
Garbage Collection for Multi-version Index on
Flash Memory

Kam-Yiu Lam∗, Jiantao Wang∗, Yuan-Hao Chang‡, Jen-Wei Hsieh§,
Po-Chun Huang‡, Chung Keung Poon∗ and Chun Jiang Zhu∗

∗Department of Computer Science, City University of Hong Kong

Email: {jiantwang2,chunjizhu2}@student.cityu.edu.hk, {cskylam,csckpoon}@cityu.edu.hk
‡Institute of Information Science, Academia Sinica, Taiwan R.O.C. Email:{johnson, aufbu}@iis.sinica.edu.tw
§Department of Computer Science and Information Engineering, NTUST Email: jenwei@mail.ntust.edu.tw

Abstract—In this paper, we study the important performance
issues in using the purging-range query to reclaim old data
versions to be free blocks in a flash-based multi-version database.
To reduce the overheads for using the purging-range query in
garbage collection, the physical block labeling (PBL) scheme is
proposed to provide a better estimation on the purging version
number to be used for purging old data versions. With the use
of the frequency-based placement (FBP) scheme to place data
versions in a block, the efficiency in garbage collection can be
further enhanced by increasing the deadspans of data versions
and reducing reallocation cost especially when the spaces of the
flash memory for the databases are limited.

Index Terms—Multi-version Index, Multi-version Data, Real-
time Data, Flash-based Embedded Database Systems

I. INTRODUCTION

Due to the unique performance characteristics of flash

memory as compared with disk storage systems [2], managing

an index on flash memory could have serious impacts to the

performance of the flash memory system. One of the important

issues is garbage collection of indexed data. An update to the

index may trigger a sequence of updates to the flash memory,

and result in generation of a number of invalid pages [3]. The

invalid pages can be reused only after garbage collection to

reclaim them to be “free” blocks [2, 5].

Although various efficient methods have been proposed for

garbage collection in flash memory, the garbage collection for

indexed data has been greatly ignored in previous research

works. Most of the proposed garbage collection mechanisms

are mainly concentrated on non-structured data with the per-

formance objectives of minimizing the reallocation cost of

valid data pages in a block or balancing the wearing levels

of the blocks as they have limited number of endurances

[4, 5, 7, 8]. However, reallocating an indexed page could have

the cascading update problem and generate more invalid pages.

In this paper, we study how to perform garbage collection

in flash memory which maintains a multi-version B+-tree

index (MVBT) [1]. Since delete operations are not common in

embedded multi-version databases, i.e., insert only databases,

how to efficiently select data versions for garbage collection

and how to place data versions into a physical block could have

serious performance impacts to the efficiency of the adopted

garbage collection mechanism.

II. MULTI-VERSION B+-TREE (MVBT)

In [1], Becker et al. proposed the multi-version B+-tree

(MVBT) for indexing multi-versions of data items in a

database. As shown in Fig. 1, MVBT is a directed acyclic

graph of B+-tree nodes maintaining multiple B+-tree root

nodes to partition the versions of data items such that each

B+-tree root stands for a range of data versions.

. . .

. . .

RlR1 ([v1, v2]) Ri ([vi, vi+1]) ([vl, *])

Fig. 1: Root partitions of an MVBT index.

In an MVBT index, each node consists of a number

of entries and each entry has the form <key, in version,

del version, info>. The info part maintains a pointer and other

information for identifying the entry. For a leaf entry, the

pointer points to the data version with the corresponding key

value, while for an inner entry, the pointer points to the next

level node. The in version and del version denote the range of

version numbers of the data version. The values of the version

numbers are monotonically increasing.

If a new data version is inserted, a new entry with in version

= vp and del version = “∗” will be created, where vp is the

present version number of the index. vp is also a monotonically

increasing integer. When a data version is updated (i.e., a

new version is created), the entry that points to the previous

data version will be updated by replacing “∗” of del version

with the current value of the present version number, vp. The

entries with “∗” as their del version are called live entries;

otherwise they are dead entries. Similarly, the corresponding

data versions are called dead versions and live versions,

respectively. Thus, a live version means that it is the latest

version of a data item. A version is said to be of version i if its

range of versions contains i, i.e., in version ≤ i < del version

(if del version ∕= “∗”) or in version ≤ i (if del version = “∗”).

III. THE UPDATE PROBLEM IN GARBAGE COLLECTION

Although MVBT is an efficient index structure for disk-

resident databases, managing an MVBT on flash memory

could incur heavy update cost and generate a lot of invalid

pages in processing update operations. Here we use the

example shown in Fig. 2 to illustrate the update problem in

MVBT and show how it affects the cost in garbage collection.

