
Program Affinity Performance Models for
Performance and Utilization

Ryan W. Moore
Computer Science Department

University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Email: rmoore@cs.pitt.edu

Bruce R. Childers
Computer Science Department

University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Email: childers@cs.pitt.edu

Abstract—Multithreaded applications have a wide variety
of behavior, causing complex interactions with today’s chip
multiprocessor machines. Application threads may have large
private working sets, and may compete for cache space and
memory bandwidth. These threads benefit from large private
caches. Other threads may share data or communicate, and
thus, execute more quickly if using shared caches. Many ap-
plications fall somewhere in between, requiring careful thread-
to-core assignments to maximize performance. Yet because of
the large number of thread-to-core assignments on today’s chip
multiprocessors, it is time and energy prohibitive to exhaustively
try and determine the best assignment. In this paper, we present
and demonstrate application performance models that predict
application performance given a proposed thread-to-core assign-
ment. We show how these models can be quickly built and used
to select thread-to-core assignments for multiple programs and
to improve system utilization.

I. INTRODUCTION

Manufacturing technology has provided huge increases in
transistor density. However, additional transistors have pro-
vided little benefit to single-threaded performance due to
limited instruction-level parallelism (ILP) and thermal con-
straints [1]. Instead, processor designers have used additional
transistors to put multiple cores within one processor.

The memory and cache hierarchy of multicore systems is
particularly interesting. Multiple levels of cache are shared, but
only between certain cores. The distribution of DRAM across
processors causes non-uniform access times. Communication
links between processors may even be non-uniform.

The behavior of multithreaded applications further com-
plicates our understanding of, and therefore prediction of,
program throughput (i.e., performance). An application may
share data between threads, and benefit from cores sharing one
or more caches. Some applications, however, do not share data
and therefore, benefit from being spread across caches. Many
applications fall somewhere in between: Their threads may
simultaneously compete for cache space while also benefiting
from cache sharing. To maximize performance, thread-to-core
mappings must be carefully selected.

A carefully selected thread-to-core mapping (i.e., affinity)
can improve performance greatly, as seen in Figures 1a and 1b.
The figure shows canneal and streamcluster’s performance
across different thread-to-core mappings (affinities) [2]. The

Canneal’s Preferred Affinities
1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

Pe
rfo

rm
an

ce

Canneal
Streamcluster

(a) Canneal

Streamcluster’s Preferred Affinities
1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

Pe
rfo

rm
an

ce

Streamcluster
Canneal

(b) Streamcluster

Fig. 1: Program performance across affinities (16 threads)

graphs show each program’s performance when launched un-
der a specific thread-to-core mapping (i.e., x-axis point). Pro-
grams are not executed simultaneously. Canneal can achieve a
50% performance gain compared to the worst affinity choice.
Streamcluster can achieve a 240% gain! The figures also show
that the best affinities for one program are not necessarily the
best affinities for another.

Table I shows the number of affinities for various thread
counts and available sockets for an multicore, multiprocessor
machine (described in Section III). We only consider non-
isomorphic affinities. With 24 application threads and four
available sockets there are 1,979 affinities to select from! Fur-
thermore, the number of available affinities greatly increases
if a corunner’s affinity choices are also considered. Clearly,
an exhaustive evaluation of all affinities in order to find a
program’s best affinity is too costly.

This paper presents preliminary work in thread-to-core
performance models. These models can be used to quickly
evaluate thread-to-core mappings’ effects on program perfor-
mance. Using models, the scheduler can maximize perfor-
mance and improve utilization without having to evaluate
mappings online.

This paper makes the following contributions: 1) Demon-
stration of the importance of thread-to-core mappings, 2) Tech-
niques to build models that predict program performance978-3-9815370-2-4/DATE14/ c©2014 EDAA

Number of Affinities
Thread Count 1 Sockets 2 Sockets 3 Sockets 4 Sockets

2 2 3 3 3
4 3 8 10 11
6 4 16 27 32
8 3 26 57 80
10 2 34 105 174
12 1 38 168 339
14 n/a 34 231 585
16 n/a 26 280 912
18 n/a 16 300 1,282
20 n/a 8 280 1,632
22 n/a 3 231 1,884
24 n/a 1 168 1,979

TABLE I: Non-isomorphic affinities for one application

given an affinity, and 3) An evaluation of the models and
demonstration of their ability to improve performance through
the proper selection of thread-to-core mappings.

