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Abstract—In this paper, we present a vector execution model that
provides the advantages of vector processors on low power, general
purpose cores, with limited additional hardware. While accelerating
data-level parallel (DLP) workloads, the vector model increases the
efficiency and hardware resources utilization. We use a modest dual
issue core based on an Explicit Data Graph Execution (EDGE) archi-
tecture to implement our approach, called EVX. Unlike most DLP
accelerators which utilize additional hardware and increase the com-
plexity of low power processors, EVX leverages the available resources
of EDGE cores, and with minimal costs allows for specialization of
the resources. EVX adds a control logic that increases the core area by
2.1%. We show that EVX yields an average speedup of 3x compared
to a scalar baseline and outperforms multimedia SIMD extensions.

I. INTRODUCTION

High performance has joined power-efficiency as a primary
objective in mobile computing. Emerging applications such as
media applications and physical simulations used in 3D games
are compute intensive data level parallel (DLP) workloads that are
increasingly utilized in mobile platforms. Achieving power efficient
performance on these workloads is crucial for future mobile designs.
Various techniques have been used to improve power efficiency
such as clock gating, dynamic voltage and frequency scaling. Recent
research explores yet another alternative in Explicit Data Graph
Execution (EDGE) architectures, that break programs into blocks
of dataflow instructions that execute atomically thus providing
power efficient out-of-order execution (see [5], [6], [15] for details).
Motivated by promising research results, in this paper we propose
support for DLP acceleration in low power EDGE cores.

Programmable graphics processing units (GPU) [14],
multimedia SIMD extensions and vector processors [4], [9],
[17], all exploit DLP at various levels of performance and power
efficiency. While GPUs can provide an order of magnitude increase
in performance for highly parallel applications, their area overheads
can be high for mobile designs. SIMD extensions are an inexpensive
way to exploit DLP in low power processors, but they have
overheads due to packing and unpacking operands that can exceed
their benefit. The vector length is encoded in the ISA requiring
new hardware, instructions and/or recompilation across design
iterations for the same processor product family. Vector processors
in the other extreme operate over dynamically large vectors [7],
[8] and use sophisticated memory units to increase performance
efficiency. Still, their design requires significant area costs making
them historically utilized mostly in supercomputers [12], [17].

This paper contributes EVX, a vector execution model, that
efficiently exploits DLP on general purpose EDGE hardware with
minor changes to existing hardware. EVX leverages the dataflow
execution model of EDGE architectures for efficient out-of-order
vector execution. It provides: register- and streaming-based vector
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Fig. 1: EVX model on general purpose EDGE core.

execution, sophisticated addressing modes and configurable vector
length. EVX provides these advantages by specializing general
purpose hardware and thus allows an efficient execution of parallel
and non-parallel applications. This paper provides details about
performance, power and area evaluation of EVX. EVX increases
power consumption by 47.5%, and by achieving an average speedup
of 3x on DLP workloads, EVX increases power efficiency 2.16x.

II. EVX: EDGE VECTOR EXECUTION OVERVIEW
A. Overview

The goal of EVX is to provide the advantages of conventional
vector architectures on the available hardware of lightweight
processor. Figure 1 shows the EVX architectural model and
hardware additions on an EDGE core. The EVX changes include: 1)
Instruction window and reservation stations are banked, where each
of these banks behaves as a vector lane [1]. The EVX computation
executes in all vector lanes while providing higher throughput of
DLP applications with little complexity. 2) An additional vector
control unit (VCU) decouples the execution of vector memory
instructions from computation to tolerate memory latency and
provides sophisticated addressing modes. The vector memory
operands are divided into slices. By transferring the available
slices to the vector lanes, the VCU manages the reissue of EVX
computation over different slices, without waiting for the entire
memory operands. This way, EVX provides chaining of vector
instructions at low hardware complexity, and while by reissuing
computation it provides configurable vector length. And 3) Vector
registers (VRs) repurposes some data cache resources to keep the
temporal results of vector computation and hold memory operands.

EVX provides two execution modes to the programmer: register
and streaming. In register mode, the VCU loads/stores data arrays
to/from compute resources and exploits temporal locality through the
VRs. In streaming mode, the VCU loads/stores data streams through
VRs which behave as streaming buffers between the memory
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Fig. 2: EVX example and initialized vector control unit.

hierarchy and compute logic. EVX includes support for sequential,
strided, 2-D strided, indexed addressing modes and reductions.