In the example, to simplify the discussion, it is assumed that

each page contains an index node or a data version.

Fig. 2(a) shows the initial structure of an example MVBT

index. It consists of a root node R and two child nodes of978-3-9815370-2-4/DATE14/ c⃝2014 EDAA

�� ������������	
���������� ���	
���	������	
�	���������
�����������������������
�����������������������������������
���������������������������
��������������� !" # $������%�������
���%������	
���%����� ��
���%�����������%�#���
���%�$�
(c) After updating data item 15 again

������%�����������&��� '"

�� �������%����	
���%����	
���	������	
�	�%�������
���%�����������%�������
���%�����������������������%�������
���%�����������������������
�����
(a) Initial state

�()*+ � �()*+ �
P1,0

P1,1

P1,2

P1,3

P1,4

P1,5

P2,0

P2,1

P2,2

P2,3

P2,4

P2,5

A

B

P3,0

P3,1

P3,2

P3,3

P3,4

P3,5

R

o15,6

A ,
R,
o15,7

A - P4,0

P4,1

P4,2

P4,3

P4,4

P4,5

�()*+ � �()*+ 	
./012 3 ./012 4

o10,1

o15,1

o30,1

o45,1

o65,1

o70,1

P1,0

P1,1

P1,2

P1,3

P1,4

P1,5

P2,0

P2,1

P2,2

P2,3

P2,4

P2,5

o75,1

o10,2

o30,3

o45,4

A

B

P3,0

P3,1

P3,2

P3,3

P3,4

P3,5

R

./012 5 ���� ���6���&�78"�	
���%����	
���	������	
�	�%�������
���%�����������%�������
���%�����������������������%�������
���������������������������
�����������&��� !"
(b) After updating data item 15

�()*+ � �()*+ �
o10,1

o15,1

o30,1

o45,1

o65,1

o70,1

P1,0

P1,1

P1,2

P1,3

P1,4

P1,5

P2,0

P2,1

P2,2

P2,3

P2,4

P2,5

o75,1

o10,2

o45,4

A

B

P3,0

P3,1

P3,2

P3,3

P3,4

P3,5

R

o15,6

A ,
R,�()*+ �Logical View Physical View Logical View Physical View

Logical View Physical View
Invalid page

Dead page

Free page

o30,3

C

D

R-B,o10,1

o15,1

o30,1

o45,1

o65,1

o70,1

o75,1

o10,2

o45,4

o30,3

Fig. 2: The motivational example of the problem if index updates in flash memory

R, A and B. If an update operation arrives to update data

item 15, the entry <15, 1, ∗, P1,1> for the latest version of

15 is marked as dead, and then a new entry <15, 6, ∗, P3,1>
is created and inserted into node A, as shown in Fig. 2(b).

Because of the use of out-place update, the modified node A
′

(A → A
′

) is written into a new free page. Similarly, node R
is written to a new free page as the entry <10, 1, ∗, A> has

to be updated to be <10, 1, ∗, A
′

>.

If another update operation arrives to update data item

15, the entry <15, 6, ∗, P3,1> that points to the latest ver-

sion of data item 15 is marked as dead, and a new entry

<15, 7, ∗, P3,4> is allocated to point to the newly created data

version. However, node A
′

is full and the new entry cannot

be inserted. Therefore, the live entry in node A
′

and the new

entry <15, 7, ∗, P3,4> are merged with the live entries in the

sibling node B. However, there are totally 6 live entries after

merging, and a strong version overflow occurs, leading to a key

split [1]. (It is assumed that the maximum number of entries is

5.) Thus, nodes C and D are created (Fig. 2(c)). In total, four

new nodes A
′′

(A
′

→ A
′′

), B
′

(B → B
′

), C, and D have to

be written into four different free pages in the flash memory

to process the second update operation. Note that if the tree

consists of more levels, the number of node updates will be

more. As can be observed in Fig. 2(c), blocks 2 and 3 contain

some valid and invalid pages. If they are reclaimed in garbage

collection, the data contained in the valid pages need to be

reallocated. However, reallocating the data versions and index

nodes triggers the updates of higher level nodes (e.g. node A′′)

and the total reallocation cost could be very expensive if the

tree has more levels.

