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Abstract— An energy-efficient distributed Scratchpad Video 

Memory Architecture (dSVM) for the next-generation parallel High 
Efficiency Video Coding is presented. Our dSVM combines private and 
overlapping (shared) Scratchpad Memories (SPMs) to support data 
reuse within and across different cores concurrently executing multiple 
parallel HEVC threads. We developed a statistical method to size and 
design the organization of the SPMs along with a supporting memory 
reading policy for energy efficiency. The key is to leverage the HEVC 
and video content knowledge. Furthermore, we integrate an adaptive 
power management policy for SPMs to manage the power states of 
different memory parts at run time depending upon the varying video 
content properties. Our experimental results illustrate that our dSVM 
architecture reduces the overall memory energy consumption by up to 
51%-61% compared to parallelized state-of-the-art solutions [11]. The 
dSVM external memory energy savings increase with an increasing 
number of parallel HEVC threads and size of search window. 
Moreover, our SPM power management reacts to the current video 
properties and achieves up to 54% on-chip leakage energy savings. 

Keywords—Video Memory, Scratchpad Memory, HEVC, 

Application-Specific Optimizations, Energy Efficiency, Adaptivity.  

I.  INTRODUCTION 

To bridge the increasing gaps between the processor and memory 
scaling/speed in many-cores era with memory-intensive applications, 
specialization of memory architectures has become one of most 
important design issues. Multiple cores simultaneously accessing the 
same memory infrastructure incur high energy consumption and 
contention. Meanwhile, embedded multi-/many-core processors are 
subjected to stringent energy constraints. These issues intricate when 
executing memory-intensive applications like video coding, image 
matching, etc. 

The High Efficiency Video Coding (HEVC) is the next-generation 
video coding standard [1] that provides double compression compared to 
its predecessor H.264/AVC. However, this comes at the cost of >40% 
more computation effort compared to the H.264 encoder as shown by 
our experimental analysis in Fig. 1a. This increased complexity is due to 
the novel Coding Tree Unit (CTU) structure [2] and a plethora of new 
prediction modes that result in an increase mode decision space [3]. 
Moreover, these new coding features lead to >2x more memory accesses 
compared to H.264/AVC due to more intensive reference frames storage 
and transmission (as in Fig. 1b). A large amount of off-/on-chip memory 
accesses and large-sized on-chip memories lead to high energy 
consumption in HEVC encoders. To achieve high performance, HEVC 
encoders can be parallelized on multi-/many-core processing platforms. 
However, this may lead to further increase in the energy consumption 
and memory pressure due to multiple encoding cores requiring the same 
data from the memory infrastructure, posing new challenges for the 
embedded multimedia systems. 

A large body of research explored efficient cache organizations and 
on-chip memory architectures for general purpose multi-/many-core 
processors [18]. To overcome/alleviate the hardware overhead of caches, 
Scratch-Pad Memories (SPMs) evolved for energy-constrained 
embedded systems [19]. Instead of providing hardware support for 
mapping data/code from off-chip to on-chip memory, SPM allows 
designer/compiler to perform content management saving up to 30% of 

energy compared to complete caches under certain operating scenarios 
[19]1. The challenge is to efficiently utilize the SPMs. 

Considering the above-discussed memory issues of HEVC, general-
purpose techniques for SPM management [20]-[22] may not be energy 
efficient. Recent trends demonstrated benefits of application-specific 
SPMs management for low-power H.264 video encoding for single core 
or ASIC-based systems [4]-[7]. However, these works lack support for 
many-cores which are more memory restrictive and do not address 
memory contention in private vs. shared memories for cores 
synchronization. Moreover, these works do not account for the novel 
coding model of the advanced HEVC that can be leveraged to achieve 
even higher energy savings as we will motivate in Section I.B. 

In summary, there is a strong need for application-specific memory 
design targeting energy-efficient high efficiency video encoding on 
embedded multi-/many-core platforms. Our goal is to leverage the 
application-specific characteristics of the emerging HEVC standard to 
increase the potential of energy savings. 

HEVC H.264/AVC
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Fig. 1 HEVC vs. H.264/AVC encoder (a) encoding time; (b) memory accesses. 

(average results for commonly used test sequences [13], 128x128 search window, 

H.264/AVC and HEVC test models, 300 frames) 

Before moving further, we will present basics of HEVC to the level 
of details necessary to understand our novel contribution. 