B. Vector Registers

Rather than introducing additional hardware structures, our
implementation of VRs reuse a configurable subblock of the L1
data cache instead of a large vector register file. VRs have simplified
accesses to data arrays that do not require any associative address
lookup. The accesses are direct as in software managed memories
[13]. Each VR allocates a configured number of cache lines, which
are invalidated and flushed if needed before starting the vector execu-
tion. The cache reconfiguration is done sequentially, one cache line
per cycle. When the VCU is configured for register mode, the VRs
are used to store temporary results for EVX processing that spans
multiple EDGE blocks. The vector length is limited to the maximum
size of the available memory for VRs. However, when the VMU
is configured for streaming mode, VRs behave as a circular buffer
which allows for streaming an unlimited number of vector elements.

C. Vector Control Unit

The VCU contains the two major structures shown in Figure 2.
First, the Vector Memory Unit (VMU) executes vector load and store
instructions similarly to memory units in vector processors [2], [3],
[16], [18]. The major difference is execution of memory instructions
in slices to provide chaining and configurable vector length on
general purpose hardware. Second, the Vector Transfer Unit (VTU)
eliminates the additional control overhead and improves the EVX
model, by transferring the data between the vector lanes and VRs.

1) Vector Memory Unit: Data parallel workloads often have
regular memory access patterns that can be controlled using simple
hardware support. The VMU exploits this advantage and leverages
VRs to execute vector load and store instructions in a decoupled
fashion. Each vector memory instruction uses one VR that holds the
input/output memory operand. The VMU contains a queue of vector
memory instructions that is initialized with access patterns. The
256-bit cache line size is used to easily slice large vector operands
in VRs. The VMU issues the memory requests for a entire slice of
a single memory instruction and then it executes the next instruction
in round-robin fashion. Control counters keep track of vector
elements processed by each instruction. The VMU uses vector
miss-handler registers (VMSHR) to save the necessary information
for each request and handle responses. The VMSHRs are simplified
since addresses from different vector memory instructions are not
compared. This allows for a higher number of outstanding requests
and more efficient saturation of memory bandwidth.

2) Vector Transfer Unit: The VTU contains a queue of vector
transfer instructions where each instruction is defined by the
instruction type, target (in the case of a vread) and the associated
VR. On aread, the VTU checks if the current slice is available and
distributes it from the associated VR to vector lanes. On a write,
the VTU forwards a slice of write request to the associated VR.
Once all vector transfer instructions in the queue have issued, the
EVX computation is complete for one slice of vector data. The
computation reissues until the entire vector is processed.

D. EVX Mode

EVX mode is enabled on a block-by-block basis. Each EDGE
block contains a header that encodes metadata about the block,
including if block has vector instructions. Figure 2 shows an
example of loop execution with EVX. Vector memory instructions
(vload/vstore) initialize memory processing in VCU before the
vector block executes. Vector block contains vector transfer
(vread/vwrite) and compute (vadd) instructions. Vector transfer
instructions execute in VCU and compute in disposable vector
lanes. The multilane issue of vector compute instructions limits
vector instruction blocks to the size of the instruction window in
one lane. In this work we chose to have four vector lanes to issue
a computation of 256-bit vector slices with 64-bit ALUs. We next
discuss vector mode execution in the core pipeline.

Fetch: When a block with vector instructions is fetched, all
instructions are mapped to the first lane of the instruction window.
Scalar instructions issue only in first lane and vector instructions
issue in all vector lanes. After the fetch stage completes, the list
of vector transfer instructions is forwarded to the VCU. Vector
read instructions only reference VRs and after forwarding to the
VCU they are subsequently ignored by the issue logic. Vector write
instructions leverage the issue logic, since they need to forward data
to the VCU.

Execute: Vector instructions execute out-of-order in EDGE
dataflow fashion. Vector compute instructions execute in four vector
lanes, but the execution is interleaved if the number of ALUs is
smaller than the number of lanes. The VCU executes vector memory
instructions and transfers slices of vector data. Select logic reissues
vector compute instructions when new data slices are available.

Commit: Since vector compute instructions may reexecute, and
the number of iterations is controlled by the VCU, the VCU signals
the control logic once all iterations are complete.

