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Abstract—This paper introduces the implicit-IMOR method
for differential algebraic equations. This method is a modification
of the Index-aware model order reduction (IMOR) method
proposed in our earlier papers which is the explicit-IMOR
method. It also involves first splitting the differential-algebraic
equations (DAEs) into differential and algebraic parts using a
basis of projectors. In contrast with the explicit-IMOR method,
the implicit-IMOR method leads to implicit differential and
algebraic parts. We demonstrate the implicit-IMOR method using
the RLC/RC networks, but it can also be applied to other
problems which lead to differential-algebraic equations.

I. INTRODUCTION

Consider a linear RLC electric network, that is, a network
which connects linear capacitors, inductors and resistors, and
independent current sources ı(t) ∈ RnI . The unknowns which
describe the network are the node potentials e(t) ∈ Rn, and
the currents through inductors L(t) ∈ RnL . Following the
formalism of Modified Nodal Analysis (MNA) [1], we intro-
duce: the incidence matrices AC ∈ Rn,nC , AL ∈ Rn,nL and
AR ∈ Rn,nG , which describe the branch-node relationships
for capacitors, inductors and resistors; the incidence matrix
AI ∈ Rn,nI , which describe this relationship for current
sources. Then this leads to a descriptor system for the unknown
x = (e, L)> given by(
ACCA>C 0

0 L

)
︸ ︷︷ ︸

E

dx

dt
=

(
−ARGA>R −AL

A>L 0

)
︸ ︷︷ ︸

A

x+

(
−AI

0

)
︸ ︷︷ ︸

B

ı,

(1)
with consistent initial data

x(t0) = x0. (2)

Here, C ∈ RnC ,nC , L ∈ RnL,nL and G ∈ RnG,nG are
the capacitance, inductance and conductance matrices, which
are assumed to be symmetric and positive-definite. Note that
we consider a network of only current sources for simplicity
but also voltages sources can be used. If E is singular, (1)
is a differential algebraic equation (DAE) otherwise it is
an ordinary differential equation (ODE). In this paper we
assume that E is singular, thus we are considering DAEs. The
dimension of the DAE system (1) is N = n+ nL.
978-3-9815370-2-4/DATE14/©2014 EDAA

System (1) is the state equation which describes the
system’s dynamics. The output equation which describes the
observation is given by

y = CTx, (3)

where C ∈ RN,`. Combining (1) and (3), we obtain a control
problem given by

Ex′ = Ax + Bu (4a)
y = CTx, (4b)

where E,A ∈ RN,N , BN,m. If m, ` > 1, the system (4) is
called multiple-input multiple-output (MIMO), and if m =
` = 1 it is called single-input single-output (SISO). Taking the
Laplace transform of system (4), we obtain

Y (s) = H(s)U(s) + G(s)x0. (5)

The matrix function H(s) := CT (sE−A)−1B, is traditionally
called the transfer function if we assume vanishing initial con-
dition x0 = 0 while the function G(s) := CT (sE−A)−1E. In
this paper, we consider index-1 systems, thus we shall always
obtain the transfer function H(s).

In practice N � m, `, thus solving (4) in real time can
be computationally expensive. This is an attractive feature
for Model Order Reduction (MOR) [6]. The goal of model
order reduction is to replace the original dynamics in (4) by a
model of the same form but with a much smaller state space
dimension. Thus, we seek a reduced-order model

Erx
′
r = Arxr + Bru, (6a)

yr = CT
r xr, (6b)

with matrices Er,Ar ∈ Rr,r, Br ∈ Rr,m, and Cr ∈ Rr,`
such that r � N and the output approximation error y − yr
is small with respect to a specific norm over a wide range of
inputs u. In the frequency domain, this means that the transfer
function of (6) is given by Hr(s) := CT

r (sEr − Ar)
−1Br

approximates H(s) well, i.e., the error H(s) − Hr(s) is
small in a certain system norm. The reduction methods can
be classified in into two: spectral and Krylov-subspace based
methods. These methods are extensively discussed in [6], [10].
In this paper we shall focus on the Krylov-subspace based
methods which exploit the use of Krylov subspace iterations to



