertion B whenever M and B are defined
over the same set of variables and all the behaviors of M satisfy the
assertion, i.e. when M ⊆ B. An implementation of a component
satisfies a contract whenever it satisfies its guarantee, subject to the
assumption. Formally, M ∩A ⊆ G, where M and C have the same
variables. We denote such a satisfaction relation by writing M |= C.
An implementation E is a legal environment for C, i.e. E |=E C,
whenever E ⊆ A. Two contracts C and C′ with identical variables,
identical assumptions, and such that G′ ∪ ¬A = G ∪ ¬A, where
¬A is the complement of A, possess identical sets of environments
and implementations. Such two contracts are then equivalent. In
particular, any contract C = (A,G) is equivalent to a contract in
saturated form (A,G′), obtained by taking G′ = G∪¬A. Therefore,
in what follows, we assume that all contracts are in saturated form.
A contract is consistent when the set of implementations satisfying
it is not empty, i.e. it is feasible to develop implementations for it.
For contracts in saturated form, this amounts to verify that G 6= ∅.
Let M be any implementation, i.e. M |= C, then C is compatible, if
there exists a legal environment E for M , i.e. if and only if A 6= ∅.
The intent is that a component satisfying contract C can only be used
in the context of a compatible environment.

Contracts associated to different components can be combined
according to different rules. Similar to parallel composition of
components, parallel composition (⊗) of contracts can be used to
construct composite contracts out of simpler ones. Let M1 and
M2 two components that are composable to obtain M1 ×M2 and
satisfy, respectively, contracts C1 and C2. Then, M1 ×M2 is a valid

composition if M1 and M2 are compatible. This can be checked by
first computing the contract composition C12 = C1 ⊗ C2 and then
checking whether C12 is compatible. To compose multiple views
of the same component that need to be satisfied simultaneously,
the conjunction (∧) of contracts can also be defined so that if
M |= C1∧C2, then M |= C1 and M |= C2. Contract conjunction can
be computed by defining a preorder on contracts, which formalizes
a notion of refinement. We say that C refines C′, written C � C′ if
and only if A ⊇ A′ and G ⊆ G′. Refinement amounts to relaxing
assumptions and reinforcing guarantees, therefore strengthening the
contract. Clearly, if M |= C and C � C′, then M |= C′. On the
other hand, if E |=E C′, then E |=E C. Mathematical expressions
for computing contract composition and conjunction can be found
in [4]. Contract refinement checking can be used to verify that an
architecture platform satisfying CA is a correct implementation of a
specification CS at a higher level of abstraction. A special case of
heterogeneous refinement occurs when CA and CS are expressed by
using different formalisms. In this case, the behaviors expressed by
one of the contracts must be mapped to the domain of the other
contract via a mapping M before the refinement relation can be
verified.

C. Requirement Formalization
Contracts play a key role in formalizing and analyzing component

and system requirements. In particular, controller requirements can
be expressed as a contract CS = (AS , GS), where AS encodes
the allowable behaviors of the environment (physical plant) and
GS encodes the top-level system requirements. To define CS , we
use two formal specification languages that allow reasoning about
temporal aspects of systems at different levels of abstraction, namely
linear temporal logic (LTL) [6] and signal temporal logic (STL) [7].
LTL allows reasoning about the temporal behaviors of systems
characterized by Boolean, discrete-time signals or sequences of events
(DE abstraction). On the other hand, we use STL to deal with dense-
time real signals and hybrid dynamical models that mix the discrete
dynamics of the controller with the continuous dynamics of the plant
(hybrid abstraction).
CS can then be expressed as the heterogeneous conjunction be-

tween an LTL contract CLTL and an STL contract CSTL. The STL
formulas in CSTL can either be obtained by heterogeneous refinement
of a subset of LTL formulas in CLTL or generated anew to capture de-
sign aspects related to the plant and the hardware implementation of
the control algorithm, which cannot be expressed using the Boolean,
untimed or DE abstractions offered by LTL. As shown in Fig. 1,
CLTL is first used together with DE models of the plant components
(also described by LTL formulas) to synthesize a reactive control
protocol in the form of one (or more) state machines. The resulting
controller will then satisfy CLTL by construction. Satisfaction of
CSTL is then assessed on a hybrid model, generally including both the
controller and an acausal, equation-based representation of the plant,
by monitoring simulation traces while optimizing a set of system
parameters. The resulting optimal controller configuration is returned
as the final design. In what follows, we provide the formulation
for both the reactive synthesis and design space exploration steps
in Fig. 1.