IV. GARBAGE COLLECTION OF INDEXED DATA

In a flash memory chip, a free block is a physical block that

has been erased and is maintained in a free block pool. If the

number of blocks (Tfree) in the free block pool is lower than

a pre-defined threshold (TGC), the garbage collection process

will be invoked to reclaim the used blocks until the number of

free blocks (Tfree) is more than another threshold (Tnormal)

with Tnormal > TGC . The main issue in garbage collection

is how to select the physical blocks (called victim blocks) for

reclaiming to be free blocks with the objectives of minimizing

the garbage collection cost and balancing the wear levels of

the blocks.

In this paper, instead of selecting the blocks with the

smallest number of valid pages for garbage collection to

minimize the reallocation cost, we propose to reclaim “old”

data versions to be free blocks to minimize the reallocation

cost. Thus, the problem is how to efficiently select “old” data

versions to be converted to invalid versions so that the blocks

storing them can be reclaimed to be free blocks.

A. Reclaiming Data Versions and Index Nodes

In a flash memory chip maintaining a multi-version index,

the pages of a physical block may be used to store data

versions (called data pages) or index nodes (called index

pages). An index page becomes invalid after an update due to

out-of-place update. Since delete operations are not common

to many embedded multi-version databases [6], a data version

becomes invalid only after a purging operation to convert

“dead” data versions to be invalid. Then, the pages storing

the invalid data, called invalid data page could be reclaimed.

Therefore, the garbage collection process for reclaiming data

pages can be divided into two sub-processes: purging and

erasure. The erasure process is to reinitialize the pages in a

block such that they can store new data.

In selecting data versions for purging, the purging process

starts from the data version with the smallest del version
as it has the lowest probability to be accessed by application

queries. A smaller del version means that the data version

was dead earlier. In performing the purging process, a purging

version number vtℎ(t) is specified in each invocation at time

t. The data versions with del version smaller than vtℎ(t) are

purged (converted to be invalid). Similar to the present version

number vp, vtℎ(t) is also a monotonically increasing integer.

After a data version is purged, the corresponding index entry

will become invalid. If all the entries of an index node are

invalid, the index node will become invalid, too.

An important concern in setting the value for vtℎ(t) in

each invocation of the purging process is to maximize the

deadspans of data versions. The deadspan of a data version

ok,i is defined as the difference between the present version

number vp when it is purged and del version of ok,i.

Maximizing the deadspans of data versions can increase the

probability that application queries can find their required data

versions. Even a data version is dead, it is still maintained. It

is converted to be invalid and be reclaimed only when the

free space in the flash memory is insufficient. Therefore, the

purging version number vtℎ(t) should be increased only if

the number of reclaimed blocks cannot meet the threshold

requirement (Tnormal).

Minimizing the reallocation cost in garbage collection and

maximizing the deadspans of data versions are conflicting

goals in garbage collection. If a flash memory block contains

both valid and invalid data pages after purging, we may

increase the purging version number to convert the remaining

data versions to be invalid. This will reduce the reallocation

cost but the deadspans of the data versions will be reduced. On

the other hand, we may use a smaller purging version number

to reclaim the block which contains both valid and invalid

pages. This will increase the deadspans of data versions but

the reallocation cost will be higher since the valid data versions

need to be reallocated to other free pages.

Algorithm 1 Garbage Collection (vtℎ(t))

1: if Tfree ≤ TGC then
2: Set the GC flag;
3: while the GC flag is set do
4: if there exists a block with all pages are dead then
5: Select block with the smallest del version as victim

block.
6: else
7: Select block with the smallest in version as victim

block.
8: end if
9: if all pages in the victim block are invalid then

10: Erase the victim block.
11: Add the victim block to the free block pool.
12: Tfree++.
13: else
14: Increase vtℎ(t) by f .
15: Invoke purging-range query Q(−∞, vtℎ(t), ∗).
16: end if
17: if Tfree ≥ Tnormal then
18: Clear the GC flag;
19: end if
20: end while
21: end if

B. Purging-Range Query

For efficient execution of the purging process, we may

implement it as a purging-range query. A purging-range query

Q can be specified as Q(vl, vℎ, key), where key = “∗” such

that it accesses to all data items maintained in the database. vℎ
is set to be the purging version number vtℎ(t) at the current

time t, and vl = −∞. In processing a purging-range query Q,

if the del version of a version is smaller than vtℎ(t), it will

be converted to be invalid.