achieve system approximation by moment matching. Among
these methods are PRIMA [7], the structure preserving ver-
sion SPRIM [8] and so on. The most important advantages
offered by PRIMA are: the applicability to MIMO systems
and passivity preservation. However the two main limitations
of PRIMA are that it does not preserve the MNA structure
of the original system and the index of the system, i.e., It
leads to ODE reduced-order models. Moreover, PRIMA leads
to wrong reduced-order models for DAEs of higher index [2].
The problem of not preserving the MNA structure was solved
by its structure preserving version SPRIM. However, index
problem was not solved till now. In [3] and [2] we proposed
a index-aware model order reduction (IMOR) method which
preserves the index of the system and can be used to even
reduce higher index DAEs. In this method we first split the
DAE into differential and algebraic parts using projectors and
their respective bases. Then we can use conventional MOR
methods such as PRIMA, to reduce the differential part and
then develop techniques to reduce the algebraic parts. However
the explicit-IMOR method proposed in [3], [2] involves matrix
inversion which may be computationally expensive. In this
paper we modify the method by splitting the DAEs without
matrix inversions, which we call the implicit-IMOR (IIMOR)
method. This paper is organized as follows: Sect. II, we briefly
discuss about the PRIMA method, then in Sect. III, we discuss
about the decoupling of the RLC and RC networks without
matrix inversions. Then in Sect. IV, we discuss the IIMOR
method. Finally we carry out experiments using DAEs from
electric power grid models and then the conclusions.

II. MODEL ORDER REDUCTION

At the heart of model order reduction lies the desire to
approximate the behavior of a large dynamical system in an
efficient manner, so that the resulting approximation error is
small [5]. Other requirements are: the preservation of important
system properties, of its physical interpretation, and an efficient
implementation. In other words, the reduced-order model must
be computationally cheaper to solve than its original model.
We replace the original system (4) for x ∈ Rn, with output
y ∈ R`, with the reduced system (6) for xr ∈ Rr, with output
yr ∈ R`. The unifying approach for obtaining a reduced-
order model from an original system is via a Petrov-Galerkin
projection: Er = WTEV, Ar = WTAV,
Br = WTB and Cr = VTC, where V,W ∈ Rn,rm
are the matrices whose r � N columns form bases for
the relevant subspaces pertaining to the reduction method
chosen. Model Order Reduction methods differ in the way
the decomposition is performed, this in turn dictates how
the projection matrices V and W are constructed. There are
many MOR methods, but in this paper we shall focus on
PRIMA [7] which is the most popular reduction method for
electric circuits. In this method , one assumes the Galerkin
projection, i.e V = W ∈ Rn,rm. Then the projection V
is constructed as follows: Choosing arbitrary expansion point
s0 ∈ C, then we consider order-r Krylov subspace generated
by M = (s0E − A)−1E and R = (s0E − A)−1B , that
is Kr(M,R) = span{R,MR, · · · ,Mr−1R}, r ≤ n and
denoted by V ∈ Rn,rm the matrix of an orthonormal basis for
Kr(M,R) so that VTV = I. However the PRIMA method
is not valid for DAEs of higher index and does not preserve
the index of the DAE system. In [3] and [2], they proposed

a new MOR method for index-1 and -2 DAEs respectively,
which they called the IMOR method. This method involves
first splitting the DAE into differential and algebraic parts.
Then one can apply any model order reduction method on
the differential part and also reduce the algebraic parts. In
this paper, we call it the explicit-IMOR method. However
the explicit- IMOR method involves matrix inversions which
may be computationally expensive for very large systems, this
motivated us to develop its no inversion version which we call
the implicit-IMOR (IIMOR) method.

