
Ef�cient Analysis of Variability Impact on

Interconnect Lines and Resistor Networks

Jorge Fernández Villena, and L. Miguel Silveira
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Abstract�Continued technology scaling coupled with limited
lithographic capabilities is a leading cause of increased design
variability. In the nanometer regime lithography tools have failed
to keep pace with Moore's Law and printed feature sizes are a
small fraction of the wavelength of light used in current processes.
Such sub-wavelength printing makes features highly susceptible
to perturbations in the lithographic process conditions which
leads to printed designs exhibiting increased variability. Such
variability directly affects design behavior and performance in
multiple ways. One of the areas of concern is power grid (PG)
design, where lithographic errors may locally modify the wire
widths. These variations, that may affect any and all wires in
the grid, have a critical impact on the power distribution across
the chip, introducing considerable current �uctuations which
are a potential cause for electromigration effects. To analyze
and account for the impact of these errors requires a complete
extraction of the PG, which generates a large resistive network,
potentially with several million elements, whose simulation is
computationally challenging. This paper proposes a fast and
accurate variability analysis of very large resistor networks, such
as PG extracted netlists, that allows estimating the effects of
multiple parameter settings in reasonable time. The proposed
model can be easily combined with Litho/CMP simulators in
order to boost much needed design-aware lithography.

Keywords�Litho-induced Variability Analysis, Electromigra-
tion, Power Grid Analysis

I. INTRODUCTION

Producing layouts consisting of a set of polygons on
multiple levels designed in adherence to strict foundry estab-
lished rules used to be suf�cient to guarantee manufacturability
and reliable behavior. However, the nanometer regime has
introduced new challenges, namely in litography where tools
have failed to keep pace with Moore's Law and printed feature
sizes are a small fraction of the wavelength of light used
in litographic processes. Such sub-wavelength printing makes
features highly susceptible to any variations in the lithographic
process conditions which in turn leads to printed designs ex-
hibiting increased variability, directly affecting design behavior
and performance. An area of current concern is power grid
design, an important step in IC design. Todays VLSI designs
feature huge power distribution (PG) networks, carrying large
currents, spanning across the entire chip area through several
layers are used to provide circuit bias.

Variations in wire width resulting from litographic errors
impact grid behavior in multiple ways, potentially causing
voltage �uctuations and considerable current variations. Such

variations in current can lead to electromigration problems and
considerable effort is devoted nowadays to analyze the network
in such scenarios. This entails extracting a model of the
power grid accounting for litho-induced errors and simulating
to check currents on all wires. Given the number of wires
to consider and even discounting systematic errors, random
�uctuations alone may lead to an intractable number of settings
to analyze. Furthermore an analysis for each possible variation
setting is unfeasible as extraction of interconnect and power
grid (PG) networks leads to large resistor networks, potentially
with several million elements, whose simulation is computa-
tionally challenging. Different solutions have been proposed
for the analysis of generic PG including acceleration tech-
niques such as multi-grid approaches [1], [2], iterative meth-
ods [3], Random Walk [4], Hierarchical representations [5],
and Model Order Reduction LMS[6], [7], [8], with mixed
results. Some work has also been devoted to the analysis of
such networks under parameter variations [9], including com-
bination with MOR methods [10], the extension of Random
Walks for variational analysis [11], [12], incremental sparse
methods [13], bounded effects and estimates for voltage drop
variations for statistical methods [14], and the use of Hermite
Polynomials for the generation of a variational model that
allows a stochastic analysis [15]. All such techniques lead to
powerful but costly variational models that can be evaluated in
order to estimate variability effects. In this paper, we propose
an alternative more �exible approach for ef�ciently estimating
the effects of variability in static PG and interconnect analysis.
The method is based on a linear approximation of the voltage
at the grid nodes. The contributions of the proposed work are:

� Two different techniques for generating the linear approx-
imation of the parameter dependent voltages, which is
computed for all nodes, and can be ef�ciently generated
for very large number of parameters, enabling the estima-
tion of the effect of intra-die variations.

� A variability analysis �ow, divided into a Set Up phase,
which generates the model, and a Solve phase which uses
the model to compute the effect of the variability.

