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Abstract—Existing memory subsystems and TDM NoCs for
real-time systems are optimized independently in terms of cost
and performance by configuring their arbiters according to the
bandwidth and/or latency requirements of their clients. However,
when they are used in conjunction, and run in different clock
domains, i.e. they are decoupled, there exists no structured
methodology to select the NoC interface width and operating
frequency for minimizing area and/or power consumption. More-
over, the multiple arbitration points, one in the NoC and the other
in the memory subsystem, introduce additional overhead in the
worst-case guaranteed latency. These makes it hard to design
cost-efficient real-time systems.

The three main contributions in this paper are: (1) We present
a novel methodology to couple any existing TDM NoC with a real-
time memory controller and compute the different NoC interface
width and operating frequency combinations for minimal area
and/or power consumption. (2) For two different TDM NoC types,
one a packet-switched and the other circuit-switched, we show the
trade-off between area and power consumption with the different
NoC configurations, for different DRAM generations. (3) We
compare the coupled and decoupled architectures with the two
NoCs, in terms of guaranteed worst-case latency, area and power
consumption by synthesizing the designs in 40 nm technology.
Our experiments show that using a coupled architecture in a
system consisting of 16 clients results in savings of over 44%
in guaranteed latency, 18% and 17% in area, 19% and 11% in
power consumption for a packet-switched and a circuit-switched
TDM NoC, respectively, with different DRAM types.

I. INTRODUCTION

In multi-processor platforms for real-time systems, main
memory (off-chip DRAM) is typically a shared resource
for cost reasons and to enable communication between the
processing elements [1]–[3]. Such platforms run several appli-
cations with real-time requirements on main memory perfor-
mance in terms of bandwidth and/or latency [4], [5]. These
real-time requirements must be guaranteed at design time to
reduce the cost of verification effort. This is made possible
using real-time memory subsystems [6]–[8] that bound the
memory access time by fixing the memory access parameters
at design-time and employing predictable arbitration, such as
Time Division Multiplexing (TDM) and Round-Robin, using
bus-based interconnects for resource sharing. On the other
hand, statically scheduled TDM NoCs [9]–[15] solve the scala-
bility issues with the traditional bus-based approaches [16] for
accessing shared resources in larger multi-processor platforms.
To provide end-to-end guarantees on latency in TDM NoCs,
a dedicated virtual circuit is allocated to each client from a
source network interface (NI) to a destination. Both real-time
memory controllers and statically scheduled TDM NoCs can
be analyzed using shared resource abstractions, such as the
Latency-Rate (LR) server model [17], which can be used in
formal performance analysis based on e.g., network calculus
or data-flow analysis.

Currently, real-time memory subsystems and TDM NoCs
are optimized independently by allocating each client with its
required worst-case bandwidth and/or latency in the arbiters

of the NoC and the memory subsystem for minimum resource
utilization. In larger multi-processor platforms for real-time
systems, TDM NoCs and real-time memory subsystems need
to be used in conjunction, with the NoC in a tree topology and
the memory subsystem at the root of the tree [18], as shown in
Figure 1. Since they run in different clock domains, the virtual
circuit for each client in the NoC needs to be decoupled using
dedicated buffers in the memory subsystem. Moreover, the NI,
which interfaces with the memory subsystem, requires a sepa-
rate port for each virtual circuit increasing its area and power
consumption, as well as the worst-case latency of a memory
transaction due to the introduction of multiple independent
arbitration points. However, for a decoupled architecture, there
exists no structured methodology to select the NoC interface
width and/or operating frequency for minimal area and/or
power consumption. This makes it difficult to design cost-
efficient real-time systems.