III. DECOUPLING OF RLC/RC NETWORKS

In this section, we introduce the implicit splitting of DAEs
using projectors and their corresponding bases. This splitting
is different from that proposed in [3], although the approach
is almost the same. Here we consider the splitting of index-
1 RLC/RC networks but the same procedure can be applied
to any index-1 system. In order to decouple system (1) we
need to first construct the matrix and projector chains of the
matrix pencil (E,A) using the definition of tractability index
as defined in [11]. Setting E0 := E, A0 := A, further

Ej+1 = Ej −AjQj , Aj+1 := AjPj , j ≥ 0, (7)

whereby Qj denotes a projector onto the nullspace KerEj
and its complementary projector Pj = I−Qj . The sequence
E0,E1, · · · , is known to become stationary, i.e., Eµ+j =
Eµ, j ≥ 0 , where µ is the tractability index, supposing the
matrix pencil λE−A is regular.

Assuming the matrix pencil (E,A) is regular, we can
compute the tractability index of (4a). This can be done as
follows:
We first set E0 = E, A0 = A :

E0 =

(
ACCA>C 0

0 L

)
, A0 =

(
−ARGA>R −AL

A>L 0

)
.

We then choose a projector Q0 such that ImQ0 = KerE0

and its complementary projector given by P0 = I −Q0. For
this class of problem, we can just choose a projector QC that
projects onto the kernel of A>C , and PC = I−QC . Then we
can obtain:

Q0 =

(
QC 0
0 0

)
, P0 =

(
PC 0
0 I

)
.

Then,

E1 = E0 −A0Q0 =

(
ACCA>C + ARGA>RQC 0

−A>LQC L

)
,

A1 = A0P0 =

(
ARGA>RPC −AL

A>LPC 0

)
.

It can easily be proved that if, we have the condition:

ker(AC ,AR)> = {0}, (8)

then we find that x ∈ kerE1 if and only if QCe = 0 and
assuming L is a nonsingular matrix. Thus the condition (8) is
equivalent to the index-1 condition,i.e., E1 is non-singular.

If the condition (8) is not satisfied, we need to iterate
the procedure. In this case, we need to introduce a projector



Q1 onto the KerE1, satisfying the additional requirements
Q1Q0 = 0. To do this, we need to first introduce a projector

Q̄1 =

(
QCR 0

L−1AT
LQC 0

)
(9)

which also projects onto the KerE1, where QCR is a projector
onto ker(AC ,AR)>. Then, the projector Q1 = −Q̄1(E1 −
A1Q̄1)−1A1 is a projector onto the KerE1, that satisfies the
condition Q1Q0 = 0. Thus, we can find E2 = E1 −A1Q1

and A2 = A1P1. If E2 is nonsingular, then (4) is an index-2
system. In this paper, we assume that index-1 condition (8) is
satisfied thus (4a) is an index-1 system. From this point, we
assume E1 is nonsingular unless otherwise stated.

A. Index-1 RLC network

In this section, we decouple index-1 systems of the form
(4a). We first construct bases for projectors QC and PC given
by qc ∈ Rn,n1 , pc ∈ Rn,n2 and their respective inverses are
given by q∗Tc ∈ Rn1,n, p∗Tc ∈ Rn2,n, where n = n1 + n2.
Thus the bases for projectors Q0 and P0 are given by

q =

(
qc
0

)
∈ RN,n1 , p =

(
pc 0
0 I

)
∈ RN,n2+nL and their

respective inverses are given by q∗T =
(
q∗Tc 0

)
∈ Rn1,N ,

p∗T =

(
p∗Tc 0

0 I

)
∈ Rn2+nL,N , where N = n1 + n2 + nL =

n+nL. The differential variable ξp and the algebraic variable
ξq are given by

ξp = p∗Tx =

(
p∗T
c e
L

)
∈ Rn2+nL ,

ξq = q∗Tx = q∗Tc e ∈ Rn1 . (10)

In [3], they decoupled index-1 systems using the above
bases and their corresponding inverses but they also had
to compute the inverse of E1. But inverting E1, might
be computationally expensive and leads to very dense ma-
trices of the decoupled system. In this paper, we try to
avoid inverting E1 as follows: On additional to the above
bases, we construct p̂T ∈ Rn2+nL,N , q̂T ∈ Rn1,N such
that p̂TAq = 0 and q̂TEp = 0, given by p̂ ∈
ker(qTc ARGA>R,−qTc AL) and q̂ = q, since E is symmetric.
Without loss of generality , index-1 system (4a) can be
decoupled as