� The Set Up phase is performed once, and only requires
a single sparse matrix factorization and multiple sparse
matrix vector products and solves.

� The Solve phase involves a dense matrix vector product
for each parameter evaluation, which allows to ef�ciently
analyze a large number of parameter settings.

� The proposed �ow can be trivially extended to handle
input variations, and be combined with any other acceler-
ation technique, such as Model Order Reduction (MOR),
H-matrix representations, multi-grid methods, etc.978-3-9815370-2-4/DATE14/©2014 EDAA



This scheme can be easily combined with Litho/CMP simula-
tors and embedded in enhanced design cycles [16]. The vari-
ations resulting from lithography deviations and corrections
can be estimated and their effects taken into account by the
proposed approach to determine the impact of those variations
on circuit performance, e.g. to estimate the distribution of the
maximum resistor current (relevant for electromigration anal-
ysis), the maximum voltage drop (relevant for grid integrity
analysis), or to obtain statistical information.

The manuscript is structured as follows. Section II brie�y
reviews the PG problem, and presents the basics of the
variability model and analysis to be proposed. Section III
introduces two variants for the proposed methodology, and
discusses computational implementations and practical consid-
erations. Section IV discusses additional ef�ciency-improving
techniques to extend the scope of the approach. Finally results
for industrial PG benchmarks are presented in Section V, and
conclusions drawn in Section VI.

II. BACKGROUND AND PROBLEM DEFINITION

A power grid model can be obtained through extraction and
assumes that VDD and GND strips, as well as vias, are mod-
eled resistively. The coupling resulting from the overlapping
between metal strips in different levels is modeled through a
coupling capacitance or a set of capacitances to ground. While
simpli�ed, this type of model is representative of what is used
in commercial tools [17] and is suf�cient for most analysis,
including voltage drop computation or electromigration. While
a dynamic formulation is equally trivial to formulate, in this
paper we are interested in the DC behavior of the grid for
which a set of equations can be obtained:

Gv = i (1)

where G 2 Rn�n is the v 2 Rn is the vector of grid node
voltages, and i 2 R

n the vector of bias currents at some
of the grid nodes (to simplify, grid bias is assumed to have
been converted to current sources through Norton equivalents).
The trivial solution to (1) is v = G�1i. However, although
G is very sparse, it is also very large. Fortunately, ef�cient
direct and iterative methods can be used to solve (1), albeit at
some memory and computational cost, given the large matrix
sizes [1], [2], [3], [5]. Once the grid node voltages are known,
computing resistor currents is a trivial task. If solution of (1)
is within reach, then simpli�ed dynamic solution and other
types of analysis can be similarly conducted. As long as G
remains the same, further solutions of (1) even with different
right-hand side vectors can be obtained ef�ciently (factoring
the matrix and reusing the factors).

For static analysis, we focus on resistive networks where
the value of the resistance depends on the resistivity �, length
L and section S of the wires, which for most planar structures
is represented as the product of the width W and thickness T .

R = �LS�1 = �L(WT )�1 (2)

The values of these electrical and geometrical parameters
are subject to the effect of �uctuations, random and systematic
deviations inherent to the fabrication process. We can represent

the variation of the resistance value as depending on the
variation of the parameters in the set p = [��;�L;�W;�T ],

R(��;�L;�W;�T ) =
(�+��)(L+�L)

(W +�W )(T +�T )
(3)

Different variability models can be considered here leading
to different approximations. For instance if all variations can
be considered independent and a low order approximation is
deemed suf�cient (which is reasonable for small parameter
variations around the nominal value), we can represent R as

R(p) � R0

 
1 + ��+�L+

OX
k=1

(��W )k +

OX
k=1

(��T )k

!
(4)

where R0 is the nominal value when there is zero variation
in the parameter set and O is the truncated order of the
approximation (usually a small order will suf�ce for near
perfect approximation). Alternatively for inter-chip variability
analysis, these variations can be assumed as localized in certain
chip area or region and thus a different set of parameters can
be considered for different areas within the chip. In any case,
potentially hundreds of parameters must be handled during the
simulation and design stages. If the parameter dependence for
each resistor is represented as an arbitrary order Taylor series
such as in (4), R(p), the parameter dependent admittance
matrix G(p) can be ef�ciently formed using the incidence
of the resistors in the circuit. Alternatively, a representation
such as (4) might be available for the admittance directly, from
which G(p) can be directly computed through stamping.