II. APPROACH

Given the large number of possible affinities and the effect
of affinity on program performance, a smart approach to per-
formance modelling is necessary. Our approach builds models
that, given a candidate affinity, predict program performance.
Performance is normalized to the worst observed performance
(throughput) of the program. Models are program-specific and
thread-count specific. The large number of affinity choices
precludes using online information (e.g., cache miss rates).
Instead, we train models offline and use statically derived
aspects about affinities, features, to make predictions (e.g.,
average number of threads sharing an L3).

Models are built in two steps. First, feature selection deter-
mines which features are most useful to predict performance.
Second, programs are profiled under a particular thread count
and performance models are constructed. We discuss these
steps next, followed by a discussion of how to use the models.

A. Feature Selection

The choice of features directly affects model quality. Fea-
tures need to capture the aspects about affinity that contributes
to or detracts from program performance. This offline process
only needs to be done once per machine. The features selected
will be used in subsequent models on that machine.

Features are functions that take an affinity and return the
feature value for that affinity. For a subset of programs, we
gather performance across a subset of affinities. Regression
models are built from this data with different combinations of
features. Models are compared based on how well they predict
the profiled performances.

Feature selection is an automated process. Features are
statically derived from affinity. Therefore, we can consider
new features and combinations of features without increasing
profiling time. We generated a large number of features using
a computer architecture expert. The feature generation process
will select the features that work best (discussed in Section III).

B. Model Training

Models are trained on a subset of affinities. To ensure
that models make accurate predictions in such a large space,

Papp,tc(aff) =β0F0(aff) + β1F1(aff)+

β2F0(aff)F1(aff) + β3F1
2(aff)

Fig. 2: Example model

Experimental Machine Properties
Processor AMD Opteron 6164 HE @ 1.7 GHz
Sockets 4
L3s per socket 2
Cores per L3 6 (1 context per core)
RAM 64 GiB
OS/Compiler Linux 2.6.39, GCC 4.6.3

TABLE II: Evaluation machine

affinities are selected such that they uniformly cover the range
of features. The optimal set of these training affinities is
computationally infeasible to find1.

Instead, we randomly select sets of affinities. The set that
has the highest average distance from one another is used for
training. These affinities approximate a uniform distribution
over the training space.

Program performance is normalized by the worst observed
performance. The models predict program speedup relative to
this performance. Least squares multivariate linear regression
is used to find the importance of each feature and its relation-
ship to program performance (i.e., feature coefficients). An
example model is shown in Figure 2. The figure shows that
this program’s performance is affected by two features: F0 and
F1. The magnitude of a coefficient βi reflects how important
a feature is to the program’s performance.

C. Model Usage

After training, the model is ready for program performance
prediction. The time to consult a model is nearly instantaneous,
as models are simply a linear combination of products between
feature values and coefficients. Feature values do have to be
computed for each evaluated affinity. However, this process is
fast due to the static nature of the features (e.g., number of
L3s used by an affinity).

The operating system (or equivalent) can consult program
models and determine which affinity is best for performance
objectives. For example, the OS scheduling policy might try
to improve average performance. Another policy might give
higher priority to a specific program, preferring affinities
that improve the program’s performance to the detriment of
corunners.

III. PRELIMINARY RESULTS

We implemented our models and feature selection on
the machine described in Table II. We evaluated blacksc-
holes, bodytrack, canneal, facesim, streamcluster, and swap-
tions from PARSEC [2]. We additionally experimented with
detbfs, knn, and raycast from PBBS [3]. When applicable, the
pthreads version of each program was used.

1For a affinities and p points, there would be
(a
p

)
combinations to consider.

L3S
0.0 0.2 0.4 0.6 0.8 1.0

Average Thread Distance
0.00.20.40.60.81.0

No
rm

al
iz

ed
 P

er
fo

rm
an

ce

1.5
1.0
0.5

0.0
0.5
1.0
1.5
2.0

Streamcluster

Fig. 3: Example model with two normalized features

For feature selection, we profiled programs run with 8
threads on a variety of affinities. After building a model for
each program, we compare the predictions with the observed
performance according to the R2 and ρ2 values. R2 measures
linear correlation. Spearman’s rank correlation coefficient (ρ)
is used to measure the dependence between two variables (i.e.,
to what extent one is a function of the other).

To aggregate model quality during feature selection, we
consider the highest, smallest, and average correlation measure
(R2 or ρ2) across models. Feature selection chooses the set
of features that maximizes the aggregate measures. Features
selected via each method are shown in Figure III.