D. Reactive Control Synthesis
In the DE abstraction of LTL [8], a system is represented as a set

SDE ∈ SDE of variables, where SDE is the set of valuations of SDE .
LTL formulas are interpreted over infinite sequences of states, each
state s ∈ SDE being a valuation over SDE . We call such sequences,
of the form σ = s0s1s2 . . ., behaviors of the system.

Let E and D be sets of environment (input) and controlled
(output) variables, respectively, of a controller (system) MDE . Let
s = (e, d) ∈ E × D be its state, and CLTL an LTL contract of
the form (ϕe, ϕe → ϕs), where ϕe characterizes the assumptions
on the environment and ϕs characterizes the system requirements.
Then, the controller design problem reduces to a reactive synthesis
problem [9], i.e. MDE |= CLTL if and only if MDE |= (ϕe → ϕs).
Reactive synthesis is concerned with constructing a control protocol
(a partial function f : (s0s1 . . . st−1, et) 7→ dt) which chooses
the move of the controlled variables based on the state sequence
so far and the behavior of the environment so that the (controlled)

system satisfies ϕs as long as the environment satisfies ϕe. If such
a protocol exists, the specification ϕ = (ϕe → ϕs) is said to
be realizable. Any solution of the reactive synthesis problem is,
therefore, an implementation of CLTL. If ϕ is unrealizable, then CLTL
is inconsistent. If ϕe is unsatisfiable, then CLTL is incompatible.

For general LTL, the synthesis problem has a doubly exponential
complexity. However, a subset of LTL, namely generalized reactivity
(1) (GR(1)), generates problems that are polynomial in |E × D|,
the number of valuations of the variables in E and D [9]. Given
a GR(1) specification, there is a set of tools that generate a finite-
state automaton representing the control protocol for the system.
For the example discussed in this paper, we used the Temporal
Logic Planning (TULIP) toolbox [10]. Such an automaton satisfies
“by construction” the requirements in CLTL and is provided as a
condidate controller for the next exploration and optimization step.

E. Simulation-Based Design Space Exploration
At the hybrid abstraction level, a signal is a function mapping the

time domain T = R≥0 to the reals R. A multi-dimensional signal
q(t) = (q1(t), · · · , qn(t)) is a vector, where the i-th component
qi(t) is a signal. The behavioral model FH (e.g. implemented in a
simulator) takes as input a signal u(t) and computes an output signal
y(t) and an internal signal x(t) such that FH(u(t),y(t),x(t),κ) =
0, where κ ∈ K is a vector of platform configuration parameters, i.e.,
a vector of variables that can be selected as a result of the design
process. A collection of signals resulting from a simulation of the
system is a trace, which can also be viewed as a multi-dimensional
signal. Then, a system behavior is a trace s(t) that includes all the
system input, output and internal signals.

Let CSTL = (φe, φe → φs), with φe and φs parametric STL
(PSTL) formulas, i.e. STL formulas where some numeric constants
are replaced by symbolic parameters. Let C be an array of costs. The
goal of design exploration is to find a set of configuration parameter
vectors κ∗ that are Pareto optimal with respect to the objectives in
C, while guaranteeing that the system satisfies φs for all possible
traces s ∈ S satisfying the environment assumptions φe. Examples
of design parameters could be the controller clock or a tunable delay
in a component. More formally, design exploration can be cast as a
multi-objective robust optimization problem

min
κ∈K,π∈Π

C(κ,π) (1)

s.t.