From the above, it is easy to to generate a set of sensitivities
of the admittance matrix G(p) to an arbitrary order, that can
include cross-terms. For instance, the �rst order Taylor series
can be written as a function of the nominal, G0, and the
sensitivities, Gk, to a set of P parameters, pk, as

G(p) = G0 +
PP

k=1Gk pk: (5)

Higher order approximations can be trivially generated. In
order to generate the voltages due to a certain variation, the
use of such formulations requires two steps: a) evaluate the
matrix, i.e. obtain G(p) for the given parameter setting �p,
and b) solve the system with the evaluated matrix. Herein lies
the basic dif�culty with estimating the effects of parameter
variability: as the matrix changes with each parameter setting,
to generate the voltage solution v(�p) = G(�p)�1i for each
parameter setting �p, implies a re-factorization of the matrix
or a new solution process if an iterative method is used. This
is very costly and in fact to compute the effects at multiple
parameter settings is quickly overwhelming.

Most of the existing methodologies for the variability
analysis of PGs focus on the idea of accelerating the solution
of this system for different parameter settings, either by incre-
mental analysis and approximations, system parametrization
and model reduction, or localized updates of the solution. For
a comprehensive overview of existing approaches the reader
is referred to [9], [10], [11], [12], [13], [14], [15]. For large
parameter settings, for instance to estimate the distribution of
the maximum resistor current (relevant for electromigration
analysis), the maximum voltage drop (relevant for grid in-
tegrity analysis) or any other required metric, more ef�cient
methods are required.



III. PROPOSED LINEAR APPROXIMATION

Instead of using the traditional Taylor series approaches,
we propose a simple yet ef�cient approximation of the voltage
vector. Node voltages are expected to have a close-to-linear
response to parameter changes, since their value is proportional
to the resistance path. Therefore we propose to reformulate the
system by expanding the voltage in a Taylor series, presumably
suf�ciently accurate in the range of variation of the parameter
set p, such as, (for a �rst order approximation)

v(p) = v0 +
PP

k vk pk (6)

Note that this representation can be extended to any desired
or required order. However, doing so would rapidly increase
the cost of computing the approximation, specially when mul-
tiple parameters are involved. Next, we present two different
approaches to ef�ciently compute the coef�cients vk.

A. SPARE approximation

The �rst approach (SPARE) is based on [18] and akin
to adjoint methods. It uses the Taylor Series representation
of the matrix G(p) as in (5), and the expansion of the
voltage in (6). Replacing both G(p) and v(p) by their series
approximation in (1) and following the procedure in [18], we
can match coef�cients of the same powers of pk, and obtain a
representation for each of the vk terms. As an illustration,
let us suppose two parameters, p1 and p2, with 2nd order
expansion, and one cross term. Adopting a double subindex
notation, where the �rst subindex is the order w.r.t. the 1st

parameter, and the second the order w.r.t. the 2nd parameters:

v00 = G�1
00
i

v10 = �(G00)
�1G10v00

v01 = �(G00)
�1G01v00

v20 = �(G00)
�1 (G10v10 +G20v00)

v02 = �(G00)
�1 (G01v01 +G02v00)

v11 = �(G00)
�1 (G11v00 +G10v01 +G01v10)

(7)

Note that, although for most cases only �rst order sensitivities
for the admittance matrix are provided, an arbitrary order can
be generated, with different order approximations with respect
to different parameters depending on the accuracy required.
However, complexity and cost increase slowly with the order.

For the proposed linear approximation of node voltages
chosen, which, as we shall see in the examples, is suf�cient
for the cases tested, we use only �rst order, thus obtaining
the following approximation for the node voltages (using the
original single subscript notation)

v(p) = v0 �
PP

k G
�1

0
Gkv0 pk (8)

where v0 = G�1
0
i is the nominal voltage on the nodes. All

terms can be computed very ef�ciently, as the method only
requires to store the factorization of the nominal matrix G0,
and reuse these factors on the result of some sparse matrix
vector products.