Ep︷ ︸︸ ︷
p̂TEp ξ′p =

Ap︷ ︸︸ ︷
p̂TAp ξp +

Bp︷︸︸︷
p̂TBu, (11a)

−q̂TAq︸ ︷︷ ︸
Eq

ξq = q̂TAp︸ ︷︷ ︸
Aq

ξp + q̂TB︸︷︷︸
Bq

u, (11b)

where (11a) and (11b) is the differential and algebraic parts.
We can observe that there is no inversion of matrices, thus this
decouple system is computationally cheaper to derive than it’s
counter part in [3] . If we use matrices in (1) the algebraic
part (11b) can be written as

qTc ARGA>Rqcξq = −qTc
(
ARGA>R AL

)
pξp − qc

TAIu.
(12)

The output equation (4b) can also be decomposed as

y = CT
p ξp + CT

q ξq, (13)

where Cp = pTC and Cq = qTC. If we assume C = B, thus
we have Cp =

[
−pTcAI 0

]
and Cq = −qTcAI . Example

below illustrates how to decouple RLC networks of the form
(1) using the above proposed procedure.

Example 1: Consider an RLC circuit network with two
current sources as shown in figure below. The incidence ma-

u1

G1

C1

G2

C2

L1

iL
G3 −u2

v1 v2 v3 v4

Cc

Fig. 1. Two port RLC circuit example

trices for capacitors , resistors , inductors and current sources
are given by

AC =

 0 0 0
1 1 0
−1 0 1

0 0 0

 , AR =

 1 0 0
−1 1 0

0 −1 0
0 0 1

 ,

AL =

 0
0
1
−1

 and AI =

−1 0
0 0
0 0
0 −1

 . (14)

The capacitance, inductance and and conductance matrices are
given by

C =

[
Cc 0 0
0 C1 0
0 0 C2

]
, L = L1 and G =

[
G1 0 0
0 G2 0
0 0 G3

]
(15)

Substituting (14) and (15) into (1) we obtain a DAE with
system matrices given by

E =


0 0 0 0 0
0 C1 + Cc −Cc 0 0
0 −Cc C2 + Cc 0 0
0 0 0 0 0
0 0 0 0 L1

 ,

A =


−G1 G1 0 0 0
G1 −G1 −G2 G2 0 0
0 G2 −G2 0 −1
0 0 0 −G3 1
0 0 1 −1 0

 ,

B =


1 0
0 0
0 0
0 1
0 0

 , and C = B, u =

(
u1
u2

)
, (16)

and the unknown x = (e1, e2, e3, e4, L1
)>. This system

is solvable since det(λE − A) 6= 0 and it is of index -1
since the incidence matrices AC and AR satisfy condition
(8). Following the procedure in the previous section we obtain



the projectors QC and PC given by

QC =

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 and PC =

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 .
The bases of QC ,PC and their respective inverses are given
by

qc =

1 0
0 0
0 0
0 1

 , pc =

0 0
1 0
0 1
0 0

 and q∗Tc = qTc , p
∗T
c = pTc .

(17)

Thus the bases of projectors Q0, P0 and their respective
inverses are given by

q =


1 0
0 0
0 0
0 1
0 0

 , p =


0 0 0
1 0 0
0 1 0
0 0 0
0 0 1

 and q∗T = qT , p∗T = pT .

(18)

Using (10) the differential and algebraic unknowns are given
by

ξp = p∗Tx =

(
e2
e3
L1

)
, ξq = q∗Tx =

(
e1
e4

)
.

The decoupling bases p̂ and q̂T are given by

p̂ =


1 0 0
1 0 0
0 1 0
0 0 − 1

G3

0 0 1

 and q̂ = q. (19)

Substituting (16) and (17)-(19) into (11), we obtain the decou-
pled system with coefficient matrices

Ep =

[
C1 + Cc −Cc 0
−Cc C2 + Cc 0

0 0 L

]
, Ap =

−G2 G2 0
G2 −G2 −1
0 1 − 1

G3


Bp =

1 0
0 0
0 − 1

G3

 , Eq =

[
G1 0
0 G3

]
, Aq =

[
G1 0 0
0 0 1

]
,

Bq =

[
1 0
0 1

]
, Cp =

[
0 0 0
0 0 0

]
, Cq

[
1 0
0 1

]
. (20)