The three main contributions in this paper are: (1) We
propose a novel methodology to couple any existing TDM NoC
with a real-time memory controller and compute the different
NoC interface width and operating frequency combinations
for minimal area and/or power consumption. (2) For two
different NoC types, one a packet-switched and the other
circuit-switched, we show the trade-off between area and
power consumption with the different NoC configurations, and
for different DRAM devices across three memory generations.
(3) We compare the performance of the coupled and decoupled
architectures with the two NoCs in terms of worst-case latency,
area and power consumption by synthesizing designs in 40 nm
technology, for the different DRAM devices.
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Fig. 1. High-level architecture of a decoupled TDM NoC tree and a memory
subsystem shared by five memory clients r1 to r5. The NoC and the memory
subsystem run in different clock domains using clock sources clkn and clkm,
respectively. Every router in the NoC has a switch (sw) and an arbiter (Arb),
which arbitrates according to a global TDM schedule. The atomizer (AT)
splits a larger transaction in to smaller sized transactions according to the
fixed access size of the real-time memory controller.

In the remainder of this paper, Section II reviews the related
work, while Section III gives an introduction to the LR server
model, state-of-the-art real-time memory controllers and TDM
NoCs. In Section IV, we introduce our methodology to couple
a TDM NoC with a real-time memory controller and select the
NoC parameters. By experimentation, we analyze the impact
of NoC parameter selection on its area and power consump-
tion and compare the coupled and decoupled architectures in
Section V, and finally we conclude in Section VI.978-3-9815370-2-4/DATE14/ c©2014 EDAA



II. RELATED WORK

Related work on the co-design of NoC and memory sub-
system can be classified into those that provide guarantees
on real-time requirements to the clients and those that focus
on improving the average-case performance of the system.
To provide real-time guarantees while accessing a shared
memory, power/performance optimized tree topologies using
bus-based interconnects and predictable arbiters [16], [19]
were traditionally used. Since, bus-based interconnects were
not scalable in larger SoCs, statically scheduled TDM [9]–
[15] and priority-based NoCs [20] were introduced. Although,
a tree topology using TDM NoC, channel trees [18], has been
proposed for accessing shared resources reduces the worst-
case latency using a fully pipelined response path, it was not
optimized for area or power consumption. Optimization of a
TDM NoC in terms of area and power consumption was done
in [21] by coupling with a memory interface and removing
the buffers and flow control by implementing a Direct Memory
Access (DMA) access table inside a NI. However, the approach
is specific for DMA clients and is not applicable for clients
with diverse requirements on bandwidth and/or latency. At the
application level, DRAM-aware mapping of application tasks
to the processing nodes exploits bank-level parallelism [22] has
been proposed, and memory-centric scheduling approach in
which statically computed TDMA schedules are made for each
core to access the memory system to avoid memory access
contention, allowing applications to be verified in isolation
[23]. However, those were not optimized in terms of area
and/or power consumption.

Other related work that focus on improving the average-
case performance of the clients include a memory-centric
NoC design that explores the benefits of a dedicated NoC for
shared DRAM access by funneling the traffic from different
clients to the memory with the right width converters [24]. A
connectionless NoC for shared memory access with a binary
arbitration tree that multiplexes multiple clients to one bus
master are proven to reduce average latency and hardware cost
as opposed to a connection-oriented NoC [25]. At the architec-
ture level, DRAM traffic-aware NoC routers [26] and network
interfaces [27] exploit bank-level parallelism and minimize bus
turnaround time by grouping read and write transactions to
improve memory utilization. Memory controllers that interacts
with the NoC and make command scheduling decisions based
on the congestion information from the NoC [28] improves
the average-case performance, but do not provide guarantees
on bandwidth and/or latency to the clients.

To the best of our knowledge, there exists no previous work
that optimizes the co-design of a TDM NoC and a shared
memory subsystem in terms of area, power consumption and
performance, while providing real-time guarantees on band-
width and/or latency to the clients.

III. BACKGROUND

This section first introduces the LR server model since
we use it as the shared resource abstraction to derive bounds
on latency provided by predictable arbiters. We then introduce
state-of-the-art real-time memory subsystems and TDM NoCs.