B. Output Linear Approximation

An alternative approach (OLA) to generate the coef�cients
is based on matching the perturbed response of the voltage
vector at the maximum variation for each parameter. This

approach is restricted to a �rst order approximation of the
voltage vector, which is suf�cient to meet most accuracy
requirements. For a single parameter p1, with maximum value
p̂1, and a single term v1, matching the response at the
maximum variation leads to

v0 + v1 p̂1 = v(p̂1)

G�1
0
i+ v1 p̂1 = (G(p̂1))

�1i
(9)

After some algebra, and substituting the perturbed admittance
by its �rst order approximation, we get

v1 p̂1 =
�
(G0 +G1 p̂1)

�1 �G�1
0

�
i

=
�
(I+G�1

0
G1 p̂1)

�1 � I
�
G�1

0
i:

(10)

As v0 = G�1
0
i, de�ning � = G�1

0
G1 p̂1, we get

v1 =
1

p̂1
(��v0 +�2v0 ��

3v0 + : : :) (11)

where again p̂1 is the maximum variation of parameter p1.
We can apply the same reasoning on all the parameters
independently, and truncate the series of each one to the
required order (that can be different for each term), to generate
the terms vk in (6). It is important to note that the terms
�jv0 can be computed recursively �j = p̂1G

�1

0
G1�

j�1v0.
Such computation only requires to generate the factorization
of the nominal matrix G0, and use the factors to solve
different rhs to generate all the vk terms. For the truncation of
the approximation in (11), a simple approach is to truncate
when the maximum absolute value of the vector �jv0 is
smaller than a certain threshold (usually a small fraction of
the maximum value of v0).

C. Computational Issues

The proposed approaches are highly ef�cient, since they
compute the voltage on the nodes for each parameter setting
as the result of the sum of multiple vectors. The proposed �ow
for the variability analysis of large resistor networks is detailed
in Algorithm 1, and is composed of two main parts.

The SET UP stage, akin to model computation, is done
only once, and computes the terms vk required for the approx-
imation. We assume that the sensitivities of the admittance,
Gk are given, or in cases where they are not available we
have access to an extractor and can generate them by simple
differentiation, i.e.Gj = (G(p̂j)�G0)=(p̂j�p0). The SET UP
requires factorizing the nominal term,G0 (e.g. using Cholesky
factorization), and storing the factors. These factors are used to
solve for the nominal voltage v0, and then for the sensitivities
of the linear approximation vk, using either the SPARE (steps
5-7) or the OLA (steps 8-13) approach. These sensitivities are
stored columnwise in a matrix X.

The SOLVE stage, akin to model evaluation, computes the
results of the variational analysis. The values of each parameter
setting are stored in a column vector, and left-multiplied by
matrix X to generate the perturbation in the voltages, that is
added to the nominal value v0 (steps 16-18).

It is important to note that the complete �ow requires
to factorize the nominal G0 matrix only once, and then
reuse the factors to perform a small number of solves (2 or
3 times the number of parameters for the OLA approach).
For a linear approximation the total number of solves is
directly proportional to the number of parameters. The actual



Algorithm 1 Variability Analysis for Resistor Networks

1: SET UP STAGE
2: given P + 1 sensitivities Gk 2 Rn�n and input i 2 Rn

3: given maximum variation vector p̂ 2 RP , de�ne X= zeros (n; P )
4: LLT = chol(G0); v0 = L�TL�1i;
5: IF (SPARE)
6: FOR j=1 : P
7: X(:; j)= -L�TL�1Gjv0;
8: IF (OLA)
9: FOR j=1 : P
10: xc= -p̂(j)L�TL�1Gjv0; X(:; j)=xc=p̂(j);
11: WHILE maxjxcj > tol * maxjv0j
12: xc= -p̂(j)L�TL�1Gjxc;
13: X(:; j)= X(:; j) + xc=p̂(j);
14: STORE v0 and X
15: SOLVE STAGE
16: given M parameter settings �pj 2 RP

17: FOR j=1 : M
18: V(:; j) = v0 + X�pj ;
19: RETURN the solutions stored columnwise in V

variational analysis is very fast, as it only requires a dense
matrix vector product for each parameter setting.

