
Wear-out Analysis of Error Correction Techniques
in Phase-Change Memory

Caio Hoffman, Luiz Ramos, Rodolfo Azevedo, and Guido Araújo
Institute of Computing, University of Campinas

{caio.hoffman, luiz.ramos, rodolfo, guido}@ic.unicamp.br

Abstract—Phase-Change Memory (PCM) is new memory tech-
nology and a possible replacement for DRAM, whose scaling
limitations require new lithography technologies. Despite being
promising, PCM has limited endurance (its cells withstand
roughly 108 bit-flips before failing), which prompted the adoption
of Error Correction Techniques (ECTs). However, previous life-
time analyses of ECTs did not consider the difference between
the bit-flip frequencies of data and code bits, which may lead
to inaccurate wear-out analyses for the ECTs. In this work, we
improve the wear-out analysis of PCM by modeling and analyzing
the bit-flip probabilities of five ECTs. Our models also enable an
accurate estimation of energy consumption and analysis of the
endurance-energy trade-off for each ECT.

I. INTRODUCTION

Phase-Change Memory (PCM) is a new memory technology
considered a possible replacement for DRAM. PCM is byte-
addressable, non-volatile, has multi-level cell (MLC) capa-
bility, and has demonstrated scalability in the manufacturing
process. A concern about PCM that hinders its use as main
memory is its low endurance in number of memory writes.

Currently, a PCM cell can withstand roughly 108 bit-flips
(modification of stored bit values) [1] before failing, which
falls short of DRAM’s virtually unlimited endurance [2]. In
fact, due to the variability in the manufacturing process, PCM
cells may withstand even less than 108 bit-flips. Thus, in a
baseline memory system that is unable to handle cell failures,
a single cell failure may invalidate an entire PCM chip.

To extend the average lifetime of PCM chips, Error Correc-
tion Techniques (ECTs) have been used to ensure that a few
cell failures will not cause a chip failure. Recently, some ECTs
for PCM were proposed in the literature: DRM [3], ECP [2],
SAFER [4], and FREE-p [5].

However, the works that propose those ECTs have sim-
plifying assumptions that overlook important characteristics
of memory writes. First, they assume a Bit-Flip Probability
(BFP) of 50%, i.e., on a write to a PCM memory block,
every bit flips with a 50% probability. Second, they assume
that the bit-flip behavior in data and code bits (which can
correct errors in data bits) is identical. We show that those
assumptions can mislead the evaluation of PCM’s lifetime and
do not enable an accurate analysis of energy consumption.
Moreover, Schechter et al. argue that Error-Correcting Codes
(ECCs) speed up cell wear-out because any modification to the
data bits requires a rewrite of the code bits [2]. Nonetheless,

978-3-9815370-2-4/DATE14/ c©2014 EDAA
We thank CNPq, CAPES, and FAPESP (2011/05266-3, 2013/05257-0).

the authors do not confirm their hypothesis with experimental
results or theoretical analyses.

In this work, we carefully evaluate those hypotheses by
mathematically modeling the bit-flip behavior in DRM, ECP,
SAFER, FREE-p, and also in SECDED. Specifically, our
models consider that data and code bits have different bit-
flip frequencies, which enables a more accurate evaluation
of PCM’s endurance, and provides the means for computing
energy consumption, for each ECT. This kind of analysis and
comparison had not been done in the original ECT research. In
our study, for each ECT, we evaluate the corresponding PCM
wear-out, the energy consumption, and the energy-endurance
trade-off. We compare our results to those in the literature,
and find that they support Schechter et al.’s hypothesis.

II. BACKGROUND AND RELATED WORK

We briefly describe recent ECTs proposed for PCM (DRM,
ECP, SAFER, and FREE-p) and an ECC that is traditionally
used in DRAM (SECDED) [2], [3], [5]. In conformity with the
literature, for all ECTs, we adopt a memory block composed
of one 512-bit data block plus an overhead of up to 64 code
bits (error detection/correction meta data), which corresponds
to 12.5% of the data block size.