After the purging process, if all the pages in a block are

invalid, the block will be reclaimed by the erasure process

without any reallocation cost. If the number of free blocks

(Tfree) is still less than Tnormal, the purging-range query

may be re-executed after vtℎ(t) is advanced by a value f ,

i.e., vtℎ(t) = vtℎ(t − 1) + f . Algorithm 1 summarizes the

steps for the garbage collection.

The benefit of using a purging-range query for selecting

data versions to be purged is that it can reuse all the database

facilities supported for range queries from applications to

identify the to be purged data versions efficiently. Another

important benefit of using this scheme for reclaiming old

versions is that the wear levels of the blocks can be better

balanced as older data versions are in general purged and

reclaimed first. Older versions mean that they have been stayed

in a page longer. Reclaiming them can increase their wear

levels.

C. Determination of Purging Version Number

As shown in Algorithm 1, in each invocation, the purging

version number vtℎ(t) is increased by f to the previous

purging version number. The number of invocations (as well

as the processing cost) of the purging-range query in each

garbage collection depends on the chosen value for f . A

small value of f increases the number of invocations and the

processing cost of the purging-range query while a large value

of f may purge some young versions that are unnecessary to

be purged, leading to decrease in deadspans of data versions.

To provide a better way to determine the purging version

number, a physical block labeling (PBL) scheme is proposed.

As shown in Fig. 3, an additional attribute, called block label,

is added in each node, e.g., G, to indicate the physical blocks

that store the data versions indexed by the node G (i.e., data

blocks) and the index nodes of the sub-tree rooted at G (i.e.,

index blocks). For example, the block label of leaf node A is

{B0, B2}, which means that the data versions indexed by the

leaf node A and leaf node A itself are stored in blocks B0

and B2. The block label is updated along with updates of the

index tree until the resided node becomes dead.

With PBL, the garbage collector searches from the tree root

with the smallest del version, e.g., R1, until a node G is

found such that the total number of physical blocks, including

the blocks indicated by the root nodes R1, ⋅ ⋅ ⋅ , Ri−1 and G, is

larger than or equal to Tnormal−Tfree. Then, vtℎ(t) is set as

del version of the entry that points to node G for execution of

the purging-range query. In this way, the purging-range query

may be executed just once to obtain the required number of

reclaimed blocks.

D. Data Placement in Flash Memory

1) The Sequential Placement (SQ) Scheme: One of the

critical issues that could seriously affect the efficiency of the

proposed garbage collection mechanism including PBL is the

placement of data versions and index nodes in the blocks. If

the data versions under a sub-tree are distributed in different

blocks, the estimation using PBL could be inaccurate.

.

. . .G

Total number of
blocks is larger

than Tnormal - Tfree

{B0, B1, B2, ...}

{B0, B2, ...} {B1, B2, ...} . . .

{B0, B2}

{B20, B21, B22, ...}

{B20, B22, ...}

{B21, B23, ...}

{B21, B23}

R1
Ri

A

Fig. 3: PBL to the index tree

9:;<= n
>?9:;<= n

@ABA@ABC@CBD@EBE@CBF@ABG @CBD@CBF@ABG<6,8>

@ABA@ABC@ABH@ABH @CBI
(a) Rvr = 2905 (b) Rvr = 7

<7,9>

<5,7>

<4,6>

<3,5>

<1,3>

<2,2908>

<5,7>

<3,5>

<1,3>

<8,10>

<6,8>

<4,6>

<7,9>@CBI<8,10>

@CBE<2,4>9:;<= J 9:;<= n+1

@EBEKLI<2908,*>
@ABK<9,*> @CBAL<10,*>

@ABK@CBAE<9,11>

<10,12>

. . .

.

. . .

. . .9:;<= M . . .

. . .

Note that two elements of <f, s> in each page denote the in_version

and del_version of the resided data version in that page, respectively.

Fig. 4: An example of a version range Rvr

A simple method for placing data versions and index nodes

in flash memory is to use separate physical blocks for each

of them such that once a block, called data block, has been

assigned to store a data version, it will not be used for storing

index nodes, and vice versa. The blocks which store the index

nodes are called index blocks. Once a new data (either data

version or index node) needs to be stored into a new free block,

a free block with the smallest wear level number in the free

block pool will be selected. The wear level number of a block

increases with the number of times that block is allocated to

store data. Selecting the free block with the smallest wear

level can balance the wear levels of the blocks in the flash

memory. The new data will be put into the first page of the

selected free block and the following pages in the block (both

index block and data block) will be allocated sequentially until

all its pages have been allocated. We call this scheme as the

sequential placement (SQ).