A. LR servers

Latency-Rate (LR) servers [17] is a general shared re-
source abstraction model that provides a lower linear bound
on the service provided by various scheduling algorithms or
arbiters, such as TDM and Round-Robin, to a client. The LR
abstraction helps to formally verify applications using shared
resources by using a variety of formal analysis frameworks,
such as data-flow analysis and network calculus.
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Fig. 2. Example service curves of a LR server showing service latency (Θ)
and completion latency (N/ρ′).

Figure 2 shows example requested and provided service
curves of a LR server. The requested service by a client at a
time consists of one or more service units (indicated on the y-
axis) corresponding to data. According to the LR abstraction,
the minimum service provided to the client depends on two
parameters, namely the service latency, Θ, and the allocated
rate, ρ′, (bandwidth). The service latency is intuitively the
worst-case time taken by the arbiter to schedule a request at
the head of the request queue of a client because of interfering
clients and depends on the arbiter and its configuration, e.g.
the allocated rate. Once a request consisting of N service units
is scheduled, its service units will be served at a guaranteed
rate ρ′ and it hence takes N/ρ′ service cycles to finish serving

the request. The worst-case latency, L̂, (in service cycles) of
a client is the total time taken by a request of size N service
units at the head of the client’s request queue to get served in

the worst case, and is given by L̂ = Θ+ ⌈N/ρ′⌉.

B. Real-time memory subsystems

Existing real-time memory controllers [6]–[8] bound the
execution time for a memory transaction by fixing the mem-
ory access parameters, such as burst length and number of
read/write commands per request, at design-time. Hence, the
amount of data accessed in the memory device while serving a
single transaction is always fixed and we refer to these transac-
tions of fixed size as service units with size (in Bytes) SU bytes.
The service unit size of DRAMs is typically in the range of 16-
256 Bytes. The time (in ns) taken by the memory controller to
finish the execution of a service unit is called a memory service
cycle and is given by SCns

m . For a given memory device with
operating frequency fm, the memory service cycle SCcc

m of a
service unit size of SU bytescan be computed according to [29].
Also, the worst-case bandwidth, bgross, offered by a memory for
a fixed access granularity can be computed. It is shown in [30]
that the memory service cycle for read and write transactions
in DRAMs can be equally long with negligible loss in the
guaranteed memory bandwidth.

For resource sharing between multiple memory clients,
bus-based interconnects with an arbiter belonging to the class
of LR servers are typically employed to provide real-time
guarantees to the memory clients [7], as shown in Figure 1.
The atomizer (AT) splits every transaction of a memory client
into smaller service units of size equal to SU bytes, according
to the fixed transaction size of the memory controller. The

worst-case latency of the memory subsystem (in ns), L̂m, to
serve a memory request from a client consisting of N service
units is given by Equation (1), where Θm is the service latency
of the memory arbitration, ρ′m the rate allocated to the client,
and δmem the internal pipeline delay of the memory subsystem
and depends on the number of pipeline stages in the RTL
implementation of the memory subsystem.

L̂m =
(Θm + ⌈N/ρ′m⌉) · SCcc

m + δmem
fm

(1)



C. Statically scheduled TDM NoCs

State-of-the-art TDM NoCs are either packet switched [9]–
[11], [13], [15] or circuit switched [12], [14], according to
a statically computed global TDM schedule. The routers in
these NoCs are non-blocking, and hence, the Network Interface
(NI) performs end-to-end flow control to avoid overflow of the
buffers in the routers. The NI converts a memory transaction
into one or more smaller units, called flits, and transports them
to a destination NI according to the global TDM schedule.
Typically, the service unit size of the NoC is in the order of
few words (4-12 Bytes) for a smaller buffer area in the NI [18].
The time taken to transport a complete service unit over a NoC
link is called NoC service cycle and is given by SCns

n (in ns)
and SCcc

n (in clock cycles). For a service unit of size SU bytes,
SCcc

n can be computed using Equation (2), where, IWn is the
interface width of the NoC (in bits) and δov is the overhead
cycles to carry header, such as address and command that is
specific to a NoC architecture.