DRM uses one parity bit per byte to detect up to one error in
that byte. Thus, the DRM memory block has 64 parity bits of
overhead. SECDED uses blocks of 72 bits containing a non-
standard (71,64) Hamming code plus 1 parity bit. A memory
block fits 8 SECDED blocks, which allows to correct up to 8
errors in the memory block (at most one per SECDED block).
ECP uses pointers to redirect writes in failed data cells to
brand new spare cells. ECPe corrects up to e errors, using e
ECP entries (i.e., spare cells and pointers). The ECPe overhead
is composed of the e entries plus 1 full bit to indicate if all
pointers are in use. ECP6 has the largest e that respects our
12.5% overhead limit. SAFER uses the failed cells themselves
to correctly store the data. It isolates each failed cell in a
unique group of bits that are stored inverted or not, depending
on a logical matching between failed cells and bits to be stored.
SAFERk can correct up to k errors, and k = 32 is the highest
value of k that respects the 12.5% overhead. Nonetheless,
SAFER32 may only be able to correct 7 errors, depending
on the position of failed cells in the memory block. FREE-p
uses a 6EC-7ED ECC that is a (572, 512) BCH code to correct
and detect up to 4 hard errors and up to 2 soft errors, plus an
extra parity bit that covers the 572 BCH bits.

III. SIMULATION MODEL

Five hypotheses guides our model. First, PCM cells may
not have the same lifetime. This comes from the known
imperfection of any process fabrication. Second, writes only
modify bits that differ from the bits already stored, using
differential writes [6] or read-before-write [5]. Third, each
cell stores a single bit. Fourth, the memory is perfectly wear-
leveled. That is, the wear-out is spread over all memory blocks,
without hotspots. Fifth, there is an intra-row wear leveling (as
in the fourth hypothesis, but within every memory block).

A. Mathematical Representation

In our model, we represent memory as a unidimensional
array Q of length CM , where each element contains an integer
that represents the remaining lifetime of a memory cell. We
define CM = N ·NL ·NP , where N is the data block length,
NL is the number of blocks in a page, and NP is the number
of pages. We initially create Q by ascendingly sorting the
elements from an integer matrix that was randomly generated,
based on Gaussian distribution with mean µ and standard
deviation σ (to account for the effect of process variation,
as described in our first hypothesis).

Our simulation handles one element of Q per simulation
step. Being that, at the k-th step, all memory cells must have
suffered Qk−1 writes, except for the k − 1 memory cells that
had already failed; since the elements Q0, . . . , Qk−1 have a
lower remaining lifetime than the elements Qk, . . . , QCM−1.

When the first block in a page becomes unable to recover
from a failure, the page is deallocated; and if all pages are
deallocated, the simulation stops. Deallocated pages should
not be taken into account, for both, let FP (k) be the number
of deallocated pages and let fwr(k) be the wear rate (the
percentile reduction of the number of writes) in the k-th
simulation step. Also let ck be the lifetime difference between
the elements located in positions k and k − 1. Given c0 = 0,
fwr(0) = 1, and FP (0) = 0 before the simulation starts, we
can describe a simultaneous write in all memory pages as (1).

fwr(k) = fwr(k − 1) · NP−FP (k)
NP−FP (k−1)

W (k) =
∑k
i=1 ci · fwr(i) (1)

The perfect wear-leveling ensures that when we perform
ck writes, all the blocks that do not belong to failed pages
will have suffered ck writes (fourth hypothesis). The wear rate
removes unwritable pages from the counting. Finally, NL and
NP are constants and can be computed off-line, thus (1) is
enough for our evaluations.

B. Bit-Flip Probability Modeling

In a memory that stores one bit per cell (third hypothesis),
we can model a write in a memory block with a binomial
distribution, or a sequence of n (number of bits) independent
events, with probability p of success (flip). The expected
number of flipping bits in a write is n.p. Thus, a PCM cell
should last longer than its original lifetime by a fraction 1/p,
considering the second and the fifth hypothesis.

