
Time-predictable Execution of Multithreaded
Applications on Multicore Systems

Ahmed Alhammad
University of Waterloo, a2alhamm@uwaterloo.ca
King Saud University, ahalhammad@ksu.edu.sa

Rodolfo Pellizzoni
University of Waterloo, rpelizz@uwaterloo.ca

Abstract—In multicore systems, contention for access to main
memory between application threads complicates timing analysis
and may lead to pessimistic bounds on execution time. This
is particularly problematic for real-time applications, which
require provable bounds on worst-case performance. In this work,
we employ a predictable execution model to schedule mem-
ory accesses performed by application threads without relying
on unpredictable hardware arbiters. In addition, we statically
schedule application’s threads with the objective to minimize
the application’s makespan. Our experimental evaluation with
NAS Parallel Benchmarks on 4-core system indicates that the
proposed execution scheme yields an aggregated improvement of
21% over contention execution in which application’s threads
uncontrollably access main memory.

I. INTRODUCTION

Modern embedded systems, including safety-critical sys-
tems, are increasingly becoming complex, interconnected sys-
tems, needing significant computation power to meet ap-
plications’ demands. Since the increase in processor speed
has significantly slowed down in the last decade, multicore
systems are now the preferred way of supplying this increased
computation demand. In this paper, we consider the scheduling
of parallel, multithreaded real-time applications. Our goal is
to meet the timing constraints of computation-heavy real-
time applications such as synthetic vision, object tracking and
structural testing [1], [2] which cannot be feasibly executed on
a single core but still require guaranteed performance. At the
same time, many such applications are easily parallelizable.

A large body of work in the embedded community has
focused on both programming models and scheduling solu-
tions for multithreaded applications. In particular, the fork-
join parallel model has recently received significant attention
in the real-time domain [3], [4]. While such works are able
to provide strict guarantees on the overall response time of
parallel applications, they rely on the assumption that the
worst-case computation time of each individual thread can be
computed independently of the application schedule. However,
in practice the presence of shared architectural resources such
as caches, interconnects and main memory makes such analysis
extremely difficult; the execution time of concurrent threads
can be significantly larger compared to the case where each
thread is run in isolation. While several analysis methodologies
have been proposed to compute safe bounds on the interference

This research was supported in part by NSERC DG 402369-2011 and CMC
Microsystems. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do not necessarily
reflect the views of the sponsors.

on shared resources (for example, see [5]), such techniques
tend to be pessimistic since they must account for worst-case
access patterns based on often unpredictable hardware arbiters.

To overcome such issues, we argue that it is not sufficient
to focus on scheduling the cpu resource: instead, the derived
application schedule should consider all physical shared re-
sources in the system. As a first contribution in this direction,
the main focus of this paper is a methodology to run a real-
time multithreaded application on a multicore system with
the objective to minimize the application’s makespan, i.e., the
response time of the application assuming that it runs alone
on a set of m homogeneous cores. Our methodology simul-
taneously co-schedules the allocation of threads’ memory in
local caches, the accesses to main memory, and the execution
of the application’s threads on the available cores. Our work
has the following main contributions: (1) we propose a new
multithreaded PRedictable Execution Model (mthPREM) to
schedule resource accesses of concurrent threads at a higher
level without relying on hardware arbiters. (2) We describe an
algorithm to map and schedule applications using the parallel
fork-join model on a set of m cores. (3) We demonstrate
our methodology on the OpenMP NAS Parallel Benchmark
suite [6]. To the best of our knowledge, this is the first work
to demonstrate real-time scheduling of fork-join applications
based on realistic benchmarks rather than synthetic applica-
tions. In particular, compared to [3], [4], we extended the
model to allow for synchronization among parallel threads.

The rest of the paper is organized as follows. Section II
discusses related work. We introduce the system model in
Section III and the scheduling algorithm in Section IV. The
evaluation is presented in Section V. Finally, we provide
concluding remarks in Section VI.