SCcc
n =

⌈

(SU bytes × 8)/IWn

⌉

+ δov (2)

We use the TDM NoC in a tree topology with the memory
subsystem at the root of the tree and a fully pipelined response
path without arbitration as in a channel tree [18]. The worst-

case latency of a client in the NoC (in ns), L̂n, to transport
a read request from a source to a destination NI and read
back the response consisting of N service units is given by
Equation (3) 1, where fn is the NoC operating frequency (in
MHz), Θn is the service latency in the global TDM arbitration,
ρ′n the rate allocated to the client in the NoC, nhops the number
of hops between the source and destination NI, and δsw the
fixed pipeline delay of a NoC router. We assume no flow
control because of the buffers in the memory subsystem, and
request and response paths of equal length.

L̂n =
(Θn + ⌈N/ρ′n⌉) · SC

cc
n + 2nhops · δsw

fn
(3)

For the decoupled architecture, previously shown in Fig-
ure 1, the worst-case latency of a memory request can be
computed as the sum of worst-case latencies of the NoC,

L̂n, and the memory subsystem, L̂m. It can be seen that this
approach could be pessimistic in terms of worst-case latency,
since there are multiple arbitration points for the same request
and each of them introduces a service latency in the worst-case
latency estimation. In the next section, we present a novel
methodology to couple any statically scheduled TDM NoC
with a real-time memory subsystem that contains only a single
arbitration point for each client.

IV. COUPLING TDM NOC AND MEMORY SUBSYSTEM

We present our proposed methodology to couple any
existing TDM NoC with a real-time memory controller and
compute the NoC parameters in this section. Also, we show
the worst-case guarantees provided by the coupled architecture.

A. Architecture and operation

The basic idea is to use a single clock domain and generate
different clock frequencies for both the memory subsystem and
NoC. This helps to align the clock edges at the service cycle
boundaries, which enables us to schedule the service units to
the memory controller using the single global TDM schedule
without the memory arbiter, bus and the decoupling buffers
in between. This implies that the service unit size must be

1For a write request, only the request path need to be considered, and hence,
there will be a single nhops · δsw in Equation (3).

of equal size in the NoC and the memory subsystem and the
memory service cycle must be equal to the NoC service cycle
(in ns), i.e., SCns

m = SCns
n .

Real-time 

memory 

controller

NI

NI

NI

Global 

schedule

NoC

NI

NI

NI DRAM

sw1

Router 1

Arb

sw2

Router 2

Arb

sw3

Router 3

Arb

Memory 

subsystem

Buffer

clkn clkmclks

AT

AT

AT

AT

AT

Buffers

r1

r2

r5

r3

r4

Fig. 3. High-level architecture of a coupled interconnect with a memory
subsystem shared by five memory clients r1 to r5.

Figure 3 shows the high-level architecture of a TDM NoC
coupled with a memory subsystem shared by five memory
clients r1 − r5. The clocks for the NoC and the memory sub-
system represented by clkn (fn) and clkm (fm), respectively,
are derived from a single clock source, clks, by dividing in
different ratios, m and n, respectively. The memory subsys-
tem consists of a real-time memory controller, such as [6]–
[8], attached to a memory device operating at a frequency
(in MHz) given by fm. Compared to the decoupled architecture
previously shown in Figure 1, the decoupling buffers and the
atomizer in the memory subsystem are moved to the top of the
NoC tree from the memory subsystem. Since the service units
are scheduled using the global TDM arbitration in the NoC, the
bus and the arbiter in the memory subsystem are not required
anymore. The NI attached to the memory controller needs only
a single port instead of a number of ports equal to the number
of clients in the decoupled architecture. However, since there
are no decoupling buffers in the memory subsystem, the NI
requires a buffer of size equal to the service unit as opposed
to the buffer-less NI in the decoupled architecture. This is
because the memory controller cannot serve the transaction
until the complete service unit (including the payload of a write
transaction) is available in its input as a DRAM device needs
a complete burst before it can perform a read/write operation,
and typically, reads/writes two words in a single clock cycle.