Due to space limitations, we cannot fully describe each fea-
ture. Some common features include bandwidth facilitation2,
socket imbalance2, and L3s. Bandwidth facilitation2 measures
the average number of threads on each socket. Socket loads are
squared to more heavily account for sockets with more active
threads. Socket imbalance2 measures the average difference
between the number of threads on each L3 of a socket.
Differences are squared to place more emphasis on larger
imbalances. Finally, L3s is the number of L3 caches whose
cores have at least 1 thread assigned.

A. Model Construction

Models can be trained on as many points as desired. In our
setup, the time (minutes), T , to train p training points is given
by T (p) = (1+SerialSetupTime)×p where, for the evaluated
programs, SerialSetupTime ranges from 0 seconds (i.e., the
program instantly starts its parallel work) to 2 minutes. We let
the program execute its parallel section for 1 minute, observe
progress, and kill the program. This process is automated. We
consider models built with 10 and 20 training points. In many
contexts (e.g., scientific computing), the cost of training is
small compared to the benefits that the models provide over
multiple uses of a program. Once the training data is gathered,
the time required to build a model is minimal. Regression is
fast and the number of training points is relatively small and
with few dimensions (10s of points, 5 dimensions).

Figure 3 shows an example model for streamcluster (16
threads). We show the model with two features due to the
complexity of visualizing models with additional dimensions.

tc0 =8, tc1 =16 tc0 =16, tc1 =8
0.8

1.0

1.2

1.4

1.6

1.8

Av
er

ag
e

Pe
rfo

rm
an

ce
 A

cr
os

s
Al

l P
ai

rs

Max R2 (p=10)
Max R2 (p=20)
Max ρ2 (p=10)

Max ρ2 (p=20)
Min R2 (p=10)
Min R2 (p=20)

Min ρ2 (p=10)
Min ρ2 (p=20)
Max. Separation

Fig. 4: Performance using models versus best static policy

The figure shows streamcluster’s performance as the number of
L3s is varied along with the average thread distance. Average
thread distance is how “far” threads are away from each other.
Threads sharing an L3 are closer than threads on a different
L3 on the same socket, which are further away than threads
on separate sockets. The model predicts that decreasing the
number of L3s in use while increasing the average thread dis-
tance improves streamcluster’s performance. These objectives
can conflict for certain affinities. Intuitively, the models predict
that threads for streamcluster should be packed onto as few L3s
as possible and that the L3s used should span sockets. Such
configurations decrease communication cost between threads
while allowing for increased memory bandwidth. Some points
on the surface do not correspond to valid affinities (e.g., those
points that correspond to a negative performance).

B. Model Evaluation

We now evaluate the use of the models for improving
system-level performance objectives. In these experiments, we
construct an OS policy to maximize the average program
performance. Each program is weighted equally. We execute
pairs of programs on two of the available four sockets of our
evaluation machine, in order to force 100% utilization. For
each pair of programs, we consider two cases: the alphabet-
ically first program has 8 threads (tc0 = 8) and the second
program has 16 (tc1 = 16), and the reverse case.

We additionally compare the models against a program-
agnostic scheduling policy: max. separation. Max. separation
was the best program-agnostic allocation policy. It isolates
programs from one another, causing them to avoid sharing
L3s and sockets.

The results are shown in Figure 4. We evaluate models
built with 10 training points (p = 10) and 20 training points,
(p = 20) and four sets of features (max R2, max ρ2, min R2,
min ρ2), for eight comparisons in total. These four feature sets
proved to be the best performing sets.

For the “max” features, the feature selection maximizes
the single largest R2 or ρ2 value across program models. In
effect, this metric chooses the features that resulted in the best
single model. For the “min” feature sets, the feature selection
tried to maximize the minimum R2 or ρ2 value across program

Maximized Objective Metric Feature 1 Feature 2 Feature 3 Feature 4
average R2 mean thread distance bandwidth facilitation2 L3s socket imbalance2

average ρ2 L3s footprint and communication socket load sockets
max R2 mean thread distance L3s normalized average L3 MiB/thread socket imbalance2

max ρ2 bandwidth facilitation2 L3s socket imbalance socket σ
min R2 mean thread distance density2 L3s socket σ
min ρ2 density2 median L3 MiB/thread median thread distance max non-empty socket imbalance

TABLE III: Evaluated features chosen by various objective metrics

models. This feature selection goal chose the features that most
helped the worst performing model.

Although preliminary, our models regularly outperform the
best static policy. The choice of features greatly impacts the
ability of the models to make accurate predictions. Additional
training points result in better performance, as is to be ex-
pected: A higher budget (p) results in a more accurate model.