A. Overview of HEVC Coding Tools and Related Memory Issues 

To facilitate parallelization with minimal quality loss, the 
standardization committee (JCT-VC) introduced the novel concept of 
Tiles2 in HEVC, which is different from slices that are used for video 
streaming [17]. Tiles divide one video frame into rectangular regions that 
can be coded independent of each other, thus increasing the thread level 
parallelism [15][16]. Fig. 2 presents an example of 4-Tile partitioning. 
Each Tile is assigned to a specific core without any data dependency 
with another Tile processing. 

The inter-frame prediction with Motion Estimation (ME) is the most 
complex processing step in the HEVC encoder as it corresponds to 
>80% of the computation time and energy consumption of HEVC 
encoders. ME searches the best match of a block from the current frame 
in a set of so-called reference frames3. The search is performed in a 
restricted search window. The reference frames are typically stored in 
the external/off-chip memory while the search windows are stored in on-
chip memories. Due to the memory management for fetching the search 
window samples from the off-chip and increased leakage energy for 
keeping them in the on-chip memory, the ME becomes the most 

                                                           
1
 Examples: IBM Cell Processor [23], ARM10E [24], TI TMS370CX7X [25], etc. 

2
 These are video Tiles, i.e. different from hardware tiles in many-core processors. 

3
 These are previously coded and reconstructed frames. 



memory–intensive processing block [4]-[7]. As a result, 70%-90% of the 
ME energy is spent in the off-chip and on-chip memories (leakage and 
dynamic) [4]-[7]. Furthermore, multiple Tiles amplify the memory 
pressure since more data must be fetched/stored during the same time 
instant. 
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Fig. 2 Video Tiles and multicore organization for parallel HEVC. 

Another novel coding tool of the HEVC that aggravates the memory 
problem is variable-sized Coding Units (CUs). The HEVC decision is 
based on a quad-tree structure (see Fig. 3). The root for the decision is 
the 64x64 CU, called coding-tree block (CTB). The encoder is 
responsible for deciding what is the best partitioning for the current CTB 
that provides the best coding efficiency, in terms of bitrate and coded 
video quality. Current HEVC draft also supports 32x32, 16x16 and 8x8 
CU sizes [17]. 
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Fig. 3 An example of HEVC coding tree unit organization 

B. Goals and Motivational Analysis 

The main goal of our work is to leverage the application-specific 
knowledge of the emerging HEVC standard (i.e. its new coding tools) 
and video content properties to develop an energy-efficient SPM-based 
on-chip video memory. The key is (1) to analyze and exploit the memory 
access behavior in the video Tiles-based processing; and (2) the 
overlapping reference samples that define the shared access patterns for 
different cores processing different Tiles. The samples near to the tile 
boundaries in the reference frame must be fetched/stored by multiple 
cores, leading to external memory contention, redundant memory access 
and extra on-chip storage (causing energy wastage). An example in Fig. 
4a depicts the overlapping accesses performed for more than one tile 
processing core (gray and black regions). 

In the following, we highlight important memory related issues 
during the Tile-based HEVC processing with the help of our 
experimental case study and expose the potential of application-specific 
optimization with the help of several observations. 

Analysis-1: The overlapping regions tend to grow for an increased 
number of Tiles (assuming 1 Tile per core). The overlap size trend is 
plotted for growing number of Tiles in the Fig. 4b. In the worst case, the 
overlap reaches 50% in a 16-core HEVC encoder. As larger is the 
overlapping area, more cores must concurrently access the same 
reference data from the external memory without any data reuse. 
Therefore, it may be beneficial to design dedicated SPMs for the 
overlapping regions to avoid external memory retransmission of the 
Tiles shared reference data, saving off-chip memory energy. 

Analysis-2: Although the ME is performed within a search window, 
the search algorithm may not require all the samples. For instance, the 
TZ search algorithm in the HEVC software [14] does not necessarily 
explores the entire search window analysis [6]. Moreover, adaptive ME 
algorithms feature changing centering of the search window depending 
upon the already coded neighboring CUs. As a result, the Tiles overlap 
shape may substantially vary according to the video content as shown in 

Fig. 5. Furthermore, the samples inside the overlapping regions have 
different access intensities. It shows that, not all parts of the on-chip 
video memory (storing the overlapping samples) will be accessed for 
every CU depending on the video content. Even for the accessed sectors, 
the access distribution is different depending on the video content 
characteristics. Therefore, the key is to leverage the overlapping memory 
access knowledge to predict the unused or less-frequently used memory 
sectors for adaptive power management of the SPMs. 

CTUA CTUB

Tile 0 Tile 1

Tile 2 Tile 3 Overlapping region!

