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Abstract—Estimating extremely low SRAM failure-
probabilities by conventional Monte Carlo (MC) approach
requires hundreds-of-thousands simulations making it an
impractical approach. To alleviate this problem, failure-
probability estimation methods with a smaller number of
simulations have recently been proposed, most notably variants
of consecutive mean-shift based Importance Sampling (IS).
In this method, a large amount of time is spent simulating
data points that will eventually be discarded in favor of other
data-points with minimum norm. This can potentially increase
the simulation time by orders of magnitude. To solve this very
important limitation, in this paper, we introduce SSFB: a novel
SRAM failure-probability estimation method that has much
better cognizance of the data points compared to conventional
approaches. The proposed method starts with radial simulation
of a single point and reduces discarded simulations by: a)
random sampling -only- when it reaches a failure boundary
and after that continues again with radial simulation of a
chosen point, and b) random sampling is performed -only-
within a specific failure-range which decreases in each iteration.
The proposed method is also scalable to higher dimensions
(more input variables) as sampling is done on the surface of
the hyper-sphere, rather than within-the-hypersphere as other
techniques do. Our results show that using our method we can
achieve an overall 40x reduction in simulations compared to
consecutive mean-shift IS methods while remaining within the
0.01-Sigma accuracy.

I. INTRODUCTION

Process variations are the most important concern for circuit
designer these days. The influence of random variations on the
circuit performance is increasing with progressive technology
scaling. SRAM arrays designed with minimum feature size are
especially affected by the inevitable presence of these random
variations, resulting in millions of dollars wasted because of
poor yield. Variability aware circuit-design requires performing
a huge number of simulations, thereby wasting the computing
resources and time. A breakthrough is desperately needed
that enables variation-resistant circuit-design with a smaller
burden of long simulations. This paper addresses this very
important and highly relevant problem for the present-day
circuit designers.

Estimating the robustness of the whole SRAM memory
array requires estimating the failure-probabilities of a single
bit-cell in the array. For a failure-rate of 0.1% for 10MB

SRAM array, the bit-cell failure rate is required to be below
10−10. This means more than 1010 simulations are needed to
obtain a single failure instance when using the Monte-Carlo
method. This many simulations translates to a large expense of
computing time and power. Some methods have recently been
proposed that estimate failure-probabilities in a smaller amount
of simulations than Monte-Carlo. A large class of these propos-
als use Importance-Sampling(IS) technique. The accuracy of
IS method is heavily dependent on the shifted distribution used
which should be as close as possible to the failure distribution.
However since the failure distribution is unknown before
the simulation, methods like Mixture-Importance Sampling[7]
use a combination of different distributions. Other methods
simplify the approach by performing IS with a mean-shifted
distribution at the Most-Probable-Failure-Point(MPFP). Impor-
tance Sampling augmented with MPFP has been explored
in [4],[6] and [9]. However, the existing methods of finding
MPFP are not very efficient when considering the simulations
required. As an example, the consecutive-mean shift method[9]
in each iteration performs a) random sampling from a mean-
shifted distribution, b) finds the minimum-norm point from the
sampled points and shifts the mean of sampling distribution to
this minimum-norm point. This is inefficient because in each
iteration, of all the points randomly sampled, only one point
is kept and every other point is discarded with no addition to
knowledge of the failure region for the next iteration.

In this paper, we propose that, in each iteration, we compute
a rough estimate of the failure-range in each dimension rather
than the single minimum-norm point. This saves simulation
time by not wasting computing resources on simulations
that will be eventually discarded. The SSFB method has its
foundations on the observation that the MPFP has to be on the
failure boundary. As such the region of interest for sampling
is the failure boundary. Sample points that do not lay on the
failure boundary do not contribute anything to the objective of
finding the MPFP. The underlying idea of SSFB is that instead
of repeatedly random sampling in each iteration for minimum-
norm point, we start with radial simulation of just a single
point and only when that point reaches the failure boundary it
performs random sampling. Its easy to identify when a point
reaches the failure boundary as its next radial simulation will
not result in a failure. The spherical-surface random sampling
is then performed at this failure-boundary point to find a rough
estimate of failure-ranges in each dimension. The failure-
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region with the largest failure-range will most likely contain
the MPFP and so, the middle point of the largest failure-range
is chosen as the simulation-point for the subsequent iterations.