{
F(s,κ) = 0

s |= φs(π) ∀s s.t. s |= φe(π)

where π is a set of formula parameters used to capture degrees of
freedom that are available in the system specifications, and whose
final value can also be determined as a result of the optimization
process. For a given parameter valuation κ′, s′ = (u′,y′,x′) is
the trace of input, output and internal signals that are obtained by
simulating F(.). We use the BREACH toolbox [11] to facilitate post-
processing of simulation traces and verify the satisfaction of STL
formulas. A multi-objective optimization algorithm with simulation in
the loop can then be implemented to find the Pareto optimal solutions
κ∗. While this may be expensive in general, it becomes affordable
in many practical cases, as will be shown in Section III.

III. AIRCRAFT POWER DISTRIBUTION DESIGN EXAMPLE

Fig. 2 (a) shows a sample structure of an aircraft EPS in the form
of a single-line diagram, a simplified notation for three-phase power
systems [12]. Generators (e.g., one on the left and one on the right
side of the aircraft) deliver power to the loads (e.g. avionics, lighting,
heating and motors) via AC and DC buses, while the Auxiliary Power
Unit (APU) or batteries are used when one of the generators fails.
Essential buses supply loads that cannot be unpowered for more than
a predefined period tmax, while non-essential buses supply loads that
may be shed in the case of a fault. Contactors are electromechanical
switches that are opened or closed to determine the power flow from
sources to loads. Transformer Rectifier Units (TRUs) convert and
rout AC power to DC buses. The goal of the controller, denoted as
bus power control unit (BPCU), is to react to changes in system
conditions or failures and reroute power by appropriately actuating
the contactors, to ensure that essential buses are adequately powered.

G1 G2 G3

AC B2AC B1

R1

CG1
CG2

CG3

C1 C2

CR1

AC L1 AC L2

R2

CR2

DC B3

DC L1

DC B4

DC L2

C4

DC B5
C3

(a) (b)

Fig. 2. (a) Simplified single-line diagram of an aircraft power generation and
distribution system and (b) its Simulink hybrid model representation.

A. Requirements
The DE representation of the controller MDE includes as input

variables the health statuses of generators, APU, and TRUs. Output
variables are contactors, and can each take values of open (0) or
closed (1). Under the assumption of a synchronous system, the
timing view of MDE includes a clock period or reaction time
Tr as a configuration parameter. To capture system requirements
as LTL formulas, we denote components by uppercase letters and
component statuses (variables) by lowercase letters, and follow a
similar approach as in [13]. Our requirement set includes 6 LTL
formulas to capture the environment assumptions, 14 LTL formulas
to capture the system guarantees in CLTL, and 2 STL formulas for
CSTL. Representative examples of assumptions and guarantees are
provided below.
A1. Reliability level: The overall reliability level of the system

r is the probability that an essential bus cannot be powered by any
of the available generators. Assuming independence of component
failures, r determines the environment assumptions for the controller
by providing a bound on the number of component failures allowed.
For instance, by assuming that only generators and rectifiers can fail
with probabilities pG = 2 · 10−6 and pR = 10−5, respectively, our
topology provides an overall reliability level of 10−10. An environ-
ment assumption can then be specified as �{(g1∨g2∨g3)∧(r1∨r2)},
stating that no more than two generator and one rectifier unit may
be unhealthy at any given time.
A2. Irreversible failures: As a second environment assump-

tion, we require that when a component fails during the flight,
it will not come back online. This can be expressed in LTL as
�
∧
i∈I {¬ei → #(¬ei)}, where ei is an environment variable and

I is an index set enumerating the set of environment variables.
G1. Unhealthy sources: As an example of LTL guarantees, we

require that the set of contactors directly connected to an unhealthy
source Ei be open to isolate it from the rest of the system. For our
topology, we enforce �

∧
i∈I (¬ei → ¬cEi).

G2. Controller reaction time: A DC essential bus can be
unpowered for no longer than tmax in case of failure. To capture such
timing requirement by accounting for plant and controller delays, we
use the STL formula χ = �[0,tmax]¬(|VDC(t) − Vd| < ε) to state
that “the bus voltage VDC should never deviate from the desired
value Vd by more than a margin ε for more than tmax”. Then, since
VDC should be in its range only after the initial start-up transient
time τi, we require that φ(τi) = ¬(3[τi,∞) χ) hold.