II. RELATED WORK

While most of the multicore scheduling work in the real-
time community is applicable to sets of periodic, independent
tasks, lately there has been increasing interest in the scheduling
of parallel applications. Lakshmanan et al. [3] and Saifullah et
al. [4] introduced a decomposition algorithm for a generalized
parallel synchronous model and provided augmentation bounds
under both global and partitioned EDF. Each application is
divided into segments similar to the model we employ in this
work, during each segment, a fixed number of threads are
scheduled on the available cores. However, all existing work
in real-time parallel scheduling are only concerned with the
cpu resource, and do not consider interference for access to
shared resources such as shared caches and main memory.978-3-9815370-2-4/DATE14 c© 2014 EDAA



Fo
rk

Jo
in

Fo
rk

Jo
in

S1 P2 S4 P5 S6
B
ar
ri
er

P3

Fig. 1. Fork-join parallel model

Boniol et al. [7] propose deterministic execution models to
control the access to shared resources. Similarly, Pellizzoni
et al. [8] introduced a predictable execution model which
co-schedules all active components in the system without
relying on hardware arbiters. The model splits each task
into a sequence of memory and execution phases. The key
idea is to avoid cache misses by loading all required data
before executing a portion of the task’s code. Yao et al. [9]
applied the predictable model to a multicore system under
partitioned fixed-priority scheduling. Similarly to our work,
the methodology in [9] is able to obtain predictable bounds on
worst-case response time, but the results are not comparable
since it is concerned with sets of independent periodic tasks
while we focus on scheduling among threads belonging to the
same application.

III. SYSTEM MODEL

We consider an application employing the fork-join parallel
model in which the application alternates between sequential
and parallel segments as in Fig. 1. The application starts as a
single sequential thread then splits into multiple threads which
execute concurrently. In addition, the parallel segment may be
followed by multiple other parallel segments that are separated
by barrier synchronization. After the parallel segment, all
threads synchronize again into one sequential thread. This
fork-join structure can be repeated multiple times. Fork-join
is a popular programming model employed in systems such as
OpenMP and Java [10].

We represent the parallel application as a sequence of
sequential and parallel segments, A = (S1, P2, P3, . . . , Sl),
where l is the total number of segments. We further represent
each parallel segment as a set of concurrent threads Pi =
{τi,1, τi,2, . . . , τi,ni

}, where ni is the total number of threads
in the parallel segment Pi. The number of threads can vary
between parallel segments and can also exceed the number of
available cores. In the context of our work, we assume threads
can access shared data in mutually exclusive way, but they
have no precedence constraints within the parallel segments,
i.e., there is no partial order imposed on their execution.

We are interested in scheduling a fork-join parallel ap-
plication, as described above, on a processor with multiple
cores C = {c1, . . . , cm}, all have the same access to a single
shared main memory. We assume that each core is connected
to a private last-level cache with write-back policy and has a
capacity that can fit both code and data of application’s threads
one at a time. The model can also be extended to include a
shared cache that is partitioned among all cores, given that
they all can concurrently access the shared cache without
timing interference from each other. Furthermore, there is
no hardware-implemented cache coherency protocol, assum-
ing the cache coherency is software managed by leveraging

prefetch
(τi,1)

compute
(τi,1)

wb
(τi,1)

prefetch
(τi,2)

prefetch
(τi,3)

compute
(τi,2)

wb
(τi,2)

prefetch
(τi,4)

compute
(τi,3)

wb
(τi,3)

compute
(τi,4)

wb
(τi,4)

c1

c2

wb: write-backidle
time

Fig. 2. Schedule example of four threads and two cores

FLUSH instruction to explicitly move data from private caches.