This papers makes following contributions:
• A novel method SSFB for estimating MPFP which has

three major distinctions from existing methods-
◦ Efficient use of the surface-spherical sampling

as compared to the within-the-hypersphere sam-
pling used in the existing methods. With this
shift in sampling approach, high simulation density
can be achieved in fewer number of simulations
on the hypersphere-surface than with within-the-
hypersphere sampling.

◦ Finding failure ranges in each dimension and re-
stricting sampling only within this failure range.
First, this allows it to gain better knowledge of the
failure region than finding only the minimum-norm
point in each iteration. Second, it saves simulations
by not simulating non-failure points.

◦ Reduce the number of random samplings. This is
achieved by the radial simulation of only one point
till it reaches failure boundary and, only then, it
performs the random sampling.

Its only because of the cumulative effect of
the last two factors that spherical surface sam-
pling is able to perform better than within-the-
hypersphere sampling by requiring overall less
number of simulations.

• Application of the method to 6T SRAM read-failure-
probability estimation and its comparison with existing
methods showing 40x reduction in simulation with no
loss in accuracy.

The rest of this paper is organized as follows. In section
II, background for this work is explained along with a brief
description of existing MPFP based IS methods. In section III,
we present the SSFB method. In section IV, SSFB is compared
with the existing methods by analyzing SRAM read-failure-
probability. Finally, we conclude the paper in section V.

II. BACKGROUND

A. Monte-Carlo and Importance Sampling
The analytical methods become intractable for large di-

mensions as they involve solving high-dimensional integrals.
Monte-Carlo analysis is suitable for those high-dimensional
integration problems that are too complex to be solved using
the analytical and/or numerical methods. It gives a non-biased
accurate estimate with a smaller number of simulations as
compared to the analytical methods.

Mathematically Monte-Carlo is described as follows:
Consider a random variable X with probability density

function f(x) . Then the expected value of the function g(x)
over X is defined as : E[g(x)] =

�
g(x)f(x)dx.

Computing this integral with analytical methods may be
cumbersome for higher dimensions. For these types of in-
tegrals, Monte-Carlo provides an estimator for the function
by performing repeated simulations. To do so, n number of

samples < x1, x2, x3..xn > are taken from X and mean of
g(x) is computed over these sampled values. Thus the Monte-
Carlo estimator function is defined as : ¯g(x) = 1

n

�
g(x).

By the weak law of large numbers we have for arbitrarily
small �, limn���∞P (|ḡ(x) − E[g(x)]| � �) = 0, which says
that for large n samples, the probability of deviation between
ḡ(x) and E[g(x)] becomes negligible. Thus, higher simulation
efficiency of Monte-Carlo requires number of simulations n
to be large. The number of samples required to obtain (1 −
�)100% accuracy at (1 − δ)100% confidence are given by :
N�,δ = (log10(1/δ))/p�².

To estimate failure-probability using Monte-Carlo analysis,
an indicator function I(x) is needed which is defined as
I(x) = 0, if x ∈ A, else I(x) = 1 , where A is the failure
set. With this indicator function the estimator for failure-
probability is defined as : P (x ∈ A) = E(I{A}(x)).

Importance sampling is a method of reducing the variance of
the Monte-Carlo estimator based on the idea of sampling from
an alternative distribution h(x) with more failure samples,
instead of the original distribution g(x). Sampling from this
distribution will give more failure points and a reliable estimate
of failure-probability can be found with a smaller number of
simulations. The failure-probability estimator using importance
sampling is given below:

PIS =
1

N

�
I{A}(x).

h(x)

g(x)
(1)

To minimize the variance of this estimator, the new sampling
distribution h(x) should be as close as possible to the original
distribution g(x).