B. Control Design
Since the formulas in CLTL are within the GR(1) fragment of

LTL, a control protocol can be automatically synthesized using the
TULIP Toolbox [10]. The resulting controller has 113 states and
was synthesized in approximately 2 s on an Intel Core i7 2.3-GHz
processor. To analyze and optimize the real-time performance of the
controller, we used a hybrid model implemented in SIMULINK, as
shown in Fig. 2 (b), including the synthesized controller, imported as
a Matlab function, and the other EPS components based on blocks
from the SimPowerSystems library. Contactors were implemented to
respond with a fixed delay Td to the open/close commands from
the BPCU. Moreover, we used a parametric version φ(τi, τe) of the
formula φ(τi) above, where tmax is replaced by τe, to explore the
Tr-versus-Td design space and find the maximum allowed controller

reaction time T ∗r for a fixed T ∗d , in such a way that the essential DC
bus is never out of range for more than tmax. To do so, we cast an
optimization problem following the formulation in (1)

min
Tr>0

1/Tr (2)

s.t.

{
F(u, VDC , Tr) = 0

VDC |= φ (τi(Tr, T
∗
d), τe) ∀τe ≥ tmax ∀u s.t. u |= ϕ′e

where C = 1/Tr is the cost function, κ = Tr is the design param-
eter, φs(π) =

∧
τe≥tmax

{φ (τi(Tr, T
∗
d), τe)} is the conjunction of

PSTL formulas that must be satisfied, each parameterized by π = Tr ,
and ϕ′e refines the environment assumption formula ϕe of the LTL
contract in Section III-A. In this case, the system behavior is the trace
s = (u, VDC), where VDC is the output signal to be observed during
simulation and u spans the set of all admissible failure injection
traces that are consistent with the assumptions in Section III-A. The
initial start-up transient time τi can be estimated from simulation as
a function of Tr and T ∗d .

The formulation in (2) includes an infinite set of formulas that must
be satisfied for all possible input traces and values of τe ≥ tmax.
However, such formulation can be further simplified, by observing
that (2) is equivalent to

max
Tr>0

Tr (3)

s.t.

{
F(u, VDC , Tr) = 0

τ∗e (Tr, T
∗
d) ≤ tmax ∀u s.t. u |= ϕ′e

where τ∗e (Tr, T
∗
d) is the maximum amount of time elapsed while the

DC bus voltage is out of range, i.e. for how long at most the voltage
requirement on the DC bus is violated. Such a maximum violation
period can be computed as the

sup{τe ≥ 0 | φ (τi(Tr, Td), τe) = False}. (4)

As a further simplification, it is enough to compute VDC(t) and
τ∗e under the worst case input scenario, rather than for all possible
input traces, whenever the worst case assumptions on u(t) can be
determined a priori. Problem (3) can then be solved by first solving
the optimization problem in (4) to compute τ∗e as a function of Tr
and T ∗d in the worst case input scenario, and then by computing the
value T ∗r of the controller reaction time that makes τ∗e equal to tmax.

Figure 3 shows the simulated voltage VB3 of bus B3 in Fig. 2 (a)
as a function of time, for Tr = 15 ms, Td = 15 ms and in the worst
case scenario of cascaded faults in generators G1, G2 and rectifier
R1 (an event with probability 4 · 10−17 based on our assumptions).
The waveforms at the top and bottom of the figure are the voltage
signals at the B1 (AC) and B3 (DC) buses, respectively. The signal
in the middle represents the health status of R1. Both the AC and
DC voltages decay to zero because of the generators’ faults. When a
fault is also injected into R1, an additional drop in the DC voltage is
observed. The red signal at the bottom of the figure is interpreted
as a Boolean signal, which is high (one) when χ holds (i.e. the
requirement on the DC bus is violated) and low (zero) otherwise.
The red signal represents the satisfaction of χ when Vd = 28 V,
ε = 2 V and tmax = 70 ms. The requirement on the DC bus is
violated for 32 ms. Therefore, (Tr = 15 ms, Td = 15 ms) is an
unsafe parameter set.