For the following BFP models, we consider that the prob-
ability of success p is unknown. Every memory block has
N+∆X bits (X denotes a ECT). Of those bits, N = 512 bits
have p probability of flipping (data BFP) and ∆X bits have
PX(p) probability of flipping (code BFP, which is a function
p). Thus, we define the weighted BFP ΥX as the weighted
arithmetic mean of p and PX(p). Equation (2) uses ΥX to
compute the total writes in our model for each ECT.

W(k) = W (k)
ΥX

(2)

1) The DRM BFP model: starts by considering that one
parity bit covers n bits. We know that a parity bit is 1 when
the covered bits have an odd number of bits with value 1.
If the number of covered bits that flip is even, the parity
remains unchanged due to compensation. Hence, the BFP of
the parity bit depends on the probability of an odd number
of flips occurring in n bits. Assuming that the BFP in a
memory follows a binomial distribution, the probability of
parity change is the probability of occurring 1, 3, 5, . . . , n−1
flips. Mathematically,

PPARITY(n, p) =
∑n

2
i=1B(2 · i− 1;n, p) (3)

The notation B(k;n,p) represents the probability mass function
for the binomial distribution. In DRM, we have ∆ = 64 parity
bits with probability PPARITY(b, p) of flipping, where b is the
length of a byte, and N bits with probability p of flipping.
The DRM’s BFP is:

ΥDRM = p · N
N+∆ + PPARITY(b, p) · ∆

N+∆ (4)

2) The SECDED BFP model: as in DRM BFP model,
the parity in SECDED changes in the presence of an odd
number of bit flips in a memory write. However, the model
of SECDED is more complex because, in a non-standard
Hamming Code, the quantity qp(·) of bits covered by a parity
bit varies. To compute qp(j) for the i-th parity bit (lying on
position j = 2i−1 of the codeword) we used an equation
described in [7]. Using the qp(·) for each parity bit, we
describe the weighted BFP for (n, k) Hamming code in (5)
and for SECDED in (6).

PHC(p) = 1
n ·
(
k · p+

∑n−k
i=1 PPARITY(qp(2

i−1), p)
)

(5)

ΥSECDED = 1
n+1 ·

(
n · PHC(p) + PPARITY(n, PHC(p))

)
(6)

3) The ECP BFP model: is the simplest one. Essentially,
neither the pointer bits nor the full bit will be frequently
written. In fact, even the last pointer (the one that maintains
the number of active ECP entries) will be updated at most
e times in the ECPe, which is negligible compared to the
millions of writes that PCM can endure. Thus, we can consider
that those bits have a negligible BFP. The N data bits and e
spare bits suffer the vast majority of writes. Assuming that
e errors will occur and considering our fifth hypothesis. Let
∆ = e+ e · log2N + 1, thus:

ΥECPe = p · N+e
N+∆ (7)

4) The SAFER BFP model: is the only model we propose
that takes the number of failed bits into account. We do that
because, in SAFER, the number of failed bits in a memory
block changes the BFP of the data bits. Specifically, in the
absence of failures, each bit at a given memory block has a
BFP of p upon every new write to the block. However, when
a failure occurs, the block is sub-divided into groups of bits,
with at most one failed bit (stuck at one or zero) per group.
Suppose we have a group G with a failed bit gi, and G′ will
overwrite G upon a new block write. Suppose that the bit g′i in
G′ will overwrite gi. Then, consider the probability q = 1/2
that the stuck value of gi matches the value of g′i. If they
match, G′ overwrites G with BFP p, and the resulting BFP is
p · q. If they do not match, SAFER will invert all bits of G′

before overwriting G, thus the resulting BFP is (1−p)·(1−q).
In SAFERk (which can correct up to k errors) there are

initially k groups, and they require k spare bits to inform
whether the data is stored directly or not. These bits have a
BFP of either p or (1−q), depending on if there is a failed cell
in the group they are related. Furthermore, SAFER needs bits
to organize the groups and keep them with only one error. Like
the pointers in ECP these bits are written very few times; thus,
we assume their BFP is zero. For SAFER, ∆ is k+ dlog2 ke ·
dlog2dlog2Nee+ dlog2(dlog2 ke+ 1)e bits.