III. EVALUATION
A. Methodology

We evaluate the baseline EDGE and EVX architectures using
a detailed timing accurate simulator that models EDGE cores with
the parameters shown in Table I. We developed McPAT [10] models
starting from existing in-order models to estimate area, and runtime
dynamic and leakage power in a 32nm technology used for low
power devices. The simulator also models a multimedia SIMD
extension for EDGE to compare to EVX. We also compare EVX
to ARM NEON extension using simulations from GemS5 that is
configured to match the parameters equivalent to EDGE core.

For our evaluation we select ten kernels from the Livermore
Loops [11] shown in Table II. Each Livermore loop kernel utilizes
a different memory access pattern and data parallel algorithm that
we found suitable to explore the limits of our vector model. We
hand-vectorized all the workloads using compiler intrinsics.



[ Component [ Description
ALUs 2 Integer/FP
Register File 64 entries
Load-Store Queue 32 entries, unordered LSQ
L1 I-cache 32 kB, 3 cycles (hit)
L1 D-cache 32 kB, 3 cycles (hit)
L2 4 banks x 512 KB, 15 cycles (hit)
L1/L2 MSHRs 8 entries
DRAM 250 cycles
Branch predictor OGEHL
On-chip-network 1 cycle/hop, Manhattan routing distance
Vector Registers 8 x 8192-bit
Vector-MSHR 64 entries

TABLE I: Simulator Configuration.

Vector

Name Pattern Dependencies Blocks Stream
ADI Seggzg(ljay none 8 No
BLSS sequ_entia.l/ reduction 1 Yes
strided
ESF sequential none 3 No
FDiff sequential none 1 Yes
HFrag | sequential none 1 Yes
ICCG strided none 1 Yes
IProd sequential reduction 1 Yes
IPred strided none 3 No
Matrix strided loop carried 1 Yes
PiCell sc?quentlal/ none 5 Yes
indexed

TABLE II: Workloads.

B. Results

Speedup for EVX and EDGE SIMD is reported against a scalar
version running on the EDGE core. Speedup for ARM NEON is
reported against the scalar version running on the same ARM core.
In order to vectorize some kernels for EVX it is necessary to use mul-
tiple EVX compute blocks. The number of iterations in each kernel
is configurable and referred to as loop length in the remainder of the
evaluation. All kernels are evaluated after warming up the caches.

1) Performance: Figure 3a shows the speedup for a variable
number of loop lengths ranging from 8 to 2048 elements. We eval-
uated EVX with two ALUs and with four ALUs. First, we discuss
results with two ALUs. For short loop lengths (8 to 16 elements),
there are no performance gains over the scalar version due to the
initialization time required to setup the VCU and reconfigure the data
cache. Initialization overhead is amortized around 16 elements and
then vectorization provides a speedup that increases with loop length.
This is explained by the reduction of repeated fetch, decode and
issue of instructions in the vectorized loop, as well as the decoupling
of memory and computation. For a loop length greater than 1024, the
data sets become larger than L1 data cache size and EVX speedup in-
creases from tolerating data cache misses. To measure the memory la-
tency tolerance, we compare EVX to the scalar baseline with perfect
data cache. The speedup of EVX with two ALUs is reduced when
the scalar baseline uses a perfect data cache. Due to the improved
performance of the baseline with a perfect cache, EVX requires
more iterations to compensate its initialization overhead and it starts
to achieve speedup with loop lengths over 64 elements. The VCU
loads data more efficiently for long vectors, by packing and aligning
vector elements in VRs, further keeping the ALUs busy in vector
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(a) Average EVX speedup for different loop lengths.
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(b) EVX speedup for different VR sizes (loop length=1024).
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(c) EVX performance breakdown (loop length=1024).

Fig. 3: EVX speedups and performance breakdown.

mode. Increasing the number of ALUs to 4, while not doing in line
improvements of VCU does not provide performance benefits. This
shows that VCU is balanced to efficiently feed two available ALUs.

Figure 3b shows the speedup for individual loops using a loop
length of 1024 elements with different VR sizes and comparison to
multimedia SIMD extensions. The EDGE SIMD extension operates
on 64-bit words and uses two 64-bit SIMD units, the same as EVX.
It supports unaligned accesses but it lacks sophisticated addressing
modes which are needed to vectorize some kernels. However, the
EDGE SIMD extension still increases the performance for kernels
that use a sequential memory access (ESE Hfrag, Iprod). In order
to increase the applicability of SIMD, we have packed strided data
into consecutive memory locations with scalar code. This code
is amortized because the kernel iterates multiple times with the
same data. However, the speedup is still limited (BLSS). Although
a warm cache is advantageous for EDGE SIMD extensions, flexible