A. Predictable Execution Model

We adopt the Predictable Execution Model (PREM), first
introduced in [8], to avoid contention for access to main
memory from a higher level: the scheduler, without relying
on unpredictable hardware arbiters. In the original PREM
model, the application is sequential and divided into multiple
segments. Each segment is then split into two phases: memory
prefetch and computation. During the prefetch phase, all code
and data that are required during the computation phase is
prefetched into the core’s private cache. Therefore, the core
executing the segment will not suffer cache misses and will
never access main memory during the computation phase.

In the fork-join parallel model, the application segments
are not all sequential. Rather, the parallel segments have
concurrent threads that execute on different cores. In addition,
the original predictable execution model did not explicitly
schedule write-back operations, instead naively assuming the
data that are modified during the computation phase of one
segment could be evicted from the cache and written-back
by the next segment executed on that core. Thus, we extend
the execution model to schedule concurrent threads on parallel
segments and include a third phase for memory write-backs.
During the write-back phase, we flush to main memory all
cache lines modified during the preceding computation phase.

Based on the proposed execution model (mthPREM), our
scheduling algorithm enforces a contentionless memory sched-
ule: only one thread at a time in the entire system is allowed
to run a prefetch or write-back phase; other threads can run
in parallel on the remaining cores, but they must be in their
computation phase. This ensures that memory phases (prefetch
and write-back) will not suffer contention from other threads
for access to main memory, making their running time highly
predictable. Similarly, computation phases are also predictable
in the sense that all memory accesses result in cache hits.
Therefore, the worst-case computation time analysis for each
thread can be done in isolation without having to consider the
interference caused by other threads executing concurrently
on other cores. In Fig. 2, we show a schedule example of
a parallel segment Pi with 4 threads executing on two cores
corresponding to the proposed execution model.

It is particularly important to facilitate the prefetch and
write-back phases of our execution model. Thus, the platform
API should provide cache prefetching primitives; otherwise,
LOAD instructions can be used to move data from main
memory. In addition, the private caches should employ a write-
back policy and have primitives to invalidate some cache lines
and write them to main memory. For example, Intel platforms
provide the CLFLUSH instruction [11].

Our method relies on obtaining the set of memory blocks
accessed by each thread to determine the memory blocks for



prefetch and write-back phases. We represent the application
memory footprint as a set of memory blocks, including both
code and data, where each block could be, for example, a
cache line or memory page. A distinction between reads and
writes should be captured to implement the prefetch and write-
back memory phases before and after the computation phase,
respectively. In general, the memory blocks can be determined
by means of either compiler-driven approaches [12], using
program annotations [8] or using measurement-based meth-
ods [13].

Furthermore, during the prefetch phase, self-eviction
should be avoided, in a sense that loading a cache line
should not evict another cache line loaded within the same
phase. To illustrate how memory blocks can be allocated
without conflicts, we can think about cache memory as a
two dimensional array in which the columns are the cache
ways and the rows are the cache sets. In systems with virtual
memory, the memory blocks can be allocated without conflict
along cache ways by re-arranging the physical addresses.
However, in caches with non-deterministic replacement policy,
only one cache way can be utilized. Fortunately, some cache
controllers have a lockdown feature that can be implemented
at the granularity of either a single line or way. This feature
allows memory blocks to be hooked on a particular cache way
without being overwritten until they are explicitly unlocked.
In fact, the Colored Lockdown technique proposed in [13] can
be used to avoid conflicts in prefetching thread’s code or data.
The key idea of this technology is to combine coloring and
cache locking to deterministically control cache allocation of
memory blocks. With this combined method, the whole cache
can be utilized to allocate memory blocks without conflicts.

The computed schedule determines on which core each
thread should execute and the start time of its memory phases.
There is no need to maintain the computation phase start
time because it starts immediately after the prefetch phase.
There are two possible ways to implement the schedule of
memory phases of each thread . First, the order of these
phases can be activated on-line using a timer. In this case, the
multicore system should have a common clock to synchronize
the activation of memory phases across all cores. Another way
of activating these phases, according to the schedule order,
is by using semaphores. In this implementation, each two
consecutive memory phases share a common semaphore where
one waits and the other signals. This semaphore mechanism
propagate through all threads memory phases to enforce the
execution order commanded by the schedule.