B. RC network

The RC network equation can easily be derived from (1)
if we eliminate the the inductors in the RLC network leading
to

ACCA>C︸ ︷︷ ︸
E

de

dt
= −ARGA>R︸ ︷︷ ︸

A

e +−AI︸ ︷︷ ︸
B

ı, (21)

with consistent initial data e(0) = e0,

where the node potentials e(t) ∈ Rn are the only un-
knowns. Here, still C ∈ RnC ,nC , and G ∈ RnG,nG are the

capacitance and conductance matrices, which are assumed to
be symmetric and positive-definite. This system can also be
written in the form (4), we can assume C = B. Assuming the
matrix pencil (E,A) is regular, them we can also compute its
tractability index as follows: Setting E0 = E and A0 = A
leads to

E0 = ACCA>C , A0 = −ARGA>R, B = −AI andu = ı.

We denote by Q0 = QC the projector onto the kernel of A>C ,
and set P0 = PC = I−QC , such that PCQC = QCPC = 0.
Then, we can find

E1 = E0 −A0Q0 = ACCA>C + ARGA>RQC ,

A1 = A0P0 = ARGA>RPC .

It is also easy to show that If, we have the conditions:

Ker(AC ,AR)> = {0}, (22)

then we find that e ∈ kerE1 if and only if QCe = 0. Thus the
condition (22) is equivalent to the index-1 condition det E1 6=
0 as for the case for RLC networks with only current sources.

1) Index-1 RC network: In this case we construct bases for
projectors Q0 = QC and P0 = PC given by q = qc ∈ Rn,n1 ,
p = pc ∈ Rn,n2 and their respective inverses is given by
q∗T = q∗Tc ∈ Rn1,n, p∗T = p∗Tc ∈ Rn2,n, where n = n1+n2.
The differential variable ξp and the algebraic variable ξQ are
given by

ξp = p∗Tx = p∗T
c e ∈ Rn2 , ξq = q∗Tx = q∗Tc e ∈ Rn1 .

In order to decouple the DAE system, we construct p̂T ∈
Rn2,n, q̂T ∈ Rn1,n such that p̂T0 Aq0 = 0 and q̂T0 Ep0 =
0, given by p̂ ∈ ker(qTc ARGA>R) and q̂ = q since E is
symmetric. From (11) and (13), we can decouple index-1 RC
network as

Epξ
′
p = Apξp + Bpu, (23a)

Eqξq = Aqξp + Bqu, (23b)
y = CT

p ξp + CT
q ξq, (23c)

where Ep = p̂TACCA>Cp, Ap = −p̂TARGA>Rp,
Bp = −p̂TAI , Eq = q̂TARGA>Rq,Aq = −q̂TARGA>Rp,
Bq = −q̂TAI , and CT

p = −pTcAI , CT
q = −pTcAI . (23a)

and (23b) is the differential and algebraic parts. We note that
the Ep and Eq must always be non-singular for any index-1
system.

IV. IMPLICIT-IMOR METHOD

In this section, we propose the Implicit -index-aware model
order reduction (Implict-IMOR) method which is the mod-
ification of the index-aware model order reduction method
proposed in [3], [2]. In this paper, we shall call this method
the explicit-IMOR method. In the explicit-IMOR method we
apply the reduction on the explicit decoupled system while the
implicit-IMOR method we apply it on the implicit decoupled
system (23). System (23) can be written in the form (4) given
by

Ẽξ′ = Ãξ + B̃u (24a)

y = C̃T ξ, (24b)



where Ẽ =

[
Ep 0
0 0

]
, Ã =

[
Ap 0
Aq −Eq

]
∈ RN,N ,

B̃ =

[
Bp

Bq

]
∈ RN,m, C̃ =

[
Cp

Cq

]
∈ RN,` and the projected

state space ξ =
(
ξTp ξTq

)T ∈ RN , where ξp ∈ Rnp , ξq ∈ Rnq

and N = np+nq . We note it can easily be proved that system
(24) and (4) are equivalent for index-1 systems. Moreover it
can be proved that the finite spectrum of the matrix pencil
(E,A) is equal to the spectrum of (Ep,Ap). Thus the decou-
pling procedure preserves the spectrum of the original system.
The transfer function of the two system also coincides, that
is H(s) = Ĥ(s) = C̃T (sẼ − Ã)−1B̃. The transfer function
Ĥ(s) can also be decomposed as

