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Abstract—Modern designs for embedded many-core systems
increasingly include application-specific units to accelerate key
computational kernels with orders-of-magnitude higher execution
speed and energy efficiency compared to software counterparts.
A promising architectural template is based on heterogeneous
clusters, where simple RISC cores and specialized HW units
(HWPU) communicate in a tightly-coupled manner via L1 shared
memory. Efficiently integrating processors and a high number of
HW Processing Units (HWPUs) in such an system poses two main
challenges, namely, architectural scalability and programmability.
In this paper we describe an optimized Data Pump (DP) which
connects several accelerators to a restricted set of communication
ports, and acts as a virtualization layer for programming,
exposing FIFO queues to offload “HW tasks” to them through a
set of lightweight APIs. In this work, we aim at optimizing both
these mechanisms, for respectively reducing modules area and
making programming sequence easier and lighter.

I. INTRODUCTION

During the last decade, we witnessed the shift from single
to multi- and then many-cores architectures for embedded
systems. To improve energy efficiency and performance, de-
signers are increasingly including application-specific units,
to implement key computational kernels in ASIP or FPGA
circuits. A recent trend is the one of isolating tightly-coupled
clusters of cores and Hardware Processing Units (HWPUs),
and in this template communication is implemented through
shared memory banks, as shown in Figure 1. This is referred to
as zero-copy data scheme [1] [4]: HWPUs have direct access to
the on-cluster interconnection+shared memory system, rather
than leveraging private memory buffers where data has to be
copied before computation can start. Integrating a potentially
high number of HWPUs in such a design raises two main
issues, namely, architectural scalability and programmability.
As the number of accelerators grows, so does the number of
interconnection data ports, with both the negative effect of
increasing its area, and in some the current technologies (such
as the interconnections in STM STHORM [14] or Plurality
HAL [18]) of creating longer critical paths, which reduce
maximum achievable frequency target. Figure 2 models the
area increase of a logarithmic interconnect modeled after
Plurality [18], which grows quadratically with the number of
connections. As an addition, application specific circuits often
feature I/O parallelism, furtherly exacerbating this problem. To
prevent the design becoming unmanageable, platforms reserve
only a fixed number of interconnection ports for HWPUs, and
these must be shared among them.
The second main challenge refers to programmability. Tra-
ditionally, embedded system programmers use unique IDs or
“hooks” to reference HWPUs in their code, while the com-
plexity of modern applications calls for new ways to efficiently
expose them to the SW layer. A promising solution – following

a hot trend in embedded system programming [16] [2] [13] –
is to implement a queue system to support the offload of HW
tasks to accelerators. To tackle these problems, in a previous
work [3] we introduced the so-called Data Pump (DP), which
i) connects a high number of the HWPUs to the available
interconnection data ports through a crossbar medium, and ii)
provides a lightweight hardware queue system and its pro-
gramming APIs for supporting application development. This
work presents specific optimizations to increase performance
of the module, at the same time reducing its area. Our first
contribution is a methodology for efficiently connecting a high
number of accelerators to the interconnection master ports.
Doing this in a point-to-point manner introduces the previously
described problems on area and critical path length. On-chip
busses could be used, but they don’t scale well with the
number of connections, introducing an architectural bottleneck
that hinders performance. We implemented a framework which
profiles the traffic generated by each accelerator, and starting
from a full crossbar, cuts away the unnecessary links. The
resulting (ad-hoc) interconnection performs as a crossbar, but
with minimal area. We call this technique smart-sharing. As
a second contribution, we explored several task offloading
strategies and optimizations aimed at reducing the area of DP
and increase programmability. We validated our approach on a
cycle-accurate Virtual Platform simulator, and we estimate the
area gain for the DP module, for both the optimizations. They
result in up to than 90% area saving, while keeping comparable
performance to the baseline architecture and software stack.
The paper is structured as follows. Section II gives a brief
overview of works related to ours. Section III describes the
target cluster. Section IV describes the Data Pump and our
optimizations, whose effectiveness will be validated in Section
V. Finally, Section VI concludes the paper.