IV. SCHEDULING ALGORITHM

In this section we discuss how to develop a static schedule
of the application threads according to the model explained in
Section III, and with the objective to minimize the application
makespan. In general, threads scheduling involves two steps:
(1) threads assignment to cores and (2) threads execution
ordering. The latter step is required even though our model
assumes no precedence constraints between threads within
parallel segments. It is easy to see that different orderings lead
to different lengths of application’s makespan.

Even though individual threads are allowed to have a
temporary inconsistent view of global memory within parallel
segments, shared data that are protected by locks need to
be made consistent immediately using FLUSH instruction. In

fact, accessing protected shared data within a parallel segment
violates the basic two assumptions of our model in that (1)
no memory accesses during the computation phase and (2)
memory phases do not suffer contention from other threads.
It could happen that while one thread is in its prefetch phase,
some other thread is in its computation phase but accesses
protected shared data. Thus, we need to account for this delay
for both computation and memory phases. Let the number of
memory blocks that are shared for each thread be τsi,j . Then,
the computation time for each thread can be obtained as:

τ ci,j = τ c
′

i,j +m×Dm × τsi,j , (1)

where τ c
′

i,j is the computation time of each thread in isolation
which can be obtained by using either static analysis or
measurement-based methods. The second term in Equation 1
assumes the worst case in which all other cores are in a
memory phase where Dm is the memory access time to
transfer one memory block and m is the number of cores.
Furthermore, the memory prefetch time is:

τmi,j = Dm × (τurwi,j +m×min(τurwi,j ,
∑
∀k 6=j

τsi,k)), (2)

where τurwi,j is the number of unique memory blocks that
are required by thread τi,j . It includes code, read-data and
write-data memory blocks. We prefetch write-data to prevent
write misses during the computation phase. In opposite to
computation phases, memory phases can be overlapped by only
computation phases. Thus, we assume the worst case where all
other cores are in computation phase and accessing protected
shared data. Similarly, the memory write-back time is:

τwi,j = Dm × (τuwi,j +m×min(τuwi,j ,
∑
∀k 6=j

τsi,k)), (3)

where τuwi,j , is the number of unique write-data memory blocks
that need to be flushed and written back to main memory.

When the number of threads, within a parallel segment,
does not exceed the number of cores, scheduling involves only
threads ordering. A polynomial-time algorithm that schedules
these threads can be constructed. Due to space limitation,
we only provide the intuition behind this algorithm. That
is, threads with high computation demand should start first
so that its contribution to the makespan is reduced. Another
observation is that the contribution of memory prefetch phases
to the makespan is the same regardless of how threads are
ordered because they are serialized to prevent contention.The
output of this algorithm is the start times of all memory phases
for each thread. Note that the computation phase of a thread in
our model starts immediately after the prefetch phase; hence,
no need to maintain its start time.

On the other case where the number of threads exceeds the
number of cores, scheduling involves both threads assignment
to cores and threads ordering. In order to measure the quality
of the schedule, we define the application makespan as the
schedule cost function. Thus, the cost of schedule S is

cost(S) = max
cj∈C

tf (cj), (4)

where tf (cj) is the core finish time, which is equal to the
finish time of last thread scheduled on that core.