The best set of features to use varies depending on program
thread count. This phenomenon is a result of changing cache
and memory subsystem behavior as the program uses different
thread counts. For some thread counts, communication speed
may be a bottleneck. In others, cache space is the bottleneck.
Consequently, the features used to predict performance might
also change to reflect the causes of program slowdown. Still,
the models worked across the thread counts.

By using the models, the evaluated policy increases per-
formance by taking advantage of per-program performance
nuances. As demonstrated in Figure 4, the models are accurate
enough to capture trends in program behavior and inform
allocation decisions. A program-agnostic policy, like max.
separation, cannot consider program-specific behavior. Some
pairs of programs prefer to be spread out across L3s and
sockets, whereas others perform best when packed tightly
together on the same sockets.

We also examined the mean-squared error of model pre-
dictions for all affinity interleavings of two programs on the
evaluated system (two sockets). The models perform well,
predicting program trends.

For p = 20, model predictions had an average MSE of
0.318. For p = 10, average MSE was over 2.036 due to the
min ρ2 feature set having poor accuracy for some workloads.
The average MSE was 0.187 if the ρ2 models are ignored for
p = 20. As demonstrated, models are accurate enough to guide
decisions and outperform the best static policy.

IV. RELATED WORK

Wang et al. use a compiler-based approach to determine
program affinity [4]. Our approach is not compiler-specific.
Klug et al. select program affinities by evaluating over sev-
eral affinities at runtime [5]. Radojkovic et al. had a try-
and-evaluate solution to selecting program affinities, but for
network-based applications [6]. Tam et al. use specialized
hardware performance counters to determine program affinity
settings [7]. Our work does not rely on specific counters.

Tang et al. use an adaptive approach to choose co-running
programs’ affinities [8]. Their work is fairly coarse-grained and
for systems with few cores (i.e., they evaluate up to 4 cores).
Their technique selects whether or not threads are distributed

across LLCs and whether or not threads share the front-side
bus. Our techniques are designed for higher thread counts (e.g.,
we evaluated up to 16) and far more thread-to-core mappings.

V. CONCLUSION

We presented initial work to automatically model program
performance across affinities. The models rely on statically
derived information, allowing for the fast examination of
program performance across the large number affinities pos-
sible on modern multicore, multiprocessor machines. We also
demonstrated that the models can be used to improve program
performance.

Future work includes considering interference between
programs, as well as models to predict the performance of
unseen programs. We also plan to consider input effect on
performance and program phases. We will investigate models
that work across thread counts to reduce training costs.

ACKNOWLEDGMENT

This research was partially supported by National Science
Foundation grant CCF-0811352.

REFERENCES

[1] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang,
“The case for a single-chip multiprocessor,” in Proc. of the seventh Int’l
Conf on Architectural support for programming languages and operating
systems, ser. ASPLOS VII. ACM, 1996.

[2] C. Bienia et al., “The parsec benchmark suite: characterization and
architectural implications,” in PACT, 2008.

[3] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V.
Simhadri, and K. Tangwongsan, “Brief announcement: the problem based
benchmark suite,” in Proc. of the 24th ACM symposium on Parallelism
in algorithms and architectures, ser. SPAA ’12. ACM, 2012.

[4] Z. Wang and M. F. O’Boyle, “Mapping parallelism to multi-cores: a
machine learning based approach,” in Proc. of the 14th ACM SIGPLAN
symposium on Principles and practice of parallel programming, ser.
PPoPP ’09. ACM, 2009.

[5] T. Klug, M. Ott, J. Weidendorfer, and C. Trinitis, “autopin automated
optimization of thread-to-core pinning on multicore systems,” in Trans-
actions on High-Performance Embedded Architectures and Compilers
III, ser. Lecture Notes in Computer Science, P. Stenstrm, Ed. Springer
Berlin Heidelberg, 2011, vol. 6590.

[6] P. Radojković, V. Čakarević, J. Verdú, A. Pajuelo, F. J. Cazorla,
M. Nemirovsky, and M. Valero, “Thread to strand binding of parallel
network applications in massive multi-threaded systems,” in Proc. of
the 15th ACM SIGPLAN Symp. on Principles and Practice of Parallel
Programming, ser. PPoPP ’10. ACM, 2010.

[7] D. Tam, R. Azimi, and M. Stumm, “Thread clustering: sharing-aware
scheduling on smp-cmp-smt multiprocessors,” in Proc. of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007, ser.
EuroSys ’07. ACM, 2007.

[8] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. Soffa, “The impact
of memory subsystem resource sharing on datacenter applications,” in
Comp. Arch. (ISCA), 2011 38th Ann. Intl’l Symp. on, 2011.