Consider the TDM slot allocation for the five clients r1−r5,
as shown in Figure 4, which corresponds to the global TDM
schedule. Figure 5 shows the clock-cycle-level behavior of
the interconnect. For simplicity, we assume SCcc

m = 4 cycles
and SCcc

n = 6 cycles and fn = 3

2
fm, i.e., three clocks of

clkn corresponds to two clocks of clkm. In the first service
cycle (SC1), Router 1 schedules the service unit of client r1
and the first word arrives at Router 3 after a pipeline delay
of Router 1 equal to δsw (one clock cycle in this example).
Router 3 immediately forwards the service unit to the memory
controller (mc) after introducing another pipeline delay, and
hence, the service unit of r1 arrives after 2δsw cycles. The
memory controller has to wait for one service cycle for the
complete service unit to be delivered by the NoC. Once
the memory controller issues a read/write command, it takes
δmem cycles for the command to reach the memory device.

r1r1

SCm

Frame size = 5

Θ 
ns

r2 r3 r4 r5

Fig. 4. Global TDM allocation for clients r1 − r5.

The response path is fully pipelined and there is no flow
control as in the channel trees. Hence, the memory controller
sends back a read response as soon as it buffers the complete
data from the memory device. As shown in Figure 5, the
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response for the service unit of r1 is completely buffered in
the memory controller after one service cycle. However, at this
point the end of the service cycle may not be aligned with the
NoC clock and hence, it has to wait for the next rising edge
of the clock before the response can be forwarded back to
the client through the routers. Similarly, clients r2 − r5 are
scheduled during the successive service cycles SC2 − SC5,
respectively, as shown in the figure.

To summarize, a TDM NoC can be coupled with a real-
time memory controller by configuring its flit size equal to the
service unit size, selecting a buffer of size equal to the service
unit size for the NI attached to the memory controller, and
configuring the response path to be fully pipelined. Hence, any
existing TDM NoC can be coupled with a real-time memory
controller without significant hardware modifications.

B. Computation of NoC parameters

To ensure that the NoC delivers a complete service unit in a
service cycle for a given memory device of operating frequency
fm and a service unit size of SU bytes with a service cycle
duration SCcc

m , the NoC link bandwidth must be same as the
memory subsystem in a service cycle as given by Equation (4).

fn × (IWn/8)×
SCcc

n − δov
SCcc

n

= fm ×
SU bytes

SCcc
m

(4)

Given fm, SCcc
m , SU bytes and δov , we need to determine

all valid (fn, IWn) combinations. Since we use a single clock
source for both the NoC and the memory subsystem, the
possible fn and fm are integer divisions of the system clock
frequency. Hence, at first all possible values of fn that are
integer multiples and common fractions of fm need to be com-
puted. However, we need to make sure that SCns

n = SCns
m and

the NoC and the memory subsystem clocks are aligned at the
boundary of the service cycle. Hence, those values of fn that
satisfy Equation (5) need to be selected which ensures that the
number of cycles in SCcc

n (previously defined in Equation (2))
corresponding to an fn will also be the integer multiple or
common fraction (same used for computing the fn from fm)
of SCcc

m , i.e., the clocks will be aligned at the edge of the
service cycle. Finally, the values of IWn corresponding to the
different fn can be computed by substituting the values of the
known and the computed parameters in Equation (4).

(SCcc
m × fn) mod fm = 0 (5)

C. Real-time guarantees

In the coupled architecture, the worst-case latency (in ns),

L̂c, for a read request consisting of N service units at the head

of a client’s request queue is given by Equation (6), where, ρc
is the rate allocated to the client in the arbiter of the coupled
architecture and Θc is the service latency caused by interfering
clients. It can be seen that the coupled architecture introduces
only a single service latency component in the worst-case
latency expression. The worst-case latency for a read request
given by Equation (6) consists of an additional memory clock
cycle since the response from the memory device may not
be aligned with the NoC clock and hence it has to wait for
one memory clock. It can be seen in Equation (6) that the
coupled architecture introduces only a single service latency
component in the worst-case latency as opposed to the two
in the decoupled architecture, one by the memory subsystem
(Equation (1)) and the other by the NoC (Equation (3)).