MTHPREM-STATIC shows how the schedule is constructed
for each parallel segment Pj given the core allocation,



(a) Cores allocation (3 cores) (b) Threads ordering

Fig. 3. GA chromosomes

MTHPREM-STATIC

1 tmem = 0
2 wb(cj) = 0 ,∀cj ∈ C
3 tf (cj) = 0 ,∀cj ∈ C
4 Insert threads τi,j ∈ Pi into list L,

according to the schedule order
5 for each τi,j ∈ L
6 tm(τi,j) = max(tmem, tf (proc(τi,j)))
7 tmem = tm(τi,j) + wb(proc(τi,j)) + τmi,j
8 tf (proc(τi,j)) = tmem + τ ci,j
9 wb(proc(τi,j)) = τwi,j

10 Sort cores cj ∈ C into list L, in descending order
according to their finish time

11 for each cj ∈ L
12 tw(cj) = max(tmem, tf (cj))
13 tmem = tw(cj) + wb(cj)
14 tf (cj) = tmem

15 return max
cj∈C

tf (cj)

proc(τi,j) and threads execution order. To simplify the com-
plexity of the algorithm, the memory write-back phase for
each thread, except the last scheduled threads, is merged with
the memory prefetch phase of the subsequent thread that is
scheduled on the same core. Thus, the output of this algorithm
is the start times of memory prefetch phases for all threads,
namely, tm(τi,j) and the memory write-back phases for last
scheduled threads on each core, tw(cj). The for loop in Line 5
schedules the memory prefetch and write-back phases for all
threads except the write-back phases of last scheduled threads
on each core. The max in Line 6 is used to schedule the write-
back phase after the computation phase. The wb in Line 7
holds the write-back phase of the previous thread, scheduled
on the same core, to be merged with the prefetch phase of the
current thread. The for loop in Line 11 schedules the write-
back phases for last scheduled threads on each core. The cores
are first sorted in descending order according to their finish
time to reduce the contribution of write-back memory phases
on the application makespan.

So far, we computed the schedule in MTHPREM-STATIC
assuming that cores allocation (the spatial assignment) and
threads ordering (the temporal assignment) are given. Now,
we discuss the problem of optimizing such decisions. In fact,
finding a schedule of minimum cost is in general difficult prob-
lem [14], because as number of threads and cores increases,
the total number of possible schedules becomes vast. Conse-
quently, it is impractical to do an exhaustive search to find
the optimal solution. Stochastic search algorithms are good
candidates for tackling such problems. Random search is one
possible technique. In [15], the authors show that evaluating
several hundred or several thousand random thread schedules is
enough to get, with high confidence, close to optimal solution,
given that the random samples are independent and identically
distributed.

3,000 30,000
3.5

4

4.5

5

5.5

6
x 10

6

 

 

Exhaustive

GA

Rand

Fig. 4. Comparison between exhaustive, random and GA

Moreover, meta-heuristic search algorithms, such as genetic
algorithm (GA), is another technique often used to speed up
the search process. Therefore, we developed a GA algorithm
to search for a good solution to our scheduling algorithm.
For cores allocation, we use the value encoding scheme to
represent the solution as shown in Figure 3(a). In this solution
encoding (the chromosome), each thread is assigned an integer
number from 1 to m, the number of cores, corresponding to its
core allocation. For threads ordering, we use the permutation
encoding to represent the solution as shown in Figure 3(b).
In this solution encoding, each thread is assigned an integer
number from 1 to n, the number of threads, corresponding to
its execution order. GA outlines the major steps of our GA
algorithm where G is the number of generations. We em-

GA
1 Create initial population of random 100 schedules
2 Evaluate the schedules as in MTHPREM-STATIC
3 for i = 1→ G
4 Move the best 50 schedules to next generation
5 Crossover the best 50 allocation/ordering chromosomes
6 Mutate the best 50 ordering chromosomes
7 Evaluate the new 50 schedules
8 return the best schedule

ployed a single point crossover between two chromosomes for
both cores allocation and threads ordering. However, threads
ordering crossover has to be corrected to make sure that no
two threads have the same order. For mutation operator, we
randomly pick two threads, then swap their order. Figure 4
shows a comparison between GA, random and exhaustive
search for 6 threads and 2 cores. Both GA and random search
run for 5000 iterations, and the exhaustive runs for the whole
search space which is 46080 iterations. Note that we set
G = 98 for GA to get 5000 iterations. The GA algorithm
reaches close to 5% of the optimal solution in less than 3000
iterations whereas random search reaches the same value at
close to 5000 iterations.