Ĥ(s) = Hp(s) + Hq(s), (25)

where Hp(s) = CT
p (sEp − Ap)

−1Bp and Hq(s) =
CqE

−1
q

[
Aq(sEp −Ap)

−1Bp + Bq

]
. Strictly separating (24),

we obtain a differential and algebraic subsystems given by

Epξ
′
p = Apξp + Bpu, (26a)

yp = CT
p ξp, (26b)

and

Eqξq = Aqξp + Bqu, (27a)
yq = CT

q ξq. (27b)

The output solution can be obtained using y = yp + yq . We
can observe that Hp(s) and Hq(s) are the transfer functions
of (26) and (27), respectively.

The differential subsystem (26) can be reduced using
the model order reduction methods for ODEs such as the
PRIMA method. Thus we can approximate ξp = Vpξpr ,
where Vp ∈ Rnp,r1m is an orthonormal basis matrix for
Kr1(Mp,Rp) = span{Rp,MpRp, · · · ,Mr1−1

p Rp}, r1 ≤ np,
where Mp = (s0Ep−Ap)

−1Ep and Rp = (s0Ep−Ap)
−1Bp.

Then the reduced-order ODE subsystem is given by

Eprξ
′
pr = Aprξpr + Bpru, (28a)

ypr = CT
prξpr , (28b)

where Epr = VT
p EpVp,Apr = VT

pApVp ∈ Rr1,r1 ,Bpr =
VT
pBp ∈ Rr1,m and Cpr = VT

pCp ∈ Rr1,`.
We observe that the above reduction of the differential part

induces a reduction in the algebraic part (27a) but its dimension
is unchanged given by

Eqξq = AqVpξpr + Bqu. (29)

We have already seen that the differential variable ξp is
confined to the subspace Vp = Kr1(Mp,Rp) spanned by Vp.
Then from (29), we can observe that the algebraic variable
ξq belongs to the subspace Vq := span(E−1q Wq) in Rnq ,
whereWq := span(Bq,AqVp). Then Vq andWq are spanned
by Vq = Orth(Vq) and Wq = Orth(Wq), respectively. We
note that Vq and Wq must be of the same dimension. Thus
substituting ξp = Vpξpr and ξq = Vqξqr into (27) and left
multiplying (27a) by WT

q , we obtain the reduced-order model
of the algebraic part (27) given by

Eqrξqr = Aqrξpr + Bqru, (30a)
yqr = CT

q ξqr . (30b)

where Eqr = WT
q EqVq ∈ Rr2,r2 , Aqr = WT

q AqVp ∈
Rr2,r1 , Bqr = WT

q Bq ∈ Rr2,m and Cqr = VT
q Cq ∈ Rr2,`,

where r1 is the reduced dimension of the differential part and
r2 = dim(Wq) = dim(Vq) which is equal to the reduced
dimension of the algebraic part. Hence recombining (28) and
(30) we obtain the implicit-IMOR reduced-order model for (3)
given by

Ẽrξ
′
r = Ãrξr + B̃ru (31a)

yr = C̃T
r ξr, (31b)

where Ẽr = W̃T ẼṼ, Ãr = W̃T ÃṼ, B̃r = W̃T B̃, C̃r =

ṼT C̃, where W̃ =

[
Vp 0
0 Wq

]
, Ṽ =

[
Vp 0
0 Vq

]
. We

note that it can easily be proved that the implicit-IMOR
methods also preserves the goals of the MOR depending on
the MOR method used to reduce the differential part and
moreover it preserve the index of the DAE. For instance
if PRIMA method is used to reduce the differential part
then the passivity can be guaranteed if the original matrices
satisfies properties suggested in [7]. We note the projectors and
their corresponding bases are numerically feasible and can be
computed using the LU based routine proposed in [9] for the
case of sparse matrices. But for the case of dense matrices
SVD based routines have to be used.