Placing data versions sequentially in a data block may

reduce the version range for a data block and improve the

accuracy in estimation using PBL as the creation times of

the data versions are similar. However, the efficiency of SQ

in reclaiming dead versions depends highly on the update

frequencies of the data versions in the block.

For a given purging version number at time t, vtℎ(t), the

number of data blocks that could be reclaimed depends on

the ranges of version numbers of the data versions in the

blocks. For a data block containing all dead data versions,

we define a version range (Rvr) as the difference between the

maximum del version and the minimum del version of the

data versions in the block. If Rvr is smaller, the data block

can be reclaimed by a smaller purging version number. For

example, as shown in Fig. 4 (a), the version range Rvr of

block 1 is 2905. In block 1, the update frequency of data

item o2 is much lower than the other data items in the block,

leading to data version o2,2 having a much larger del version
of 2908. However, as shown in Fig. 4(b), the version range

Rvr of block n+1 is only 7 as all the data items in the block

having similar update frequencies. Therefore, a larger value of

vtℎ(t) need to purge the data block 1 in Fig. 4(b) in order to

reclaim it with zero reallocation cost.
2) The Frequency-Based Placement (FBP) Scheme: To

improve the efficiency in purging, we propose the frequency-

based placement (FBP) scheme for placing data versions

into a data block. Similar to SQ, separated blocks are used

for placing data versions and index nodes. The performance

objective of FBP is to maximize the deadspans of data

versions and reduce the reallocation cost. It is assumed that

the update frequency for each data item is given. Following

their update frequencies, they are classified into L categories,

S1, S2, ⋅ ⋅ ⋅ , Sl, ⋅ ⋅ ⋅ , SL, with data items in the same category

having update frequencies within a range of pre-defined update

frequencies for the category. For the sake of simplicity, the

K data items are evenly distributed into L categories. For

1 ≤ l < L, Sl = {o⌈K

L
⌉⋅(l−1)+1, ⋅ ⋅ ⋅ , o⌈K

L
⌉⋅l}; while SL =

{o⌈K

L
⌉⋅(L−1)+1, ⋅ ⋅ ⋅ , oK}. A data block is used for storing the

data versions of data items belonging to the same category

sequentially.
Since data versions with similar update frequencies are

placed sequentially in a data block, the version range (Rvr) of

the block can be limited by the value of the range of update

frequencies of the category. This can increase the probability to

purge the data block using a smaller purging version number.

The data placement policy of FBP is the same as SQ, i.e.,

the free block with the smallest wear level number will be

selected for placing new data.

V. CONCLUSIONS

In this paper, we propose the frequency-based placement

(FBP) scheme to improve the efficiency in garbage collection.

To reduce the overhead for processing the purging-range query,

we propose the physical block labeling (PBL) scheme to

provide a better estimation on the purging version number

to be used for purging old data versions. The efficiency of

the propose schemes is illustrated by simulation experiments.

An important future work is to design efficient techniques to

reduce the number of updates in managing the multi-version

index and integrate it with the proposed garbage collection

mechanism.

REFERENCES

[1] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. an
Asymptotically Optimal Multiversion B-tree. VLDB Journal, 5:264–275,
1996.

[2] E. Gal and S. Toledo. Algorithms and Data Structures for Flash Memories.
ACM Computing Surveys, 37(2):138–163, 2005.

[3] D. Kang, D. Jung, J. Kang, and J. Kim. �-tree: an Ordered Index Structure
for NAND Flash Memory. In Proceedings of the International Conference
on Embedded Software, pages 144–153, 2007.

[4] A. Kawaguchi, S. Nishioka, and H. Motoda. A Flash Memory Based
File System. In Proceedings of the USENIX Technical Conference, pages
155–164, 1995.

[5] O. Kwon, K. Koh, J. Lee, and H. Bahn. FeGC: an Efficient Garbage
Collection Scheme for Flash Memory based Storage Systems. Journal of
Systems and Software, 84(9):1507–1523, 2011.

[6] E. Lee and S. Seshia. Introduction to Embedded Systems-A Cyber-
Physical Systems Approach. 2011.

[7] M. Rosenblum and J. K. Ousterhout. The Design and Implementation of
a Log-structured File System. ACM Transactions on Computer Systems,
10(1):26–52, 1992.

[8] G. Xu, Y. Liu, X. Zhang, and L. M. Garbage Collection Policy to
Improve Durability for Flash Memory. IEEE Transactions on Comsumer
Electronics, 58(4):1232–1236, 2012.