V. EXPERIMENTAL EVALUATION

We evaluate mthPREM execution model on OpenMP NAS
Parallel Benchmarks (NPB) [6]. The benchmarks consist of
five parallel kernels and three simulated applications. We report
results for all benchmarks except for MG because it has
ordered OpenMP constructs which do not comply with our
model in that there is no partial order imposed on threads
execution within a parallel segment. These benchmarks execute
sequentially until a parallel construct is encountered such



Thread ...

Thread 2

Thread 1

Bloom
Filter

Bloom
Filter

Target 
Executable

Instrumentation Trace collection

Scheduling 
algorithm

ScheduingSchedule

Memory phase
Computation phase

Fig. 5. Evaluation framework

as parallel start and parallel end pair. The code
enclosed in the parallel construct is then executed in parallel
by multiple threads. These concurrent threads synchronize their
execution using barrier constructs. The parallel segments
are separated into multiple parallel segments when barriers
are encountered as explained in Section III. Moreover, shared
data are accessed in mutual exclusion using atomic con-
structs. We account for these memory accesses as explained in
Section IV. Table I shows the OpenMP parallel, barrier syn-
chronization and atomic statistics for these benchmarks. The
use of atomic operations is clearly low on these benchmarks;
consequently, their interference to computation and memory
phases is also low.

TABLE I. NPB CHARACTERISTICS

parallel barrier atomic
is 16 22 0
ep 4 0 1
cg 51 2057 16
ft 42 0 6
bt 312 255 0
sp 916 415 0
lu 118 269 0

We evaluate the performance of mthPREM using the
framework shown in Fig. 5. We develop a Pin-based [16]
dynamic instrumentation tool to analyze the NPB benchmarks.
A central element of the tool is a pervasive memory profiler to
capture the memory traces for each thread. In real applications,
the memory profiler is expected to capture hundreds of millions
of events. Thus, we add some strategies to reduce the number
of captured events that are enough to evaluate our model. First,
we trace memory accesses at the granularity of cache lines
which cut the size of the generated trace by 16 in the case of
64B cache lines. Second, as detailed in Section IV, the prefetch
and write-back phases are mainly determined by the number of
unique cache blocks accessed during the computation phase.
In particular, both unique read and write cache blocks are
captured for prefetch phase of each thread, and the unique
write cache blocks for write-back phase of each thread. To
capture only the unique addresses, for each thread we use
a bloom filter. The tool also captures the mutually exclusive
constructs to trace the shared memory accesses to be used by
the scheduling algorithm. Furthermore, the tool captures the
synchronization information of the application for each thread
(e.g., parallel and barrier). This synchronization points
are used to reset the counters for urw and uw, and record the
trace information for each thread during a parallel segment.

is ep cg ft bt sp lu
10

0

10
1

10
2

10
3

10
4

C
a
c
h
e
 s
iz
e
 (
K
B
)

 

 

1 thread

4 threads

8 threads

12 threads

Fig. 6. Maximum data set size

is ep cg ft bt sp lu
0

0.2

0.4

0.6

0.8

1

N
o
rm
a
liz
e
d
 m
a
k
e
s
p
a
n
 (
c
c
)

 

 

Contention (Bound) No contention mthPREM

Fig. 7. Simulation results for 8 threads and 4 cores

As a system parameters, we model a simple 4-core proces-
sor with 1GHz clock frequency and realistic memory system;
memory instructions that hit in cache and non-memory instruc-
tions take one clock cycle. The memory access time, Dm, for
one 64B cache block is 150 clock cycles, assuming a typical
DRAM with 800 MB/s bandwidth and 70ns access latency. We
then apply the scheduling algorithm for each parallel segment
based on the generated trace and the system parameters. We
compute the total schedule cost, the application makespan, by
adding the cost of all segments together. The result of the
scheduling algorithm is a schedule that determines the start
times of memory phases for all threads which can be activated
on a multicore system using the methods we discussed in
Section III.