B. Importance Sampling (IS) based Probability Failure
The accuracy of the failure-probability estimator is de-

pendent on this alternate sampling distribution which ideally
should be similar to the original distribution. The Most-
Probable-Failure-Point (MPFP) lies on the failure boundary
and is also the closest failure point to the origin. Hence
by shifting the mean of the original distribution to MPFP
point we obtain an alternate distribution that is close to
original distribution and provides more failure points. Next,
we describe briefly three methods that find the MPFP point
using random sampling for subsequent use in the IS estimator
for probability failure.
1) IHS-DHS [8]: The first method starts with Incremental-

Hypersphere-Sampling(IHS) where the failure samples are
searched in a region within two hyper-spheres. If none of the
samples result in failure then the radii of two hyperspheres
is increased by 1σ. Once a failure sample is found, the IHS
is followed by Decremental-Hypersphere-Sampling(DHS) in
which the radii of the hyperspheres is reduced in steps of 0.1σ.
In this step, the important quadrants for finding failure samples
are identified and the subsequent sampling is restricted these
important quadrants only. The DHS continues in the important
quadrants till the minimum-norm point is found. Since in this
method simulations have to cover the 0.1σ width during DHS
and 1σ during IHS, more simulations are needed; otherwise, as
the simulation sampling density is not big enough, we obtain
only a rough estimate of the MPFP point.



2) Mean-shift[9]: The second method overcomes this prob-
lem of limited simulation sampling density by consecutively
shifting the mean of the hyperspheres with smaller σ. It
consists of three steps:
[a]Sampling form extended hyper-sphere
The radius of the Hypersphere is increased in steps of 1σ till

a failure sample is found. If more than one sample points fail,
then the minimum-norm sample points is chosen as MPFP-1.
[b]Sampling from mean-Shifted Hyper-sphere
The mean of the hypersphere is shifted to MPFP-1 in this

step and sampling with original sigma is performed to find the
failure points. Since MPFP-1 lies close to the failure boundary,
the actual MPFP will be close to MPFP-1. As such minimum-
norm point from the samples is chosen as MPFP-2.
[c]Sampling from Consecutively Mean-shifted IS
The mean of hypersphere is shifted to MPFP-2. Now that the

actual MPFP lies nearby the mean of hypersphere, the sigma
for sampling is reduced by 1

3 to increase the simulation density.
An iterative sampling and shifting of mean is performed to
find minimum-norm point till the means of two consecutive
hyperspheres are within a distance of 0.01σ, hence giving a
more accurate estimate than the first method.
3) Seq-IS[3]: This method is based on the idea of using

Bayesian-Filters to predict a better failure distribution based on
the current failure distribution results. In a particle filter, a fixed
number of particles is simulated iteratively by following three
steps: a) Prediction: Based on the current position of the parti-
cle, next position is predicted. b) Measurement: Likelihood of
a particle to lie at the current position is estimated. More likely
particle is given higher weight c) Re-sampling: Particles with
higher weights are replicated and particles with lower weights
are eliminated. This method is able to find the actual shape of
failure distribution at the MPFP and is also scalable. However,
for very small failure probabilities, it converges only after 104
simulations, which is still better than the above methods which
need more than 105 simulations to find the MPFP.

These MPFP+IS based methods try to find MPFP with
repeated random sampling even when they are not near the
failure boundary, thus wasting simulations. Another limitation
is that the reduction in simulations by these methods is
not enough when design becomes more complex (i.e. more
transistors or more variation sources are added to the design)
because the number of simulations increase exponentially with
dimensions.

III. PROPOSED METHOD: SSFB
The algorithms assumes that the distribution of failure points

in the parameter space follows the condition:
If a fail point Pi exists with parameter values {Pik |k=1::n},

then point Pj with

{Pjk ≥ Pik|k = 1 :: n} if Pik > 0

{Pjk ≤ Pik|k = 1 :: n} if Pik < 0 (2)

is also a fail point. For instance in 2-D case, if fail
point with parameters values <2σ,2σ> exists, then points
<2σ,3σ>,<3σ,2σ> are also fail points. Similarly with fail point
<-2σ,-2σ>, point <-2σ,-3σ>,<-3σ,-2σ> are also fail points.