L̂c =
(Θc + ⌈N/ρc⌉) · SC

cc
n + 2nhops · δsw

fn
+
δmem + SCcc

m + 1

fm
(6)

V. EXPERIMENTS

In this section, we first present the trade-off between area
and power consumption for different frequency and interface
width configurations for the different NoC and memory types.
Then we compare the coupled and decoupled architectures in
terms of area, power and guaranteed latency.

A. Experimental setup

Our experimental setup consists of RTL-level implemen-
tations of the following modules: (1) Router and NI of two
different TDM NoC types, one is packet switched Aelite [10]
and the other circuit switched Daelite [12]. (2) TDM arbiter.
(3) Bus-based interconnect using the Device Transaction Level
(DTL) protocol, which is comparable to functionality and
complexity of AXI and OCP protocols [31]. For logic synthesis
and for power/area estimation of the designs, we used the
Cadence Encounter RTL compiler and the 40 nm nominal Vt

CMOS standard cell technology library from TSMC.

B. Impact of NoC parameters on area and power consumption

We analyze the impact of different operating frequency
and interface width (fn, IWn) combinations for the coupled
NoC on its area and power consumption in this section. First,
we computed the memory service cycle SCcc

m and worst-
case guaranteed bandwidth bgross for different DRAM devices
(of 16-bit IO) with different service unit sizes (16 B, 32 B,
64 B, 128 B and 256 B) according to [29]. For all those
memories with different service unit sizes, we then computed
the different (fn, IWn) combinations for both Aelite and
Daelite NoCs according to the methodology presented in Sec-
tion IV-B. The values of δov for Aelite and Daelite is 3 and 2
cycles, respectively. Table I shows the different NoC operating
frequencies and interface widths for different memories with
a service unit size of 64 B. In general, it can be seen that
the interface width and operating frequency requirement of the
NoCs increase with the gross bandwidth of the memory device,
as expected. Both NoCs may have different interface width
requirements because of their different overhead, δov. Due to
lack of space, we do not show the (fn, IWn) combinations
for all service unit sizes. However, we found that increasing
service unit size increases the gross bandwidth of the memory
because of more efficient memory accesses and hence a faster
and/or wider NoC is required.

To analyze the trade-off between area and power consump-
tion with the different (fn, IWn) combinations in Table I, we
synthesized the RTL design of a single router-NI combination
of both Aelite and Daelite NoCs with the different (fn, IWn)



TABLE I. MEMORY SERVICE CYCLE AND GROSS BANDWIDTH FOR DIFFERENT DRAMS WITH A SERVICE UNIT SIZE OF 64 B

Memory fm (MHz) SCcc

m (cc) bgross (MB/s) (fn, Aelite IWn, Daelite IWn) combinations
LPDDR-266 133 19 448.0 (133,32,31),(266,15,15),(399,10,10),(532,8,7),(665,6,6),(798,5,5),(931,4,4)
LPDDR-416 208 19 700.6 (208,32,31),(416,15,15),(624,10,10),(832,8,7),(1040,6,6),(1248,5,5)

LPDDR2-667 333 25 853.8 (133.2,74,64),(199.8,43,40),(266.4,31,29),(333,24,23),(399.6,19,19),(466.2,16,16),
(532.8,14,14),(599.4,13,12),(666,11,11),(999,8,8)

LPDDR2-1066 533 39 874.7 (177.6,52,47),(355.3,23,22),(533,15,14),(710.6,11,11),(888.3,9,9), (1066,7,7),(1243.6,6,6)
DDR3-800 400 25 1024.0 (160,74,64),(240,43,40),(320,31,29),(400,24,23),(480,19,19),(560,16,16),(640,14,14),