Structures Baseline EVX

Area Power Area Power
Fetch
(I-Cache, Block Predictor) 0.258 0.020 0.258 0.006
L1 D-cache subsystem
(D-cache, LSQ, MSHR) 0.237 0.016 0.237 0.018
Execution resources
(issue window, ALUs) 1.589 0.151 1.589 0.191
Vector Unit - - 0.045 0.009
Total 2.093 0.187 2.138 0.224
L2s, Memory Controller 2.079 0.055 2.079 0.133

TABLE IIT: Area (mm?) and Power (W) estimates for EVX 1-core.

and efficient memory processing in EVX still provides better
overall performance. ARM’s NEON SIMD extension provides a
more complete ISA, 128-bit wide SIMD words, as well as fused
operations and performs better than EDGE SIMD. Still, it shows
less applicability compared to EVX. The EVX speedup varies from
1.28x to 4.86x over the scalar baseline depending on the kernel and
VR size. Geometric mean (GM) is 3.04. The kernels that exploit
temporal locality in VRs (ADI, ESF, Ipred) improve performance
with increased VR size. The kernels with streaming characteristics
do not benefit from larger VRs (Fdiff, Matrix), since the VRs
are only used as streaming buffers. In some kernels where the
vectorized code is inside an outer loop, data cache reconfiguration is
performed multiple times, which leads to performance degradation
(BLSS, HFrag). The configurable size of the VRs allows EVX to
adapt to the specific characteristics of the workloads.

Figure 3c shows the performance breakdown of EVX with
different number of VMSHR entries and hardware optimiza-
tions. We have simulated a restricted EVX with several features
disabled (wide-sequential-memory-access, wide-VMSHR, ALU-
partitioning and compute-resources-allocation) to measure the
impact of each one of them. The most simple EVX with all features
disabled and a small VMSHR of 8 entries (limited-EVX) decou-
ples memory and computation instructions and transfers multiple
operands to the reservation stations in a single cycle. However, it pro-
vides limited speedup over the scalar baseline for most of the kernels
or even performance degradation due to VCU initialization, with
the exception of ICCG, Ipred, Matrix and PiCell. EVX with wide-
sequential-memory-access generates a single request for a whole
cache line for sequential memory patterns. This reduces the number
of outstanding memory requests and address calculations. Kernels
that use the sequential pattern benefit from this feature, yielding up to
2x speedup (Fdiff, Hfrag, Iprod, ESF) even with an 8-entry VMSHR.
A larger VMSHR of 64 entries (wide-VMSHR) is benefitial for
kernels that have strided patterns, since they produce more in-flight
memory requests (e.g. ICCG, Ipred, Matrix), while other kernels do
not make use of more than 8 entries. EVX with ALU-partitioning
compute 64 bits of the vector data per lane regardless of the size
of vector elements (e.g. 2x32bit, 4x16bit) and leverage the VCU to
read packed compute vector operands. ALU partitioning increases
the average speedup by about 10%. compute-resources-allocation
feautre allows to reexecute compute instructions by refreshing the
operands in the reservation stations. It yields 15% additional speedup
by reducing control overhead, instruction fetch and issue pressure.

2) Power and Area Efficiency: Table III presents the area break-
down of different microarchitectural components in an EDGE core
with support for EVX model. EVX increases the area of processor

by 2.1% for the VCU, while assuming banked instruction window
and reservation stations as a baseline. Table III shows the average
total power consumption, while running scalar and EVX versions
of Livermore loops. Reexecution of dataflow in multiple vector
lanes reduces power consumption in the fetch unit, but increased
dynamic activity of ALUs and memory system dissipate additional
power. EVX incurs in 47.5% of average total power increase (19.8%
excluding the L2 cache), and while providing an average speedup
over 3x it significantly increases the power efficiency of EDGE
cores (measured in performance per watt) by 2.16x in average.

IV. CONCLUSION

New technologies in the computer industry aim to deliver a high-
quality user experience while running data parallel, multimedia appli-
cations seamlessly across all market segments, including low power
mobile devices. Efficiently exploiting DLP from these applications
requires improvements to current DLP acceleration models. In this
work, we introduce vector execution model for low power cores as
one such potential technology for enhancing the quality of future pro-
cessors by efficiently exploiting DLP. Future work will look at scal-
ing the performance and efficiency of EVX beyond the single core.
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