We compare mthPREM against contention execution in
which all threads uncontrollably access main memory. With
round-robin arbitration scheme, the safest bound is to assume
each memory access will suffer a delay equals to the number of
cores available on the system. In fact, the work in [5] computed
the bound, and concluded that the delay each thread might
suffer increases linearly with the number of cores. For the
sake of fair comparison, we assume, in favor of contention
execution that there is no conflict cache misses by applying
the same technology as in Section III. This assumption helps
isolating the execution time dilation due to contention for
access to main memory. In other words, threads only suffer
compulsory misses in which (τ ri,j+τ

w
i,j)×Miss rate = τurwi,j ,

where τ ri,j and τwi,j are all memory accesses (not only unique)
for reads and writes, respectively. Since we assume the data
set of each thread fits, one at a time, within the local cache
of one core, there is no capacity misses. Fig. 6 shows the
maximum data set size for all benchmarks. The maximum
is taken over all threads for each benchmark. It is clear that
data set sizes decrease as number of threads increases. That
means, with a fixed size of local cache, changing the number
of threads allows some applications to execute according
to mthPREM. Note that for some benchmarks like EP, the
maximum data set size remains constant. We argue that the
reason is due to the type of parallelism within the parallel
segment. For work sharing constructs such as parallel
for, the data is distributed and processed collaboratively
by all threads. Therefore, the amount of data each thread



0

0.02

0.04

0.06

0.08

0.1

0.12

is ep cg ft bt sp lu

Sc
at

te
r 

R
at

io

Fig. 8. Cache lines scatter ratio

1 2 3 4 5 6 7 8
2

4

6

8

10

12

14
x 10

8

Number of cores

M
a
k
e
s
p
a
n
 (
c
c
)

 

 

mthPREM

WCET

BCET

Fig. 9. mthPREM scalability by varying the number of cores

need to process reduces as number of threads increases. In
contrast, constructs like sections, implement different type
of parallelism known as task parallelism in which threads
concurrently execute independent codes. Hence, the amount
of data processed remains constant, but the code size for each
thread changes.

Fig. 7 shows a simulation results for NAS Parallel Bench-
marks, all with class S data set, 8 threads and 4 cores. We get
these results by running the GA algorithm for 5000 iterations.
The no contention bar is the best case execution where memory
accesses do not suffer any delay from other threads. The
no contention execution is really optimistic, and we report
it only to see the lower bound of our proposed model. The
mthPREM model achieves an aggregated improvement of 21%
over the worst case bound. The benchmarks show different
improvements because they have different ratios of memory
to computation. As this ratio increases, the improvement of
our method also increases.

As we previously mentioned, the prefetch memory blocks
need to be touched by inserting loops at the beginning to bring
the data into the cache. With unit-stride memory blocks, only
one address pointer is sufficient to load all required data. In
contrast, non-stride memory blocks need a data structure to
keep track of all memory blocks. This clearly adds an overhead
to the prefetch phase. Note that the same applies for write-
back phases. Indeed, the overhead depends on how scattered
is the layout of memory blocks in main memory. We cluster
the data set into chunks of contiguous memory blocks, and
we define the scatter ratio as basically the ratio between the
number of chunks and the total number memory blocks. In
other words, 0% scatter ratio means continuous layout of all
memory blocks. Fig. 8 shows the prefetch overhead for all
benchmarks. In some benchmarks, almost all memory blocks
are consecutive, and for others, there is some scattering but
limited by less than 10%.

Finally, Fig. 9 shows the scalability of mthPREM as
number of cores increases. This plot is for LU benchmark with
16 threads. The application’s makespan difference between

mthPREM and conention execution is continuously increasing.
Indeed, increasing the number of cores is advantageous for
our method compared to contention execution because the
amount of contention in memory becomes large with increas-
ing number of cores. In contrast, mthPREM avoids contention
in memory regardless of the number of cores.