(720,13,12),(800,11,11),(1200,8,8)
DDR3-1600 800 44 1163.6 (200,65,57),(400,27,26),(600,18,17),(800,13,13),(1000,10,10),(1200,9,8)

combinations. Figure 6 shows the trade-off between area and
power consumption for both Aelite (solid line) and Daelite
(dash-dotted line) NoCs coupled with the different memories
with a service unit size of 64 B. It can be seen that Daelite,
which is a circuit-switched NoC has about 20% higher area
and 35% power consumption compared to the packet-switched
Aelite because of the additional logic required by the slot table
in the Daelite router. For both NoCs, the power consumption
increases with the gross bandwidth of the memory device
because of higher operating frequency and/or interface width
requirements. For lower area usage (smaller interface widths
and higher operating frequency), the power consumption is
higher because of the dynamic power consumption at higher
operating frequencies. The power consumption reduces with
operating frequency, however, the area increases because of
increase in interface width. The area requirement increases
linearly with the interface width and hence the leakage power
consumption. In addition to leakage power, increase in area
increases the dynamic power as well due to increase in the
added logic that increases the switching in the circuit.
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Fig. 6. Area vs. power of Aelite (solid lines) and Daelite (dash-dotted lines)
NoCs coupled with different memories with a service unit size of 64 B. The
best (fn, IWn) combinations for minimal power consumption are shown.

Considering power consumption as the primary optimiza-
tion criteria, we select the points shown with the (fn, IWn)
combinations in Figure 6 as the best since further increase
in area beyond these points does not reduce the power con-
sumption. We use these configurations for the comparison of
the coupled and decoupled architectures in terms of area and
power consumption presented in the next section.

C. Comparison between coupled and decoupled NoCs

This section compares the performance of the coupled
and decoupled NoC architectures in terms of area, power
consumption and guaranteed latency. Since the architectural
differences between the decoupled and coupled architectures
are in the destination NI, the memory subsystem bus and
arbiter, we synthesized these modules independently to find

the differences in area and power consumption 2. For a fair
comparison in terms of area and power consumption, we se-
lected the same optimal (fn, IWn) combinations from Figure 6
for both architectures. We consider a system consisting of 16
memory clients, and hence, we configured the NI and the DTL
bus with 16 ports for the decoupled architecture.

For the coupled architecture, we configured the NI with a
single port and a buffer size of one service unit i.e., 64 B, for
both request and response paths. For each of the (fn, IWn)
combinations, we configured both the NIs with IWn bits and
synthesized for a target frequency of fn MHz. The DTL bus
was configured with a width of 32-bits assuming a 16-bit DDR
memory device that reads/writes 32-bits every clock cycle,
and synthesized with a TDM arbiter for a target frequency
of the memory device fm. For the decoupled architecture,
the area and power consumption include the NI, DTL bus
and arbiter, and only the NI and buffer in the coupled. The
synthesis results of both coupled and decoupled architectures
with Aelite and Daelite NoCs and with different memory
types are shown in Table II. It can be seen that the coupled
architecture consumes much less power and area compared
to the decoupled architecture. The savings in area are over
0.068 mm2 and 0.060 mm2 and in power are over 1.1 mW
and 0.9 mW for Aelite and Daelite NoCs, respectively, with
all memory types. The larger savings in Aelite compared to
Daelite is because of the larger area usage of its NI when a
new port is added compared to the NI of Daelite. To determine
the impact of the savings in area and power in a real system,
we considered a four-stage NoC tree consisting of 15 routers
and NIs. The savings in area and power consumption of the
NoC are shown in Figure 7. It can be seen that the savings of
18% and 17% in area, 19% and 11% in power consumption
for Aelite and Daelite, respectively, can be achieved by using
the coupled architecture.
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Fig. 7. Area and power savings of the coupled architecture with respect to
the decoupled for Aelite and Daelite NoCs and different DRAM types.

To compare the worst-case guaranteed latency of both
decoupled and coupled architectures, we assume the same
TDM allocation for the NoC in both architectures. For a
system consisting of 16 clients with a worst-case bandwidth
requirement of each client equal to 1/16th of the gross memory

2For simplicity, we do not consider the power consumption of the clock
sources. However, we assume that the clock source of the coupled architecture
consume less power than the multiple sources in the decoupled architecture.