Being k and N powers of 2, the number of bits in a group
is N/k. Therefore, with e errors in a memory block, e groups
of (N/k) bits have a BFP of either p · q or (1− p) · (1− q),
which results in an overall BFP of (N + (k − e)− (Nk · e)) ·
p+ (Nk · e) · q · p+ (Nk · e) · (1− q) · (1− p) + e · (1− q). We
simplify that expression into (8).

ΥSAFER(e) =
(N+k−e)·p+N

k ·e·
(

1
2−p
)

+e· 12
N+∆ (8)

Our simulation model cannot handle this bit-flip model, since
every memory block has its own number of errors. So we
resort to a simplification. Specifically, we calculate the average
number of errors eµ(i) across all memory blocks at the i− th
simulation step. Then, we computer the number of writes at
each simulation step using ΥSAFER(eµ(i)), which effectively
replaces (2) with (9).

W(k) =
∑k
i=1

ci·fwr(i)
ΥSAFER(eµ(i)) (9)

5) The FREE-p BFP model: is based on the binary division
of the data word by a word called generator polynomial.
For a (n, k) BCH code, we define D = {d0, d1, . . . , dk−1}
as data word with k bits, G = {g0, g1, . . . , gm} as the
generator polynomial, where m = n − k. Finally, we define
V = {v0, v1, . . . , vm−1} as the verification code.

To illustrate our model, we take a generic (7,4) BCH code
showed in the Fig. 1. V results from additions modulo 2
of elements of L = {L1,L2,L3,L4}. Formally, V is an
element of P(L) over the application of f⊕ (defined in [7]),
that is, an element belonging to L =

⋃
P∈P(L) f⊕(P) =

{0,L1,L2,L3,L4,L1⊕L2,L1⊕L3, . . . ,L1⊕L2⊕L3⊕L4}.
For example, suppose that some division is represented by
L2 ⊕ L3, thus V = {0, g0, g0 ⊕ g1}.

d3 d2 d1 d0 0 0 0 g3 g2 g1 g0
L1 : g3 g2 g1 g0
L2 : g3 g2 g1 g0
L3 : g3 g2 g1 g0
L4 : g3 g2 g1 g0

v2 v1 v0

Figure 1. Calculation of a generic verification code for the (7,4) BCH code.

We know that |L| = 16 and, for example, all the possible
values for v2 are {0, g0, g1, g2, g0 ⊕ g1, g0 ⊕ g2, g1 ⊕ g2, g0 ⊕
g1 ⊕ g2}. However, note that there are 16 possible values
of v2, from whose only 8 are linearly independent values,
since every combination with L1 results in a combination that
already exists.

Now suppose that there is a data word D and its code V
stored in a memory block. If a new data word D′ and its
code V ′ will be stored, the probability of occurring d3 = d′3,
d2 = d′2, d1 = d′1 and d0 = d′0 (i.e., no bit flips) is (1− p)4.

Consider the new code bit v′2. There are 16 possible results
among which exactly half shall be 1 and the other half 0
(details in [7]). Regardless of v′2 being 1 or 0, when v′2
overwrites v2, there would be a flip in 8 out of 16 chances.
Disregarding the probability of D = D′, there is 8/15 chances
of occurring a BFP of 1− (1− p)4, for every code bit.

Generalizing for a data word D = {d0, d1, . . . , dk−1} and
its code V = {v0, v1, . . . , vm−1} stored in a memory block,
the new data word D′ and its code V ′ to be stored will incur
a BFP of 1 − (1 − p)k for every verification code bit, which
may happen with probability 2k−1/(2k − 1). Therefore,

Pcode(p, k) = (1− (1− p)k) · 2(k−1)

2k−1
(10)

In the (n, k) BCH code of FREE-p, the memory parameters
are k = N and n− k = ∆− 1. ∆ is the sum of the code bits
from BCH and the parity bit. The BFP of (n, k) BCH code is
given by (11) and for FREE-p is given by (12).

