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Abstract—In this paper, we study a mask-cost-aware routing
problem for engineering change order (ECO). By taking into
account old routes for possible reuse, we present an approach
for the problem. Encouraging experimental results are reported
to demonstrate the effectiveness of our approach.

I. INTRODUCTION

Engineering change order (ECO) plays an important role
during circuit design for fixing functional/timing errors or even
for minor changing the specification. ITRS also pointed out
that photomask cost is increasing dramatically as technology
advances [2], such that post-silicon ECO implementation will
affect the total manufacturing cost significantly. In the past few
years, ECO-related problems were studied extensively, e.g., in
[4], [3], [5]. However, there is only one published work which
takes mask re-spin cost of routing layers into account, but its
ECO routing method is not explained with enough details [4].

An ECO change file:

delete_net Net 1, add_net Net 4, disconnect_pin Pin A from Net 2, 

disconnect_pin Pin B from Net 3, connect_pin Pin A to Net 4,

connect_pin Pin B to Net 2, connect_pin Pin C to Net 4

Original netlist:

Net 1: {Pin C, Pin D},

Net 2: {Pin A, Pin E},

Net 3: {Pin B, Pin F, Pin G}

Golden netlist:

Net 2: {Pin B, Pin E}, Net 3: {Pin F, Pin G}, 

Net 4: {Pin A, Pin C}, Floating Pin: Pin D

Fig. 1. An ECO implementation.

Generally, an ECO routing problem asks to find a routing
solution for ECO nets that are produced by an ECO imple-
mentation. An ECO implementation considered in this paper
has four types of modifications for a circuit: net addition, net
deletion, pin connection, and pin disconnection. As an example
given in Fig 1, a net addition (deletion) is to add (delete) a net
logically, and a pin connection (disconnection) is to connect
(disconnect) a pin to (from) a net logically. A net deletion
can be also considered to disconnect all pins from a net. It is
interesting to note that after some nets in the original netlist are
modified, their original routing results will become old routes
and be no longer valid. See Fig. 2 for an example, where
by doing three pin disconnections and two pin connections
on Net 1 and Net 2, the original netlist is modified and then
an ECO routing problem for Net 1 and Net 2 in the golden

Original netlist: Net 1: {Pin A, Pin B}, Net 2: {Pin C, Pin D, Pin E}
ECO changes: disconnect_pin Pin B from Net 1, disconnect_pin Pin C from Net 2, 
disconnect_pin Pin E from Net 2, connect_pin Pin B to Net 2, connect_pin Pin C to Net 1
Golden netlist: Net 1: {Pin A, Pin C}, Net 2: {Pin B, Pin D}, Floating Pin: Pin E
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Fig. 2. An original layout and an ECO implementation.
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Fig. 3. A mask-cost-aware ECO routing result of Fig. 2.

netlist is created, while the old routes of the two nets become
invalid. Intuitively, we can first remove old routes and then
route ECO nets, but in the worst scenario, the resultant ECO
routing solution may cause all metal and via layers to change,
making the mask re-spin cost unacceptably high.

A post-silicon ECO routing problem is not trivial because it
has to consider mask re-spin cost when using limited routing
resources to achieve ECO implementation. If we smartly reuse
some routing objects of the old routes during ECO routing,
we can not only obtain additional routing resources but also
reduce mask cost. Note that a routing object could be a metal
segment or a via. Fig. 3 shows a mask-cost-aware ECO routing
result that reuses some parts of old routes to realize the ECO
implementation of Fig. 2. It removes the metal-1 routing object
connected to Pin A, the metal-1 routing object connected to Pin
D and Pin E, and a via-23 routing object on the old route of
Net 2 (see the regions highlighted by dashed circles in Fig.2),
reuses the remaining routing objects on the old routes, and adds
the metal-1 routing object connected to Pin D and the metal-1
routing object connected to Pin A (see the regions highlighted
by dashed circles in Fig. 3). This ECO routing result only
changes metal-1 layer and via-23 layer while keeping via-12
layer, metal-2 layer, and metal-3 layer intact.

Motivated by the above example, we study in this paper
a mask-cost-aware ECO routing problem. We present an ap-
proach to reuse old routes to accomplish post-silicon ECO
routing and minimize total mask re-spin cost. Encouraging ex-
perimental results are reported to demonstrate the effectiveness
of our approach.