TABLE II. AREA, POWER AND LATENCY COMPARISON OF COUPLED AND DECOUPLED ARCHITECTURES USING AELITE AND DAELITE NOCS WITH

DIFFERENT MEMORY TYPES FOR A SERVICE UNIT SIZE OF 64 B

IWn (bits) Decoupled architecture Coupled architecture
fn Aelite Daelite Aelite Daelite

Memory (MHz) Aelite Daelite Power
(mW )

Area
(mm2)

L̂d

(µs)
Power
(mW )

Area
(mm2)

L̂d

(µs)
Power
(mW )

Area
(mm2)

L̂c

(µs)
Power
(mW )

Area
(mm2)

L̂c

(µs)
LPDDR-266 266.0 15 15 1.38 0.09 4.81 1.21 0.07 4.81 0.26 0.02 2.65 0.29 0.01 2.65
LPDDR-416 416.0 15 15 1.59 0.09 3.08 1.36 0.07 3.08 0.38 0.02 1.70 0.39 0.01 1.70

LPDDR2-667 399.6 19 16 1.62 0.09 2.52 1.44 0.07 2.51 0.44 0.02 1.39 0.43 0.01 1.38
LPDDR2-1066 355.3 23 22 1.61 0.09 2.45 1.36 0.08 2.45 0.43 0.02 1.35 0.45 0.02 1.35

DDR3-800 480.0 19 23 1.75 0.09 2.10 1.43 0.08 2.11 0.49 0.02 1.16 0.49 0.02 1.17
DDR3-1600 400.0 27 17 1.69 0.09 1.85 1.60 0.07 1.83 0.50 0.02 1.02 0.52 0.01 1.00

bandwidth, we consider a TDM wheel of frame size 16 with
one slot allocated to each client. Hence, the service latency
of a client, Θn is 15 service cycles. We consider a four-
stage NoC tree, i.e., nhops = 4. The value of δsw of Aelite and
Daelite are 3 and 2 clock cycles, respectively, according to the
number of pipeline stages in their routers. Since we consider
the worst-case latency for a read, we use a value of 20 cycles
for δmem based on the pipeline stages for a read operation in
the RTL implementation of our memory controller [30].

For the decoupled architecture, we assume the same TDM
slot allocation in the memory subsystem as in the NoC for
simplicity, and hence, Θm = Θn = 15 service cycles.
Table II shows the guaranteed (read) latency of a client of the

decoupled (L̂d = L̂m+ L̂n) and coupled (L̂c) architectures for
different memories and for both NoCs. It can be seen that the
guaranteed latency with the coupled architecture is over 44%
lower than the decoupled architecture with all memory types.
This is due to the double service latency in the decoupled
architecture because of its two decoupled arbitration points.
However, there is flexibility in selecting any arbiter type in
the memory subsystem of the decoupled architecture. Hence,
by using a priority-based arbiter and assigning the highest
priority to one of its clients, its service latency in the memory
subsystem can be reduced to zero as in the case of coupled
architecture. However, this will affect the guaranteed latencies
of the low-priority clients in the system adversely.

VI. CONCLUSION

Existing NoC and memory subsystems for real-time sys-
tems are optimized independently by configuring their arbiters
according to the real-time requirements of the clients. How-
ever, there exists no structured methodology to select NoC
parameters for minimizing area/power consumption when they
are used in conjunction. Moreover, the decoupled multiple
arbitration points increase the worst-case latency bounds. We
proposed a novel methodology to couple any existing TDM
NoC with a real-time memory controller and configure the
NoC parameters for minimal area and/or power consumption.
Coupling the NoC and memory controller using our approach
saves over 44% in guaranteed latency, 18% and 17% in area,
19% and 11% in power consumption, for two different NoC
types and with different DRAM generations, for a system
consisting of 16 memory clients.
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