The Tr versus Td design space is explored in Fig. 4 (a) and (b) by
sampling the parameter space in approximately 4 hours to populate
a 13× 13 point grid. The left plot represents the amount of elapsed
time τ∗e while the DC bus voltage is out of range, i.e. for how long
the requirement on the DC bus is violated, as computed in (4). Such
a violation period is then compared with the hard threshold tmax =
70 ms in the right plot, thus providing the designer with a “safe”
region (marked in blue in Fig. 4) for selecting the controller clock
as a function of the contactor delay. As an example, for Td = 20 ms
the maximum BPCU reaction time T ∗r allowed for safe operation is
4 ms.

0 0.05 0.1 0.15 0.2 0.25−200

0

200

B
1 V

ol
ta

ge
 [V

]

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

R
1 H

ea
lth

 S
ta

tu
s

0 0.05 0.1 0.15 0.2 0.250
5

10
15
20
25
30

Time [s]

D
C

 L
1 V

ol
ta

ge
 [V

]

tmax = 70ms

Fig. 3. Real-time requirement violation at the DC bus B3 due to the failure
of two generators and one rectifier in cascade.

(a) (b)

Fig. 4. BPCU reaction times and contactor delays in the blue region satisfy
the DC bus requirement.

IV. CONCLUSIONS

The proposed methodology brings several innovations to current
design practices, including requirement formalization with contracts,
and coherent combination of provably-safe control synthesis tech-
niques with design exploration and optimization steps. Future ex-
tensions of this work include developing tools to effectively guide
designers towards requirement formalization as well as exploring
techniques for cost-driven distributed synthesis of control protocols,
to improve on both the optimality and the scalability of reactive
synthesis approaches. Finally, incorporating control synthesis algo-
rithms that can support richer specification languages (e.g., capturing
transients, sensing and actuation delays) will also be considered as a
future research direction.

REFERENCES

[1] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming Dr.
Frankenstein: Contract–based design for cyber–physical systems,” in
Conf. Decision and Control, Dec. 2011.

[2] K. Forsberg and H. Mooz, “System engineering for faster, cheaper,
better,” in Center of Systems Management, 1998.

[3] A. Sangiovanni-Vincentelli, “Quo vadis, SLD? Reasoning about the
trends and challenges of system level design,” Proc. IEEE, no. 3, pp.
467–506, 2007.

[4] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca et al., “Multiple
viewpoint contract-based specification and design,” in Formal Methods
for Components and Objects. Springer-Verlag, 2008, pp. 200–225.

[5] L. de Alfaro and T. A. Henzinger, “Interface automata,” in Proc. Symp.
Foundations of Software Engineering. ACM Press, 2001, pp. 109–120.

[6] A. Pnueli, “The temporal logic of programs,” in Symp. Foundations of
Computer Science, vol. 31, no. 2, Nov. 1977, pp. 46–57.

[7] O. Maler and D. Nickovic, “Monitoring temporal properties of continu-
ous signals,” in Formal Modeling and Analysis of Timed Systems, 2004,
pp. 152–166.

[8] C. Baier and J.-P. Katoen, Principles of Model Checking. Massachus-
setts, USA: The MIT Press, 2008.

[9] N. Piterman and A. Pnueli, “Synthesis of reactive(1) designs,” in In Proc.
Verification, Model Checking, and Abstract Interpretation. Springer,
2006, pp. 364–380.

[10] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray,
“TuLiP: a software toolbox for receding horizon temporal logic plan-
ning,” in Proc. Int. Conf. Hybrid Syst.: Computation and Control, 2011.

[11] A. Donzé, “Breach, a toolbox for verification and parameter synthesis of
hybrid systems,” in Proc. Int. Conf. Comput.-Aided Verification. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 167–170.

[12] I. Moir and A. Seabridge, Aircraft Systems: Mechanical, Electrical and
Avionics Subsystems Integration. Third Edition. Chichester, England:
John Wiley and Sons, Ltd, 2008.

[13] H. Xu, U. Topcu, and R. M. Murray, “A case study on reactive protocols
for aircraft electric power distribution,” in Int. Conf. Decision and
Control, 2012.