II. PROBLEM FORMULATION

For each net that is in the original netlist but gets modified
by an ECO implementation, its old route is called a reusable
route. A reusable route can be partially reused for routing ECO
nets in the golden netlist.

For a post-silicon design, let ML = {ml1,ml2, ...,mln} de-
note the set of n metal layers, CL = {cl1, cl2, ..., cln−1} the set
of n−1 via layers, and C = {cml1 , ccl1 , cml2 , ..., ccln−1 , cmln}
the set of 2n − 1 mask re-spin costs for these metal and via
layers. For an ECO implementation, it contains a set of net
deletions, a set of pin disconnections, a set of net additions,
and/or a set of pin connections to modify the original netlist.
These modifications produce a set EN of ECO nets to be
routed, a set FP of pins to become floating, and a set RW
of reusable routes.

In order not to disturb the nets which are not involved
in an ECO implementation, their routes remain intact and
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become obstacles when routing ECO nets. The available routing
resources (including those occupied by reusable routes) are
specified by a routing grid graph, where the vertices and edges
that are occupied by obstacles are all removed. The mask-cost-
aware ECO routing problem is formally defined as follows.

Problem 1 (Mask-Cost-Aware ECO Routing): Given
EN , FP , RW , and the routing grid graph of a design, the
objective of the mask-cost-aware ECO routing problem is to
make all pins in FP become floating, route as many nets in
EN as possible, and minimize the total mask re-spin cost
induced by the set of changed metal and via layers.

III. OUR APPROACH

A. Overview

Let us first use Fig. 4 to give an overview of our approach.
Fig. 4(a) shows an instance of our ECO routing problem,
where each solid blue vertex denotes a pin, each tree composed
of solid black line segments and pins denotes a reusable
route, and each dashed red curve denotes an ECO net to be
routed. It also shows that an ECO implementation changes the
original netlist including two nets, net1 = {v1, v2, v3} and
net2 = {v4, v5, v6}, and one floating pin v7 to the golden netlist
including three ECO nets, net3 = {v1, v4}, net4 = {v3, v7}
and net5 = {v2, v5}, and one floating pin v6.

Our approach first enters the ECO routing phase which
completes the routing for the three ECO nets by reusing routing
objects on reusable routes, and by allowing shorts to occur
between an ECO route and an unused route (see Fig. 4(b)
where each tree in the green color shows the routing result
for an ECO net, each tree in the black color shows an unused
route, and the green line segment marked by the dashed circle
is originally on the old route of net1 but is now reused by the
route of net5). Note that: (1) An unused route is a tree that is
a part of a reusable route but is not reused by any ECO net. (2)
A short occurs when an ECO route intersects with an unused
route at a point.

Our approach then enters the connectivity-breaking phase
which disconnects all pins in FP from their original nets
and removes all shorts. Intuitively, we can remove all unused
routes to complete the goal of this phase. However, when
the ECO routing result only causes a small set of layers to
change, removing all unused routes could create changes for all
mask layers (if unused routes scatter on all layers) and induce
expensive mask cost. Instead, our approach first generates a set,
called disconnection set, from each unused route; each element
in the set is called a disconnection vertex and corresponds to a
vertex in the routing graph that either is an intersection point of
the unused route and an ECO route, or is occupied by a floating
pin in FP . For example, there are three unused routes in Fig.
4(b), so our approach will generate three disconnection sets,
D1 = {u1, u2, u3}, D2 = {u4, u5}, and D3 = {u6, u7, u8},
as shown in Fig. 4(c) (note that v1, v3, v4, v5, v6 are renamed
as u1, u5, u8, u6, u7, respectively). For each disconnection set,
our approach continues to delete some routing objects on the
corresponding unused route such that each vertex is physically
disconnected from each other in the set. After doing this, all
shorts are eliminated and all pins in FP become floating (see
Fig. 4(d) for the final ECO routing result, where some routing
objects on unused routes are deleted to make all vertices in
each Di become disconnected, i = 1, 2, 3).

Our approach will consider the total mask re-spin cost in both
the ECO routing phase and the connectivity-breaking phase.
The details of the two phases are presented in the following
two subsections
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Fig. 4. Illustration of our approach.