VI. CONCLUSION

In this work, we proposed a new methodology to pre-
dictably schedule real-time multithreaded applications on mul-
ticore systems. The proposed solution showed a significant
improvement on the execution performance as a result of
avoiding the contention between threads for access to main
memory. We plan to extend our work to co-schedule multiple
applications with the proposed scheme.

REFERENCES

[1] H.-M. Huang, T. Tidwell, C. Gill, C. Lu, X. Gao, and S. Dyke, “Cyber-
physical systems for real-time hybrid structural testing: a case study,”
in Proc. Int. Conf. Cyber-Physical Systems. ACM, 2010, pp. 69–78.

[2] A. Kurdila, M. Nechyba, R. Prazenica, W. Dahmen, P. Binev, R. De-
Vore, and R. Sharpley, “Vision-based control of micro-air-vehicles:
Progress and problems in estimation,” in Proc. Decision and Control,
vol. 2. IEEE, 2004, pp. 1635–1642.

[3] K. Lakshmanan, S. Kato, and R. R. Rajkumar, “Scheduling parallel
real-time tasks on multi-core processors,” in Proc. RTSS. IEEE, 2010,
pp. 259–268.

[4] A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time
scheduling for generalized parallel task models,” in Proc. RTSS. IEEE,
2011, pp. 217–226.

[5] R. Pellizzoni, A. Schranzhofery, J.-J. Cheny, M. Caccamo, and
L. Thieley, “Worst case delay analysis for memory interference in
multicore systems,” in Proc. DATE. IEEE, 2010, pp. 741–746.

[6] H. Jin, M. Frumkin, and J. Yan, “The openmp implementation of nas
parallel benchmarks and its performance,” Technical Report NAS-99-
011, NASA Ames Research Center, Tech. Rep., 1999.

[7] F. Boniol, H. Cassé, E. Noulard, and C. Pagetti, “Deterministic execu-
tion model on COTS hardware,” Architecture of Computing, pp. 98–110,
2012.

[8] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley, “A predictable execution model for cots-based embedded
systems,” in Proc. RTAS. IEEE, 2011, pp. 269–279.

[9] G. Yao, R. Pellizzoni, S. Bak, E. Betti, and M. Caccamo, “Memory-
centric scheduling for multicore hard real-time systems,” Real-Time
Systems, vol. 48, no. 6, pp. 681–715, 2012.

[10] D. Lea, “A java fork/join framework,” in Proc. Conf. Java Grande.
ACM, 2000, pp. 36–43.

[11] IA-32 Architectures Software Developers Manual, Volume 3a ed., Intel,
2011.

[12] S. Udayakumaran, A. Dominguez, and R. Barua, “Dynamic allocation
for scratch-pad memory using compile-time decisions,” ACM Transac-
tions on Embedded Computing Systems, vol. 5, no. 2, pp. 472–511, May
2006.

[13] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and
R. Pellizzoni, “Real-time cache management framework for multi-core
architectures,” in Proc. RTAS. IEEE, 2013, pp. 45–54.

[14] A. Darte, Y. P. Robert, F. Vivien, and F. Vivien, Scheduling and
automatic Parallelization. Springer, 2000.

[15] P. Radojković, V. Čakarević, M. Moretó, J. Verdú, A. Pajuelo, F. Ca-
zorla, M. Nemirovsky, and M. Valero, “Optimal task assignment in
multithreaded processors: a statistical approach,” in Proc. ASPLOS,
2012, pp. 235–248.

[16] M. Bach, M. Charney, R. Cohn, E. Demikhovsky, T. Devor, K. Hazel-
wood, A. Jaleel, C.-K. Luk, G. Lyons, H. Patil et al., “Analyzing parallel
programs with pin,” Computer, vol. 43, no. 3, pp. 34–41, 2010.