We should point out that the computations above can
be ef�ciently parallelizable for both shared and distributed
memory architectures as well as GPU enhanced machines. The
generation of the different linear terms vk in the SET UP phase
is perfectly independent once the factorization of the nominal
matrix is done. Multiple cores can therefore be used in any
type of architecture with speedup limited only by the number
of parameters of the problem. For the SOLVE phase, it is clear
that the different parameter settings can be divided between
an arbitrary number of machines and computed concurrently.
Additionally, the evaluation of the proposed linear approach
which only requires a dense matrix vector product, can be
accelerated with the use of a GPU since the matrix is the same
for different parameter settings. Therefore multiple parameter
settings can be loaded to the GPU and computed at a time.

IV. ADDITIONAL CONSIDERATIONS

This section presents some considerations, that although
beyond the scope of the manuscript, can be easily taken into
account and incorporated with the proposed approaches.

A. Input Variability

An interesting case that has not been taken into account is
how to address changes in the input vector. If the variation
of the input does not depend on the parameters, this is
straightforward, as the new input vector can be represented
as i+�i, and the term �i induces a perturbation on the linear
terms in (6). On the other hand, if the input depends on the
parameter set p

i(p) = i0 +
PP

k ik pk (12)

such representation must be included when computing the
terms for (6). For the SPARE approach, the parameter de-
pendent input terms must be included when matching the
coef�cients of the same power, in order to generate the
expressions for the terms of the voltage approximation. For
the OLA approach, the perturbation can be taken into account

when computing the linear terms, and thus the expression in (9)
becomes

G�1
0
i (p̂1) + v1 p̂1 = (G0(p̂1))

�1
i (p̂1) (13)

where we can approximate i (p̂1) = i0 + i1 p̂1. The rest of the
reasoning remains the same, including the model evaluation.

B. System Reduction and Solve Acceleration

An interesting feature of the proposed �ow is that it can
be easily combined with existing methods for accelerating the
solution of the system, and thus speed up the SET UP phase
in which the proposed model is generated.

The proposed method shifts the parameter dependence
to the output, and thus allows to apply standard non-
parameterized Model Order Reduction (MOR) approaches to
the system sensitivities Gk to reduce the dimension of the
problem and further accelerate solution. For example, follow-
ing [7], [8] let us assume we have a transformation T that
generates a suitable reduction of the nominal matrix G0 while
maintaining the relevant (de�ned as external) subset of nodes
in v, so that

TTG0T~v0 = TT i (14)

where ~v0 2 R
q�1 with q << n is the reduced set of

voltages that approximate the original ones at the external
nodes. We can use this transformation and the reduced matrix
~G0 = TTG0T to compute the reduced terms ~vk 2 R

q�1 that
approximate the parameterized response of the voltages at the
q external nodes,

v(p)jq � ~v0 +
PP

k ~vk pk (15)

where, for the case of the OLA approach (similar reasoning
can be followed for the SPARE case), we can compute the
terms ~vk as

~vj =
1

p̂1
(� ~�+ ~�2 � ~�3 + : : :)~v0 (16)

where ~� = p̂1 ~G
�1

0
TTGjT~�

j�1. This means that we can
apply the same transformation to the sensitivities to generate

a set of reduced (transformed) matrices ~Gj = TTGjT that
can be used to compute the terms of the linear approximation.

Note that this is possible as we are working on the static
case, and the reduction [7], [8] preserves the external nodes, so
the approximation of (9) by the reduced matrices is exact.
This has two advantages. On one hand, the computation of
the linear terms in the SET UP phase is faster, since we are
working with smaller matrices. On the other hand, we are only
storing the values for a reduced set of entries (the prede�ned
external nodes), and thus we are reducing the storage required
for the vk terms. We also speed up the computations in the
SOLVE stage, as we will use a matrix with a reduced number
of rows in the dense matrix vector product.