B. ECO Routing Phase

The ECO routing phase first decomposes each ECO net into
a set of 2-pin sub-nets according to the minimum spanning
tree of the ECO net, and determines a set L of metal layers
by collecting the layers on which the pins of ECO nets are
located. It then performs ECO routing using L and the via
layers in between as the layer range. It is forbidden to create
new routing objects outside the layer range, but our approach
can still utilize the routing objects of reusable routes on layers
outside the layer range whenever necessary. If there are some
ECO nets that cannot be successfully routed (called failed nets),
the ECO routing phase will iteratively add an adjacent layer of
a lower mask cost to L to enlarge the layer range and reroute
all ECO nets, until all ECO nets are successfully routed or no
more layer can be added. In the rest of this subsection, the
details of our ECO routing algorithm under a fixed layer range
are described.

For a given routing layer range, our ECO routing algorithm
is comprised of two stages. In the first stage, it routes each ECO
net one by one. The ECO nets are routed in a non-decreasing
order of their minimum bounding-box sizes while each ECO
net is routed in a sub-net by sub-net manner. The sub-nets of
each ECO net are routed in a random order. The routing graph
consists of all available routing resources in the layer range
as well as those occupied by reusable routes. To encourage
using reusable routes for ECO routing, their routing edges are
assigned a cost of 0, while the other edges are set to a cost
of 1 at the beginning. Furthermore, to encourage the sub-nets
belonging to the same ECO net to share routing resources, two
or more of them passing through an edge e will not cause
any overflow to e, and the cost of e is set to 0 for these
sub-nets except for the first one. Since the shapes of pins are
irregular in advanced technology nodes, it is not uncommon for
a pin to occupy some vertices in the routing grid graph. Hence,
we generalize Dijkstra’s algorithm to get a multi-source multi-
target shortest path algorithm for routing each 2-pin sub-net.
When the shortest path algorithm reaches any one of the target
vertices, it will stop and return the found shortest path.

In the first stage, overflow on any edge is prohibited, and
our algorithm iteratively expands the routing region from the
minimum bounding box of each failed ECO net until all ECO
nets are successfully routed, or it reaches the iteration limit
but still fails to route all ECO nets. When the latter case
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happens, our algorithm enters the second stage to route each
failed ECO net by allowing overflow to occur during the
course of routing a sub-net. However, if the routing result of
a sub-net causes an edge e to overflow, the cost of e will be
incremented immediately and the previously routed sub-net that
passes through e will be ripped up. Each sub-net that is ripped
up or failed will be re-routed in the next iteration (note that
in the second stage, a sub-net is said to be a failed sub-net
if there exists no path in its current routing region to connect
its two pins, even if overflow is allowed). If no improvement
is obtained (i.e., the total number of failed and ripped-up sub-
nets does not decrease) at the current iteration, our algorithm
further expands the routing regions for each failed and ripped-
up sub-nets before going to the next iteration; otherwise, it only
expands the routing region for each failed sub-net. This stage
will terminate when there is no failed or ripped-up sub-net, or
it reaches a given iteration limit.

C. Connectivity-Breaking Phase
The connectivity-breaking phase solves the following prob-

lem to remove all shorts and make all pins in FP become
floating.

Problem 2 (Mask-Cost-Aware Connectivity-Breaking):
Given a set of unused routes each of which is associated
with a disconnection set, the objective of the mask-cost-aware
connectivity-breaking problem is to remove routing objects
from each unused route for disconnecting all vertices in the
associated disconnection set such that the total mask re-spin
cost induced by the changed layers is minimized.

For each unused route, our connectivity-breaking algorithm
first builds a set of topology trees each of which is rooted at
a different disconnection vertex. Each tree node in a topology
tree corresponds to a disconnection vertex or a Steiner point on
an unused route, and each tree edge corresponds to a routing
path on the unused route that connects the two nodes of the
edge. For example, Fig. 5(a) gives an unused route that has
five disconnection vertices u1, u2, u3, u4, u5, and two Steiner
points s1, s2; therefore for each ui, a topology tree rooted at
ui can be built. One of the five topology trees is shown in Fig.
5(b), which is the corresponding topology tree rooted at u2.