II. RELATED WORKS

Tightly-coupled shared memory multi-core clusters have
been adopted in several products, such as STM STHORM
[14], Kalray MPPA [12], Plurality HAL [18]. It is therefore
relevant to study heterogeneous evolutions of such clusters,
where homogeneous processors leverage shared-memory com-
munication with tightly-coupled HW blocks.
There are several notable architectures implementing shared-
memory communication. AMD Fusion [1] is shared-memory
GPU-based architecture, where the accelerator unit (APU) is
not tightly coupled to cores, and hardware tasks are dispatched
through a FIFO queue system. Carbon [13] provides a ring-
based architecture where each node has its own task queue,
and workload is balanced by work-stealing. However, in both
of them, accelerators are loosely-coupled to cores. Fajardo et
al [10] propose an system where cores and accelerators share
a common L2 SRAM, called Buffer-Integrated-Cache (BIC).
However, accelerators are not tightly-coupled at L1, and their978-3-9815370-2-4/DATE14/ c© 2014 EDAA
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Fig. 1. On-chip shared memory cluster template
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design is not scalable to several accelerators, because their
abstraction layer (BIC substrate) is implemented as a shared
“augmented conventional cache”.
Some works attack the architectural scalability problem by
providing smart controllers for the accelerators. Bin et al.
[15] propose a Memory Access Engine (MAE) to hide the
memory latency, as the number of HWPUs grows, with data
prefetching. Hence, accelerators are not tightly-coupled neither
to cores or to memory banks. Murali et al. [17] propose an
optimization strategy for on-chip crossbars on MPSoCs, which
is quite similar to our smart-sharing. Their scenario is however
different: they connect general purpose cores to a memory
space which is not completely shared. The work from Cong
et al. [6] is probably the closest to ours from the point of
view of programmability. They propose a hardware module
(called GAM) for supporting the execution of accelerators,
which allows composing the available HW blocks to realize
complex macro-tasks. However, their accelerators are not
tightly-coupled to cores.

III. TARGET ARCHITECTURE

The heterogeneous shared memory cluster considered in
this work is inspired by architectures such as STM STHORM
[14] and Plurality HAL [18], and by works such as [4] or
[9]. It is shown in Figure 1. It consists of an array of (up
to 16) RISC-like processors with private instruction caches,
plus a number of hardware accelerators called HWPUs. Cores
and accelerators are connected through a low-latency, high
bandwidth logarithmic interconnect similar to the one proposed
by Plurality [18], and communicate through a multi-bank L1
scratchpad memory (SPM). Each memory bank of the SPM has
a memory port, and overall the number of banks is a multiple
K of the number of the master ports on the interconnect. The
interconnect provides word-level address interleaving on the
memory banks, aimed at reducing bank conflicts. If no bank
conflicts arise, data routing is done in parallel for each core,
and memory access happens in 2 cycles. Banking conflicts
result in higher latency, depending on the number of conflicting
requests. Synchronization among the processors is achieved
through a segment of the local SPM address space featuring
test-and-set (TAS) semantics. The L1 SPM has limited size,
thus most of the program code and data are typically stored in
larger L2 or L3 memory, while working data are moved back
and forth e.g., via DMA transfers. In this work we consider a
two-level memory system, with an off-cluster main memory.
HWPUs expose a set of memory-mapped registers for ini-
tiating an offload sequence, accessible through a slave port
(SPORT). The semantics of accelerator execution is non-
blocking: once a processor has successfully offloaded a task,
it can asynchronously execute independent code. A generic
HWPU embodies a zero-copy model, meaning that data is
accessed directly from/to the shared SPM. Specific imple-

mentations might feature internal buffers to support data pre-
fetching or post-storing, not considered in the current work.
When the HWPU needs to access data from memory the
corresponding transaction is appropriately packetized to match
the interconnect protocol and brought to the accelerator master
port (MPORT). Access requests to contiguous memory ad-
dresses are thus split into multiple parallel transactions on
different ports. In the baseline template [4] [9], all HWPUs
are connected to interconnection ports, thus their number can
become very large, introducing all the practical problems
discussed in the introduction (see Figure 2). However, as
explained in Section I, the interconnection typically has a
limited number of available connections: in [3] we introduced
the Data Pump to deal with this. In this work, we consider
16 MPORTs for the interconnection (see [18], [7]), and we
explore several configurations (i.e., number of DP-MPORTs
and HWPUs) of the heterogeneous cluster. All HWPUs exploit
I/O parallelism of 4, that is, they all have 4 MPORTs.