Figure 1. Hyper-Sphere surface sampling to reach a failure point. The figure
shows the failure boundary in one hemisphere. The same approach would
be applied for the second hemisphere. The Radius of the hypersphere is
incremented by 1σ till a failure occurs.

Khalil el. al. [1] described this condition as the monotonic
behaviour of SRAM failure in which the bit-cell after failure
because of variation, does not return to normal operation with
more variation in its parameters. In this paper, we provide the
results for read-failure probability. Since the failure boundaries
of other SRAM margins also satisfy (2), this proposal is
applicable to all SRAM margins.

In the proposed method, we use spherical coordinates for
hypersphere to facilitate the computation. The spherical co-
ordinates for n-sphere (which are to be generated uniformly
[10]) (i.e. ’n’ dimensional hypersphere) consist of

1) Radial coordinate, R
2) n − 1 angular coordinates θ1, θ2...θn−1, where θn−1∈

[0, 2π] and all other θi ∈ [0, π]
Figures 1-3 give a demonstration of SSFB for the 2-

dimensional case. The steps involved in SSFB are described
in detail below:

A. Hypersphere surface sampling
Uniform sampling is done on the surface of hypersphere

with initial radius R0 to find failure points. If there is no failure
point among the samples then the radius of hypersphere is
incremented by 1σ. The objective of this step is to reach a
failure point quickly. Since the sampling is done on the surface
of hypersphere, all failure points are at the same radial distance
from the origin. Hence, each of these failure points has the
same failure-probability. We choose a random point from these
failure points as our first failure point for radial simulation.

B. Radial simulation
The fail point chosen is simulated radially inwards till the

point reaches the pass/fail boundary. It is easy to know when
a point has reached the pass/fail boundary as the next radial
simulation of that point will give a pass result. This is shown
in figure 2, where the radial simulation of point stops once
the point passes the failure condition. The last failed location
of the point in the radial simulation is then used for spherical
surface sampling in the next step.

C. Spherical-Surface Sampling
Once at the pass/fail boundary, there is no point in doing fur-

ther radial simulations in that direction. Instead the simulation



Figure 2. The radial simulation and the subsequent spherical sampling at
Pass/Fail boundary point. Fail Ranges are identified in each quadrant of the
hemisphere. The upper bound (PU ) and the lower bound (PL) on the failure
range are identified.

should be shifted to a different point at the same radius that has
the maximum probability of being close to MPFP. A surface-
spherical random sampling is thus performed for a hypersphere
with radius as the norm of the current failure boundary point
and center as its origin. The objective of this random sampling
is not to choose the minimum-norm point from the failed
sampled points. Rather, it is to find an approximate range of
failure points in each angular dimension at the current radius.
Then, from the largest fail range the middle failed point is
chosen as an approximation to the closest point to MPFP. This
is shown in figure 3. Initially, it is not required to find the
failure-ranges with high accuracy and so random sampling can
be done for smaller number of samples. As we move closer
and closer to the origin, the failure-range decreases, thereby
increasing the simulation density. So, the accuracy of range
estimation increases as the simulated point moves closer to
the origin.

The failed sampled points from the spherical sampling are
classified based on their hemisphere i.e. for a failed point
whether its θn−1 ∈ [0, π] or [π, 2π]. For a dimension θi, the fail
points are sorted by θi and stored as FailRange[θi]. Then the
maximum failure-range for θi, MaxFail[θi] is defined as the
Max(FailRange[θi]hemisphere1, FailRange[θi]hemisphere2).
MaxFail[θi] consists of two fail point lists for each quadrant
in [0, π] .