Then for each rooted topology tree, our algorithm traverses
it to find a collection of separating sets. A separating set is
a minimal subset of edges of a rooted topology tree such
that after deleting all the edges of the set from the tree, the
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Fig. 6. Routing object removal.

root is disconnected from the other disconnection vertices.
For example, for the rooted topology tree in Fig. 5(b), three
separating sets sesu2

1 , sesu2
2 , and sesu2

3 as shown in Fig. 5(c)
are generated, where eui

,uj
denotes the edge connecting node

ui and node uj .
For each separating set, our algorithm continues to find a

collection of layer combinations from its edges. Recall that
each edge e represents a path of an unused route, and the path
consists of a set of routing objects. The layer set of e is the
set of layers on which the routing objects associated with e are
located. For each separating set, our algorithm enumerates all
possible layer combinations from the layer set of each edge
such that there is exactly one layer from each layer set in
each layer combination. For example, we assume the layer
set ALS(e) of each edge e of the topology tree of Fig. 5(b)
is shown in Fig. 5(d), where mli and clj denote metal layer
i and via layer j, respectively. Then the collection of layer
combinations, LC(sesu2

i ), for each separating edge set sesu2
i

of Fig. 5(c) is shown in Fig. 5(e), where each element in
LC(sesu2

i ) is a set and represents a layer combination of u2.
Let LC(u2) denote the set of all layer combinations for u2,
which is the union of all LC(sesu2

i )’s, as shown in Fig. 5(e).
Each layer combination in LC(u2) is said to cover u2 and is
a layer set candidate to carry out the disconnection of u2 from
the other disconnection vertices. Note that different disconnec-
tion vertices may have one or more same layer combinations
covering them; in other words, a layer combination may cover
one or more disconnection vertices.

To disconnect a disconnection vertex ui from the others, our
algorithm will select one layer combination lcj from LC(ui)
and perform metal segment removal and/or via-cut removal in
the layers of lcj . Removing a metal segment only changes a
single mask. However, removing a via could change the number
of masks up to three due to via enclosure rules. Thus, our
algorithm does not remove a whole via, but replaces the via
with its two enclosing metals instead so that only the via layer
gets changed. As can be seen from Fig. 6(a) and Fig. 6(b), we
respectively remove a metal-2 segment and a via-cut so as to
break the connectivity between u1 and u2.

Once all layer combinations for each disconnection vertex are
generated, the mask-cost-aware connectivity-breaking problem
can be reduced to the problem of selecting a collection of layer
combinations such that every disconnection vertex is covered
by at least one layer combination in the collection. The union
of these selected layers combinations is a set of layers whose
total mask cost should be as small as possible. Our approach
transforms this selection problem into an integer linear program
(ILP) which is then solved by an open-source ILP solver [1].
Please note that if a layer gets changed by the ECO routing
phase, its mask cost is set to 0 here because it is free to use
now. The ILP formulation is given as follows:

Minimize
∑
ci∈C

ci × bi

subject to
∑

k∈f(lcj)

xj ≥ 1, k = 1, . . . ,m

bi ≥ xj , ∀ci ∈ C,∀lcj 3 i.



TABLE II
OUR ECO ROUTING RESULTS

Case #DRC #DRC Opt. Initial Changed Layers Final Changed Layers #L T(s)
ECO1 7 0 ml1, cl1, ml2 ml1, cl1, ml2 3 3
ECO2 26 0 ml1, cl1, ml2 ml1, cl1, ml2, cl2 4 4
ECO3 1081 104 ml1, cl1, ml2, cl2, ml3, cl3, ml4, cl4, ml5 ml1, cl1, ml2, cl2, ml3, cl3, ml4, cl4, ml5 9 6180

TABLE III
ECO ROUTING RESULTS OF THE COMMERCIAL TOOL

Case With Layer Range Without Layer Range
#DRC #DRC Opt. T(s) #DRC #DRC Opt. T(s) Changed Layers #L

ECO1 15 10 8 0 - 4 ml1, cl1, ml2, cl2, ml3, cl3, ml4 7
ECO2 15 12 15 0 - 4 ml1, cl1, ml2, cl2, ml3, cl3, ml4 7
ECO3 774 763 3540 580 588 410 ml1, cl1, ml2, cl2, ml3, cl3, ml4, cl4, ml5, cl5, ml6 11