IV. DESIGN OF THE DATA PUMP

The Data Pump (DP) module [3] interfaces between HW-
PUs and the on-cluster interconnection. It is split in two parts,
called Master and Controller : the former handles the data
paths between HWPU-MPORTs and DP-MPORTs, and the
latter embeds a FIFO queues system for supporting offloading
sequence. It is depicted in Figure 3. HWPU-MPORTs are
connected to DP-MPORTs through a crossbar-like medium,
whose area grows with the number of connections (similarly
to what we show in Figure 2). We will now describe how we
manage to keep this complexity low.

A. Optimizing the data connections: smart sharing

To optimize the connectivity between the HWPU-MPORTs
and DP-MPORTs, we first profile the expected data traffic from
different accelerators. This can be done either by statically
analyzing how the HLS tool schedules operations and data
accesses, or profiling data traffic with the help of a Virtual
Platform. We follow the latter approach, that is, we simulated
the target system and for each HWPU-MPORT we collected
the number memory accesses, and divide it by the total
HWPUs execution time (thus measuring its throughput in
word/cycles). Then we model a constraint satisfaction problem
as follows. Given:
N : number of HWPU-MPORTs
M : number of DP-MPORTs
H: number of HWPUs
FPh: ID of the first MPORT of HWPU h
LPh: ID of the last MPORT of HWPU h
Di, i ∈ {1..N}: throughput on each HWPU-MPORT

We want to find the optimal assignment of HWPU-
MPORTs to DP-MPORT, that is:
Xij ∈ {0, 1}, i ∈ {1..N}, j ∈ {1..M}



Where each HWPU-MPORT is connected to exactly one
DP-MPORT, that is, the following Equation:
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And we aim at minimizing three partial cost functions:
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2) to reduce the combinatorial paths, we balance the number
of HWPU-MPORTs connected to each DP-MPORT:
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3) different MPORTs for the same HWPU shouldn’t be con-
nected to the same DP-MPORTS, to avoid them interfering
each other:
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Our global cost function is an equally weighted sum of the
functions 2, 3 and 4. This optimization problem is quite
generic, and applies to any scenario where a number of data
requestors (being them either cores or accelerators) must be
connected to a limited number of slave/memory ports. To
estimate the area gain of the smart-sharing interconnection, we
developed an area model of the DP. Figure 4 shows how DP
area reduces – for different configurations of of DP-MPORTs
and HWPU-MPORTs – compared to a “standard” full crossbar.
The missing bars are for configurations with 1 ↔ 1 connec-
tions, for which no optimization is needed. Our approach also
applies to HWPUs whose traffic is not completely predictable
(e.g., their behaviour is data dependant), by simply computing
an average (or maximum) throughput requirement running
several profiling simulations with different representative data
sets.

B. Programming phases

The Data Pump acts as a virtualization layer for the
accelerators, that is, it handles offloading requests by exposing
a set of FIFO queues where tasks can be pushed using a set of
lightweight APIs. To implement atomic updates, the requesting
core acquires a lock (implemented using the TAS memory
bank), enqueues the HW task descriptor in the FIFO, and then
releases the lock [3]. This means that other cores requesting
the DP are blocked until the full offload has completed, and
is clearly extremely inefficient. Thus, we implemented an
offloading strategy that we call ASYNCH, as opposite to the
previously described BASE programming phase. A core which
wants to offload requests a “slot” of the FIFO, and subse-
quently releases the DP. Then the core exclusively owns the
FIFO element, and can fill the job descriptor without stalling
other requesters. However, accessing the queue still happens
through the DP-SLAVE port, and this causes a bottleneck. As
a third variant, we propose to store the task descriptor queue in
the on-cluster L1 SPM. The DP has a dedicated DP-MPORT
to load it once the offloading sequence has completed. We call
this the SPM programming phase. It has also the side effect
of reducing the area of DP, because we don’t store the queues
in it anymore. Figure 5 shows the three programming phases,
and figure 6 shows the area gain for the SPM programming

phase over BASE and ASYNCH. As the number of DP-
MPORTs and HWPU-MPORTs increases, so does the crossbar
which connects them, reducing the area contribution of the
Controller on the whole module. As previously explained, for
some configurations no smart crossbar is needed (recall the
missing bars in Figure 4). They are the white bars in Figure 6:
in those configurations, the DP area is almost totally occupied
by the Controller, resulting in almost 90% area saving on the
whole module.