Some issues arise while finding the failure-range as dimen-
sions of the problem increase:
1) If the failure-range in each quadrant is found indepen-

dently then we have to consider failure-ranges that increase
exponentially in number with increasing dimensions. To solve
this dimensionality problem, we define for a dimension θi:

ExtendedFailureRange, EF [θi] = [PU , PL] (3)

where, PU : the last pass before the first fail in
MaxFail[θi], is the upper bound on failure-range and,
PL: the first pass before the last fail in MaxFail[θi], is the

lower bound on the failure-range
This EF [θi] range is inclusive of failure-ranges in all quad-

rants for a given dimension θi, with some non-failure points
as well. The EF [θi] range for our demonstration example is
shown in figure 3 . This trade-off allows for linear scaling of
failure-ranges as the number of dimensions increase because

Figure 3. The Extended-Failure Range [EF] and next spherical sampling.
The EF range, defined as [PU ,PL] covers fail ranges in both quadrants and
also, some part of the non-failure region of the hypersphere surface. For next
iteration, middle point from the largest FailRange is radially simulated till it
reaches pass/fail boundary. The next spherical sampling is done within the
last iteration’s EF range.

of each dimension we only have one range EF [θi].
2) Finding the next point for radial simulation becomes a

challenge with EF [θi] because it also includes non-failure
points and so the middle point from the range cannot be chosen
as the next point for radial simulation. To solve this issue, we
only save the failure-range MaxFail[θi] of the dimension θi
with largest EF [θi] . Starting at this failure-range, we choose
the middle point for radial simulation in subsequent iterations:
Random uniform surface-sampling in the next iteration for
each dimension θi is done only within its extended failure-
range EF [θi]. This is based on the observation that the ex-
tended failure-range EF [θi]iteration=j ⊆EF [θi]iteration=j−1

which can be seen in figure 3.

D. Termination
When the radially simulated point reaches the pass/fail

boundary and the subsequent spherical sampling results in no
failures, then it is an indication that the point is close to the
MPFP. At this stage, we decrease the step width for radial
simulation by one-eight and continue with radial simulation
till the point crosses the pass/fail boundary. Random sampling
is performed again at this new found fail boundary point
and if none of the sampled points fail then the step-width is
again decreased by one-eight. This continues till the step-width
becomes smaller than 0.01σ.

The reason for dividing by a large factor (i.e. 8) is based on
the observation that if the last failure boundary point found is
the MPFP, then the random spherical sampling is needed only
three times with an overhead of 8 simulations before each
sampling. While if the step-width were to be half-ed, then the
random spherical sampling would have to be done 8 times
resulting in more overall simulations.

IV. APPLICATION TO SRAM ANALYSIS

The variability in SRAM is modeled as a threshold voltage
variation. Threshold voltages are modeled as normal distribu-
tions with mean as the nominal model value and sigma as 10%
of nominal value. The simulations are done for 32nm PTM



Algorithm 1 SSFB
StepSize := 1
R := R0 # Radius of Hypersphere
EFθ := [(0, π)θ1 , (0, π)θ2 ...(0, π)θn−2 , (0, 2π)θn−1 ]
while no failure found do

R ��� R+ 1
Uniform Surface Sampling on EFθ

end while
P :=Random Chosen Fail Point
while StepSize ≮ 0.01 do

while P �= Pass do
Decrement Radius(P) by StepSize

end while
R := Radius(P )
Uniform Surface Sampling on EFθ

Find Fail Points
Separate Fail points for two Hemispheres
(θn−1:[0,π],[π,2π])
Foreach θi do

Fail[θi] :=Sorted Fail points on θi
classified by their Hemisphere
and Quadrant

MaxFail[θi]=Max(Fail[θi]HEM1,Fail[θi]HEM2 )
Pu :=Last Pass before First fail in MaxFail[θi]
PL :=First Pass after Last fail in MaxFail[θi]

end Foreach
θMax := θi with Max ([PU , PL])
EFθ := [(PU , PL)θ1 ...(PU , PL)θn−1 ]
P :=Middle point in Fail[θMAX ]
IF EFθ ≡ None do

StepSize := StepSize/8
P :=Last Fail Point

end IF
MPFP := P

process in HSPICE circuit simulator. SSFB is compared with
IHS-DHS and Mean-Shift methods. Each method is executed
20 times to compute the variance of the results.

A. SRAM analysis setup
The static noise margins analysis of the bit cell are computed

through the N-Curve method proposed in [2] . The read noise
margins provided by N-curve are:
SVNM Read Static-Voltage-Noise-Margin is the maximum

amount of DC voltage noise from the bit-lines that the storage
node storing value ’0’ can handle before flipping to value ’1’.
SINM Read Static-Current-Noise-Margin is the peak current

noise from the bitlines that the storage node storing value ’0’

Figure 4. The schematic of 6T-SRAM bitcell. M1 and M3 are pull-down
transistors. M2 and M4 are pull-up transistors. And M5 and M6 are access
transistors driven by wordline WL and connected to bitlines BL and B̄L.