TABLE I
ECO CASES

Case ECO1 ECO2 ECO3
#ECO Nets in EN 2 9 68

#Floating Pins in FP 0 9 0
#Resuable Routes in RW 2 13 27

Gate Count 19,872 19,872 1,034,892
#Nets 13,355 13,355 984,972

Utilization (%) 77.42 77.42 69.2
Core Area (µm*µm) 233*273 233*273 2,545*1,794

where ci is the mask re-spin cost for each i, C is the set of
costs for all layers, bi is a binary variable (bi = 1 if layer i
is chosen for participation in the connectivity breaking), xj is
a binary variable to denote whether the layer combination lcj
is selected or not, k denotes a disconnection vertex numbered
from 1 to m, and f(lcj) is the set of disconnection vertices
covered by lcj . The objective is to minimize the total mask
re-spin cost while every disconnection vertex k is covered by
a layer combination at least.

Note that we have also developed several techniques to
reduce the size and the solution space of the ILP formulation
without sacrificing the optimality. However, due to the page
limit, their details are omitted.

IV. EXPERIMENTAL RESULTS

We have implemented our ECO routing approach in C++
language. Since our approach only considers simple design
rules such as wire width and wire spacing rules, we develop
a methodology that first runs our approach and then runs a
commercial routing tool to perform incremental routing opti-
mization for further fixing other types of design rule violations
for our ECO routing result. Note that incremental routing
optimization is executed under the layer range produced by
our approach. We also compare our methodology with this
commercial tool. The commercial tool is run by performing
its ECO routing function, followed by incremental routing
optimization when the produced ECO routing result is not
DRC-clean, on two modes. The first mode does not put any
layer range while the second mode uses the same layer range
reported by our approach. Note that unlike our approach, the
commercial tool does not offer the option to automatically
minimize the total cost of changed masks. That is the reason
why we run the commercial tool on two modes for being able
to compare it with our methodology.

Three industrial ECO routing cases are used, and their
detailed information is shown in Table I. Every case has 6
metal layers in 55nm node. We set the cost of each mask the
same in the experiments, so that the total mask re-spin cost is
measured by the number of changed layers. All experiments
were conducted on a Linux workstation with a 2.9 GHz CPU
and 48G memory. The routing results of our methodology
and the commercial tool are shown in Table II and Table
III, respectively. In the two tables, we report the number of
DRC violations (in the “#DRC” column), the number of DRC
violations after performing incremental routing optimization by

the commercial tool (in the “#DRC Opt.” column), the set of
layers that are changed by our ECO routing phase (in the
“Initial Changed Layers” column), the set of changed layers
after our connectivity-breaking phase (in the “Final Changed
Layers” column), the set of changed layers after performing
ECO routing and possibly incremental routing optimization by
the commercial tool (in the “Changed Layers” column), the
amount of layers for the set in the “Final Changed Layers”
column or for the set in the “Changed Layers” column (in the
“#L” column), and the total runtime measured in second for our
methodology or the commercial tool (in the “T(s)” column).

As can be seen in Table II, all DRC violations can be cleaned
eventually after applying the incremental routing optimization
to our routing solutions for ECO1 and ECO2 cases, which
means that our approach can produce a better initial routing
for subsequent DRC violation cleaning. As for ECO3, the
DRC violations are too many to be completely resolved by the
commercial tool. For ECO2, our connectivity-breaking phase
needs one more via layer cl2 than the ECO routing phase to
remove all shorts. For the other cases, our connectivity-breaking
phase can remove all shorts within the layers that are changed
by our ECO routing phase.

We next analyze the results of the commercial tool in Table
III. Given the final changed layers produced by our approach
as the layer range, the commercial tool cannot get a DRC-
clean solution for every case, but our approach works well for
two cases after incremental routing optimization. Furthermore,
when we do not set any layer range, the commercial tool
produces DRC-clean solutions, respectively for ECO1 and
ECO2, and therefore we do not further do incremental routing
optimization for the two cases. However, compared with our
methodology, the commercial tool needs four and three more
layers to get DRC-clean for ECO1 and ECO2, respectively.
Apparently, our methodology saves about half the cost for both
cases as compared to the commercial tool. For ECO3 without
the layer range, the commercial tool cannot find a DRC-clean
solution even when it uses up all the routing layers.

V. CONCLUSION

In this paper, we have presented an ECO routing approach
that considers the reuse of old routes to save the mask re-spin
cost. We are currently taking more complex design rules into
account to further improve our approach.
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