A different improvement that can be applied to the pro-
posed method is to use other compression and acceleration
techniques to solve the nominal system with the matrix G0,
and thus speed up the SET UP phase. Any compression and
fast solve, such as [1], [2], [5], can be easily combined with
the proposed �ow. Traditional parameterized system represen-
tation, e.g. Taylor series, in which the system matrix depends
on a large set of parameters, does not allow ef�cient use of



TABLE I. BENCHMARKS CHARACTERISTICS

ibmpg1 ibmpg2 ibmpg6 ibmpgnew2

#n 16,327 126,905 834,252 1,460,083

#r 29,750 207,995 1,645,626 2,351,136

#R 8 32 16 68

#P 32 128 64 272

Eabs 0.7157 0.6665 0.7944 0.7283

Erel 89.66% 78.49% 67.00% 67.21%

Aabs 0.0543 0.0641 0.0748 0.0648

Arel 8.14% 7.33% 8.41% 8.43%

Fig. 1. (ibmpg1 example): black points indicate nominal voltage of each
node in the grid, whereas gray points indicate perturbed voltage values at the
same nodes obtained for 1000 MC parameter samples.

most of these techniques, as the matrix values change for
each parameter setting, and thus the factorizations or matrix
compression must be recomputed. In our approach, however,
full advantage is taken from these techniques.

V. EXPERIMENTS AND RESULTS

We compare the performance of the proposed methodology
for a set of realistic examples. We use the original perturbed
system, i.e. the stamp of the perturbed resistors under the effect
of some parameters, using a 3rd order approximation in (4), as
the golden solution against which the accuracy of the methods
is presented. We compare the standard Taylor series approxi-
mation (5), with the proposed SPARE and OLA approaches,
for which we used the same sensitivities as in (5), that were
obtained by direct differentiation at the maximum perturbation
for each parameter. A tolerance of 10�3 was assumed. All
routines were coded in MATLAB, which means times are
merely indicative, since it is a non-compiled language.

Table I shows the characteristics of the realistic examples,
taken from the IBM Power Grid Benchmarks for DC Anal-
ysis [17], where n stands for the effective number of nodes
and r for the number of resistors, after processing the data
and removing shorts. Therefore, the number of nodes equals
the size of the matrix. We have further divided the PG into
R regions, following the nets to which the resistors belong,
and further dividing these nets intro 4 local regions. This
last division tries to emulate locality of the perturbations. For
each region we used 4 independent parameters (resistivity,
length, width and thickness). P stands for the total number
of independent parameters. The parameters affect the resistors
in the corresponding region, with a 3� effect of �10% for
the resistivity, �1% for the length, �30% for the thickness
and �30% for the width. This means that every resistor in the
net can vary up to �94:4% of its nominal value, which is in

fact a very large variation. To quantify the results, we show
the maximum absolute error (Eabs), the maximum relative error
(Erel), the average absolute error (Aabs), and the average relative
error (Arel), obtained from the simulation of a large number
of parameter settings. The formulas for these values are, for
each parameter setting �p

Eabs = max jv(�p)� vrj
Erel = max (jv(�p)� vrj := jvrj)
Aabs = mean (jv(�p)� vrj)
Arel = mean (jv(�p)� vrj := jvrj)

(17)

where v(�p) is the system solution with the perturbed response,
and vr is the reference solution. These errors are obtained from
the MC analysis of a number of parameter settings generated
using a normal distribution for the 3� variation, where �� =
�0:1, �L = �0:01, �W = �0:3, and �T = �0:3 in (4). In
Table I, these errors are obtained using the nominal response
(zero variation) as reference vr, and our golden solution for
the generation of v(�p). Thus these results quantify the actual
variation in the voltage nodes that we are trying to model,
which, as presented in Table I, can be as large as 89%. To
illustrate the effect the parameters have on the voltage on the
nodes, Figure 1 shows the nominal values for the voltage at the
nodes of example ibmpg1, as well as the voltages computed
for 1000 Monte Carlo samples of the parameters.

Table II presents the results for each benchmark. All the
tables have the same structure, presenting the errors according
to the criteria in (17), using in this case the golden solution as
reference vr. The table also shows the times required for the
Taylor Series approximation and the proposed methodology
for computing the solution of the total number of parameter
settings, divided between the set up time (required for gen-
erating the different approximation terms, and thus computed
once independently of the number of settings) and the solve
time, which depends on the number of settings.