ARM v6 cores Up to 16 DP-MPORTs 4, 8, 16
L1 SPM size 256 KB # L1 SPM banks 16 (K=1)

L3 size 256 MB L3 latency ≥ 59 cycles
I$i size 1 KB I$i line 4 words
thit = 1 cycle tmiss ≥ 59 cycles

TABLE I. ARCHITECTURAL PARAMETERS

V. EXPERIMENTS

We prototyped the proposed heterogeneous cluster using
a cycle-accurate Virtual Platform [8], with main architectural
parameters as summarizes in Table I. With this setup, we
validate both our optimization using two applications from
image processing domains, namely a JPEG decoder and an
application which performs the tracking of a color in an
image. The first application performs an HW Inverse Discrete
Cosine Transform, while in the second we accelerated the
preprocessing Color Space Conversion (CSC) pass from RGB
to YUV. We aime at validating our programming model and
characterizing our architecture in terms of performance. We
developed SystemC models for the DP and all the accelerators,
as well as the RTL for DP using Calypto CatapultSL [5], to
estimate its area. To support the smart sharing framework, we
modified the simulator to statically configure the internal Data
Pump MPORTs interconnections by loading them from a text
file, and to dump throughput statistic for each of the HWPU-
MPORT again on a text file. We solved the smart sharing

0

50

100

150

200

250

1 2 4 8 16

S
p

e
e

d
u

p

# HWPUs

Full/Smart Sharing - JPEG 

0

10

20

30

40

50

1 2 4 8 16

S
p

e
e

d
u

p

# HWPUs

Full/Smart Sharing - CSC 

4 DP-MPORTs

8 DP-MPORTs

16 DP-MPORTs

Fig. 7. Applications speedup for full and smart sharing

CSP with LocalSolver [11], a freely available programming
solver based on local search. It accepts simple text files as
input, and this simplifies the interaction with the simulator.
Figure 7 Shows the speedup achieved over SW version for
JPEG and CSC. Dotted lines refer to a system where HWPU-
MPORTs and DP-MPORTs are connected with a “standard”
full crossbar such as the one we presented in [3], while dashed
lines show the results for smart sharing. We trade a negligible
performance loss (or none at all for CSC) for up to 90% area
saving of the overall DP module (Figure 4). Figure 8 shows
the performance improvement of ASYNCH and SPM over
BASE, for both the applications. For 4 DP-MPORTs there
is no improvement due to the high memory boundedness of
the JPEG application (i.e., more than 50%), that “hides” the
benefits of ASYNCH and SPM. This is also the reason why
we have a loss of performance for more than 4 HWPUs:
16 HWPU-MPORTs create a bottleneck towards the memory
system. Figure 9 shows how for this experiment, ASYNCH
and SPM programming phases are able to exploit the full
bandwidth of the DP-MPORTs, while BASE reaches only ≈
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70%. CSC kernel is less memory bound (i.e., ≈ %14) but
it performs multiplcations which increase the granularity of
the computation, hiding the benefits of ASYNC and SPM.
However, the area gain with SPM is clear (see Figure 6).

VI. CONCLUSIONS

A promising trend in embedded many-core designs is to
tightly-couple cores and hardware accelerators (HWPUs) in
shared-memory clusters. To let cluster design scale the number
of HWPUs, in [3] we introduced a Data Pump (DP) that
multiplexes the data-paths from HWPUs and the on-cluster
interconnection, and provides hardware support for queue-
based programming. We propose two specific optimizations
for the DP, estimating the area gain as compared to the
baseline implementation, and measuring the performance with
real image processing applications on a cycle-accurate virtual
platform. Results prove the effectiveness of our optimization:
the first reduces of up to 90% the DP cost with minimal
performance loss, while the second relieves the performance

bottleneck when multiple cores concurrently access the mod-
ule, and at the same time reduces its area.
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