PBCH(p) = 1
n ·
(
k · p+ (n− k) · Pcode(p, k)

)
(11)

ΥFREE-p = 1
n+1 ·

(
PPARITY(n, PBCH(p)) + n · PBCH(p)

)
(12)

IV. RESULTS AND DISCUSSION

A. Weighted BFP

Table I shows the weighted BFPs (ΥX) for every technique
(X) computed using our models for each value of p (the
BFP of data bits). The higher the value of ΥX , the worst the
technique performs in terms of PCM wear-out. For SAFER,
because its BFP depends on the number of error, Υ is the
average BFP across 1000 simulations.

We observe that when p is below 50%, the ECC-based
techniques (DRM, SECDEC, and FREE-p) have a higher ΥX

than the other techniques. The reason is that, in ECC-based
techniques, the BFP of code bits is higher than that of data
bits, which accelerates the wear-out. For p ≤ 30%, SAFER
performs as poorly as the ECC-based techniques. This happens
because SAFER’s bit-inversion mechanism increases the BFP
of bit groups in the presence of errors. The only technique
that shows a consistently low weighted BFP is ECP, which
benefits from infrequent updates to its code bits. For p ≥ 50%,
all techniques exhibit a higher BFP in data bits than in code
bits, which lowers Υ.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

0 2 3 5 6 8 9 11 12 14 15 17 18 20

N
on

-f
ai

le
d

pa
ge

s
(%

)

Number of writes (in billions)
(a)

15%-ECP6

15%-DRM
15%-SECDED
15%-SAFER32

15%-FREE-p

50%-ECP6

50%-DRM
50%-SECDED
50%-SAFER32

50%-FREE-p
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

0 2 3 5 6 8 9 11 12 14 15 17 18 20

N
on

-f
ai

le
d

pa
ge

s
(%

)

Number of writes (in billions)
(b)

Figure 2. Memory lifetime with our BFP models for (a); and without our BFP models for (b).

Table I
WEIGHTED BFPS (ΥX) FOR EACH TECHNIQUE (X) CONSIDERING

DIFFERENT BFPS OF DATA BITS (p).

p 10% 15% 20% 30% 40% 50% 60% 70% 80% 90% 100%

ΥECP6 0.09 0.14 0.18 0.27 0.36 0.45 0.54 0.63 0.72 0.81 0.90
ΥDRM 0.14 0.19 0.23 0.31 0.41 0.50 0.59 0.68 0.77 0.85 0.89

ΥSECDED 0.14 0.19 0.23 0.32 0.41 0.50 0.59 0.68 0.77 0.86 0.90
µ(ΥSAFER32) 0.13 0.17 0.22 0.30 0.39 0.48 0.57 0.66 0.75 0.83 0.92

ΥFREE-p 0.14 0.19 0.23 0.32 0.41 0.50 0.59 0.68 0.77 0.86 0.95

B. Empirical and Theoretical BFP

For our wear-out analysis of PCM, we feed two parameters
into our BFP models: an empirical bit-flip rate (p = 15%)
and the theoretical BFP assumed in the literature (p = 50%).
We obtained p = 15% by instrumenting SPEC CPU2006
execution in our cache memory simulator (for details, see [7]).
Our experimental BFP corroborates with the value in [6].

Using the empirical and theoretical parameters, we study the
impact of ECTs on memory lifetime in two ways. First, we
simulate the different ECTs using our BFP models (Section
III), which differentiate between the BFPs of data and code
bits. Fig. 2 (a) shows these results. Second, we study the ECTs
without differentiating between the BFPs of data and code
bits as it was done in previous works (Fig. 2 (b)). In both
studies, we run 1000 simulations of each ECT to account for
the randomized lifetimes of PCM cells (Section III-A). We
also set N = 512, NL = 64, NP = 256, the average cell
endurance µ = 108 with a standard deviation σ = 2.5·107. The
curves in all figures represent memory lifetime, as the number
of non-failed pages, versus the number of writes to PCM. The
memory lifetime ends when reaching zero non-failed pages.
The curves with 50% in Fig 2 (b) represent the results as they
were originally published in [2], [4], [5]. Although in those
works there was no direct comparison between FREE-p and
SAFER, both had been found superior to ECP. The results are
similar for the BFP of 15% in Fig. 2 (b).