It is clear that the proposed approaches are much faster than
the Taylor Series methodology (which takes the same amount
of time for both the admittance and resistance Taylor Series),
since no matrix factorization or solve is required during the
SOLVE stage. The speed up per iteration (without taking into
account the Set Up time) ranges from 23� for the smaller
examples (ibmpg1 and ibmpg2), to 85� for the ibmpg6 and
74� for the ibmpgnew2. A relevant feature is that this speed
up will increase with the complexity and time required to solve
the system, since the cost of the solve operation is O(n�),
with � > 1 and n the number of nodes, whereas the cost of
evaluating the proposed model is the cost of a dense matrix
vector product, O(n(P+1)), with P the number of parameters,
which can be done using highly ef�cient BLAS routines.
In terms of accuracy, both proposed approaches outperform
the admittance Taylor Series approximation (using exactly the
same sensitivities). The OLA approach performs slightly better
than the SPARE approach in terms of accuracy, at the cost of
a more expensive Set Up phase. This is due to the use of a
higher order approximation in the generation of the linear vk
terms, and matches the maximum perturbation. The maximum
errors remain under 20% for the proposed SPARE approach,
and under 12% for the proposed OLA approach for all cases,
whereas the Taylor Series error remains over 24%, and the
deviation from the nominal value of the voltages can reach up
to 85%. The average errors remain under 2% for the Taylor



TABLE II. RESULTS OF MC ANALYSIS

ibmpg1 (8 regions, 32 parameters), 1000 settings

Set Up Solve Eabs Erel Aabs Arel

TS 0.10 44.24 0.2950 36.44% 0.0104 1.72%

SPARE 0.61 1.47 0.1654 18.21% 0.0102 1.55%

OLA 1.10 1.94 0.1115 11.15% 0.0020 0.27%

ibmpg2 (32 regions, 128 parameters), 1000 settings

Set Up Solve Eabs Erel Aabs Arel

TS 3.99 888.16 0.2186 29.74% 0.0122 1.58%

SPARE 42.64 36.43 0.1453 14.84% 0.0123 1.44%

OLA 73.77 37.29 0.1089 10.81% 0.0036 0.49%

ibmpg6 (16 regions, 64 parameters), 1000 settings

Set Up Solve Eabs Erel Aabs Arel

TS 14.69 8,743.10 0.2521 24.77% 0.0135 1.68%

SPARE 197.56 102.23 0.1502 12.55% 0.0140 1.58%

OLA 332.82 101.96 0.1237 7.10% 0.0012 0.16%

ibmpgnew2 (68 regions, 272 parameters), 500 settings

Set Up Solve Eabs Erel Aabs Arel

TS 100.77 35,180.80 0.2688 25.46% 0.0129 1.76%

SPARE 2,609.55 473.57 0.1755 14.93% 0.0124 1.60%

OLA 4,900.85 474.68 0.1419 11.16% 0.0037 0.32%

Series and SPARE approaches, with the best accuracy obtained
by the OLA approach, whose average error remains under
1%. Next we performed a Monte-Carlo simulation using 1000
random parameter settings on ibmpg2 example, split into 32
regions, with 4 parameters per region (128 parameters total),
and compared maximum relatives errors versus the nominal
voltage values. The results, show a signi�cant reduction in both
mean value (almost an order of magniture) as well as standard
deviation when using either the SPARE or OLA approaches
compared with using a Taylor series.

VI. CONCLUSIONS

We presented an ef�cient methodology to analyze the
effect of parameter variations on static systems, such as large
resistive networks arising from the simulation of PGs or
DC analysis of general interconnects. The approach relies on
the approximation of the node voltages w.r.t. large sets of
parameters. For moderate parameter variations often a linear
or low order approximation is suf�ciently accurate, but the
approach is quite general and can be computed to any order.
Model generation is very ef�cient, as it only requires one
matrix factorization of the nominal system matrix which is then
reused to compute the different terms of the approximation.
Once this model is generated, it allows a very fast evaluation
of the effect of different parameter settings, requiring only a
dense matrix vector product for each setting. The performance
of the method has been proved using a linear approximation
in large realistic examples, with up to 1:4M nodes and 2:3M
resistors, depending on 272 different parameters.
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