Figure 5. N-curve for 6T bitcell showing the definitions of noise margins.
The read margins are SINM and SVNM. The write margins are WTI and
WTV.

can handle before the voltage at that node rises to above the
threshold of the inverter.

The schematic of 6T bitcell is shown in figure 4 along with
its N-curve in figure 5. The read-failure probability for this
analysis is defined as:

PReadFail = Prob(SV NM < VT ||SINM < 0) (4)

where, V T is the thermal voltage (26mV at 300K), which
is used as lower bound because for SV NM < VT , thermal
noise can cause bitcell to flip.

B. Number of Samples
To find the minimum number of samples that are sufficient

during spherical surface sampling, we compared the results of
using 100 to 1000 samples per random sampling. The radial
distance of the MPFP and the number of simulations averaged
over 20 repetitions are compared in figure 6.

Figure 6 shows that increasing the number of samples above
100 does not give a large increase in accuracy(< 0.1σ). The
focus of this paper is on decreasing the simulation time; hence,
we use only 100 samples per random sampling for read-failure
analysis.

Figure 6. Mean Radial Distance of MPFP vs Total simulations for different
sampling options. The radial distance is normalized to σ



Figure 7. Accuracy Comparison of Proposal with IHS-DHS and mean-shift
method. MPFPAV G is the mean radial distance of MPFP and MPFPV AR is
the variance of radial distance of MPFP for 20 different runs.

Table I. AVERAGE NUMBER OF SIMULATIONS FOR FINDING
MPFP

MPFP estimation Method Average #Simulations Runtime

Proposal 2078 1m33s
IHS-DHS 8.3e+4 7m37s
Mean-Shift 7.7e+4 6m11s

Seq-IS 4728 3m57s
Runtime on 4-thread 2-core 2.5GHz processor, L1-32KB, L2-256KB

C. Read-Failure Probability
The read-failure probability as defined in eq.4 is calculated

using the SSFB method and is compared with the methods
IHS-DHS, Mean-Shift and Seq-IS. We simulate a 6T bitcell
operating at 0.6V. The read-failure analysis is repeated 20
times to compare the variance of MPFP estimate for these
methods. For IHS-DHS simulations, 104 samples are simulated
for each IHS and DHS. For Mean-Shift method, 2.5e+4 sim-
ulations are performed during the first hypersphere sampling
and for rest of the steps 104 simulations are performed. For
Seq-IS method, sampling-resampling algorithm is run with 500
particles.

The results in figure 7, show that the proposed method has
a similar variance as the Mean-Shift method and a smaller
variance than the Seq-IS method. Also, the proposed method
needs 40x less simulations (table 1), thus it saves computing
power and time. Since, SSFB always terminates exactly at
the pass/fail boundary, the estimate of the MPFP point by the
SSFB is the lowest of all. Another non-MPFP and non-IS based
such as the machine learning based classifier approach [5]
needs more than 40,000 simulations for building the classifier
and in its learning phase. Thus SSFB approach has the smallest
simulation time of any of the known approaches to date.

V. CONCLUSIONS

In this paper, we proposed SSFB: a method that can effi-
ciently search MPFP by reducing the sampling range iteratively
and sampling only on the surface of hypersphere. To compare
the effectiveness of SSFB with other methods, its SRAM read-
failure analysis results were compared with IHS-DHS and

Mean-Shift methods. SSFB gave smaller norm MPFP than
the other methods with a reduction of 40x in the number
of simulations. Smaller norm MPFP gives better results with
Importance-Sampling as the alternate distribution has a smaller
difference to the original distribution. Another advantage of
the SSFB method is the better scalability of the number
of simulations with increasing dimensions. This is due to
the sampling method chosen where the points are sampled
uniformly from the surface of hypersphere rather than from
within the hypersphere.
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