FREE-p, in Fig. 2 (a), exhibits degradation compared to the
previous results, performing worse than ECP, which contra-
dicts the previous result. In addition to that, ECP improves its
memory lifetime, whereas SAFER maintains approximately
the same lifetime. These results highlight our claim that
differentiating between the bit-flip rates of data and code bits
enables more fine-grained and accurate studies. They also
provide support for the hypothesis by Schechter et al. [2].

C. Energy Consumption and Bit-Flip Probability

Since each ECT has a unique BFP for every value of p,
their expected write energy should be different. To study the
write energy we adopt the same cell write energy for all ECT,
i.e., Ereset = 19.2 pJ and Eset = 13.5 pJ (from Lee et al.

Table II
Λ OF THE ECTS NORMALIZED TO ΛECP6 . OUR EMPIRICAL BIT-FLIP RATE

IS p = 15% AND THE THEORETICAL BFP IS p = 50%.

ΛX/ΛECP6 ΥDRM ΥSECDED µ(ΥSAFER32) ΥFREE-p

p = 15% 0.24 0.30 0.81 0.56
p = 50% 0.37 0.47 1.02 0.88

[1]). To evaluate the trade-off between endurance and energy
consumption, we combine them into a single metric in (13).

ΛX = WX(ω)
(N+∆X)·ΥX ·(Eset+Ereset)·0.5 (13)

The denominator is the average number of bit-flips in a write
(N + ∆X) · ΥX multiplied by the average write energy per
bit. The numerator W(ω) is the total number of writes that the
memory withstood until the last simulation step denotated by
ω. In Table II, we have the Λ of all ECTs normalized to ΛECP6

.
From the definition of Λ, the higher the memory endurance
and the lower the write energy imposed by an ECT, the better
the ECT’s Λ. Based on this table, we conclude that ECP and
SAFER exhibit the best trade-off between endurance and write
energy, for both empirical bit-flip rate and theoretical BFP.

V. CONCLUSIONS

In this work, we introduced a more accurate and fine-grained
approach to analyze the impact of ECTs on PCM’s lifetime.
Our approach also enables a meaningful computation of
PCM’s write energy and its trade-off with memory endurance.
This kind of analysis was not possible with previous ECT
models, but it is still critical for modern computer systems.

We evaluated five state-of-the-art ECTs using our approach
and compared our results to those in the literature. Our
results extend and shed light on previous works that used
simplifying assumptions; and support the argument that ECC-
based techniques speed up the wear-out of PCM.

REFERENCES

[1] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” ser. ISCA ’09, pp. 2–13.

[2] S. Schechter, G. H. Loh, K. Straus, and D. Burger, “Use ecp, not ecc,
for hard failures in resistive memories,” ser. ISCA ’10, pp. 141–152.

[3] E. Ipek, J. Condit, E. B. Nightingale, D. Burger, and T. Moscibroda, “Dy-
namically replicated memory: building reliable systems from nanoscale
resistive memories,” in ASPLOS ’10, 2010.

[4] N. H. Seong, D. H. Woo, V. Srinivasan, J. A. Rivers, and H.-H. S. Lee,
“Safer: Stuck-at-fault error recovery for memories,” in MICRO ’43. IEEE
Computer Society, 2010, pp. 115–124.

[5] D. H. Yoon, N. Muralimanohar, J. Chang, P. Ranganathan, N. Jouppi,
and M. Erez, “Free-p: Protecting non-volatile memory against both hard
and soft errors,” in HPCA 2011, feb. 2011, pp. 466–477.

[6] L. Jiang, B. Zhao, Y. Zhang, J. Yang, and B. Childers, “Improving write
operations in mlc phase change memory,” in HPCA, 2012, pp. 1–10.

[7] C. Hoffman, L. Ramos, R. Azevedo, and G. Araújo, “Improving the
Modeling and Analysis of Error Correction Techniques for Phase-Change
Memory,” Unicamp, Tech. Rep. IC-13-34, December 2013, in English.