V. NUMERICAL EXPERIMENTS

In Tab I, we decouple Electric Power Grids models. These
are real world index-1 DAE models which can be downloaded
from [12]. In Tab I, np and nq represents the number of dif-

TABLE I. DIMENSION OF DECOUPLED ELECTRIC POWER GRIDS
INDEX-1 DAE MODELS

Power system Decoupled dimension Dimension #inputs #outputs
np nq N m `

Juba5723 5723 34614 40337 2 1
Bauru5727 5727 34639 40366 2 2
xingo3012 3012 17932 20944 2 2
BIPS/1997 1664 11586 13250 1 1

ferential and algebraic equations, respectively. We can observe
that N = np + nq , thus the dimension of the DAE system
is preserved. m and ` is the number of inputs and outputs
respectively. In the Tab II, we compared the computational cost
of splitting the power systems using the implicit and explicit
decoupling procedure. We can observe that the proposed
implicit decoupling procedure is computationally far cheaper
than the explicit decoupling procedure proposed in [3].

TABLE II. COMPARISON OF THE COMPUTATIONAL COSTS OF THE
SPLITTING METHODS.

Power system Implicit splitting method Explicit splitting method
Juba5723 40.50Seconds 1466.93Seconds
Bauru5727 42.88Seconds 1568.32Seconds
xingo3012 16.64Seconds 102.88Seconds
BIPS/1997 3.78Seconds 39.95Seconds

In the Tab III, we compared the sparsity of the matrix
pencil of the implicit and explicit decoupled system in de-
scriptor form (24). In Tab III, we observe that matrix Ã using
implicit splitting is sparser than that of the explicit splitting
method, while matrix Ẽ the viceversa is true. This is due to



TABLE III. COMPARISON OF THE NUMBER OF NONZEROS (NNZ) OF
(Ẽ, Ã).

Power system Implicit splitting method Explicit splitting method
nnz(Ẽ) nnz(Ã) nnz(Ẽ) nnz(Ã)

Juba5723 1807062 352416 5723 21993176
Bauru5727 1810871 3527592 5727 22003930
xingo3012 503925 1004277 3012 5833194
BIPS/1997 201542 448799 1664 2611782

the fact that Ã does not involve matrix inversion for the case
of implicit splitting method. Explicit splitting method has a
sparser matrix Ẽ just because Ep and Eq are always identity
matrices. Another advantage of implicit splitting over explicit
splitting method that it partially preserves the original structure
of matrix pencil (E,A) which is very important in the electric
networks community.

For convenience we use the last example in Tab I to
compare the reduced-order models obtained using the IIMOR
and IMOR methods which is a SISO model but the IIMOR
method can as well be used on the MIMO models. Using
s0 = 10 as the expansion point, we were able to reduce
the differential and algebraic part of decoupled system to 375
and 100, respectively using the IIMOR and IMOR method.
Thus the dimension of the reduced-order models is 475. In
Fig. 2, we compare the magnitude of the transfer function of
the IIMOR and IMOR reduced -order models. We observe
that both reduced-order model coincides with that of the
original models. In Fig. 3, we compare the their respective
approximation error. We can see that IMOR reduced-order
model is more accurate than the IIMOR method. However,
even if the IMOR method may be more accurate than the
IIMOR method it is computationally expensive. Therefore, we
need to trade off between accuracy and computational costs
while using the two methods.

Fig. 2. Comparison of Transfer function

VI. CONCLUSION

In conclusion, we have have proposed the IIMOR method
which an implicit version of the IMOR method. This method
is computationally cheaper than the IMOR method. Also it
partially preserves the original structure of the DAE system.
The IMOR method may be more accurate than the IIMOR
method but it is computationally expensive to be use to reduce
large RC/RLC networks. Hence IIMOR method is the best
optional. Finally, the IIMOR method can be extended to

Fig. 3. Comparison of approximation error.

systems with higher tractability index. This will be the topic
of a forthcoming paper.
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