CTUC CTUD

0%

20%

40%

60%

80%

100%

1 Tile 2 Tiles 4 Tiles 8 Tiles 16 Tiles

Overlapping Private

0

40

20

100

T
il

e
s 

O
v

e
rl

a
p

p
in

g
 

[%
 o

f 
fr

a
m

e
 d

a
ta

]

2-core
encoder

60

80

4-core
encoder

8-core
encoder

12-core
encoder

16-core
encoder

Overlapping Increasing

Current Frame Reference Frame(a)

(b)

Search Window

 

Fig. 4 (a) Example of Tile partitioning and of the overlapping problem; 

(b) Evaluation of overlapping accesses for different number of Cores (HD1080p; 

“BasketballDrive” sequence; 127x127 search window) 
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Fig. 5 Distribution of the overlapping samples 

(HD1080p; “BasketballDrive” sequence; 127x127 search window) 

C. Our Novel Contributions 

We propose an energy efficient distributed Scratchpad video 
memory architecture (dSVM) for the next-generation High-Efficiency 
Video Coding (HEVC) exploiting the video Tiles based parallel 
processing on multi/many-core processors. It employs: 

• A Distributed Scratchpad Video Memory Architecture (Section 
III) that integrates several private and overlapping (shared) SPMs to 
support intra-Tile and inter-Tiles data reuse, respectively, among 
various cores. We develop a scheme that leverages the offline 
statistical analysis of HEVC and video content to size and design the 
organization of SPMs. A reading policy is designed for energy-
efficient data fetching. 

• Adaptive Power Management of dSVM (Section IV) that takes 
into account the size and the shape of the predicted overlapping area 
to select appropriate sleep states for different regions of private and 
overlapping SPMs. 

We evaluate the energy efficiency of our dSVM architecture for 
various recommended test video sequences for different number of Tiles. 

To the best of authors’ knowledge, this is the first work towards 
energy-efficient on-chip memory hierarchy for the emerging Tile-based 
parallel HEVC encoders. 



II. MEMORY MODELS AND NOTATIONS 

Every data transmission from/to memory is based on a fixed basic 
access unit (BU), which corresponds to a BUSize*BUSize picture block. 
When external memory communication is required, then several BUs 
are accessed in one burst operation to increase the energy efficiency. 

On-Chip SRAM Organization Model: We adopt a bank-based 
partitioning Scratchpad memory (SPM) model to allow for parallel data 
accesses; see Fig. 6. Each SPM is composed of NB number of banks. To 
facilitate parallel reading, different rows of a BU are stored in parallel 

banks. A bank Bi is composed of NS sectors of size SS. Each sector has NL 

number of lines of size SL.  

Different sectors of the SPM can be individually power-gated using 
a multiple sleep-state transistor model supporting four power states [12]: 
S0=OFF, [S1,S2]=Data Retentive and S3=ON, where EStatic(S0) < 
EStatic(S1) < EStatic(S2) < EStatic(S3). Still, each state have also increasing 
associated wake-up energies (WE(S0)> WE(S1)> WE(S2)> WE(S3)= 0). 
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Fig. 6 Organization model of our scratchpad video memory 

Off-Chip DDR DRAM Model: For energy estimation of the off-
chip memory, we adopt the DDR (Dual Data Rate) DRAM model 
depicted in [9]-[10]. The total power is derived by the composition of six 
components: (1) page activation energy (EACT), (2) write energy (EWR), 
(3) read energy (ERD), (4) I/O pins energy (EDQ), (5) refresh energy 
(EREF), and (6) standby energy (ESTBY). In the experimental analysis, we 
assume that the memory will always operate in the active state and the 
standby energy will be equivalent to the EACT_STBY component.  

III. ARCHITECTURE OF OUR DISTRIBUTED SCRATCHPAD 

VIDEO MEMORY 

Fig. 7 depicts the block diagram of our distributed Scratchpad video 
memory architecture (dSVM) for multi-core HEVC encoding. Each 
core4 is assigned the processing of one out of the n video Tiles. The 
SPMs are used to store different parts of the reference frame used for 
ME or other encoding blocks. We propose two levels of SPMs: 
1) A core-private SPM (PrivSPM) to store the search window data 

corresponding to each CU for intra-Tile data reuse, and  
2) A core-shared SPM (OvSPM) to store the Tiles overlapping 

reference data for inter-Tiles data reuse. 
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Fig. 7 Our dSVM architecture integrated in a HEVC encoder 

                                                           
4
 A core has a small private instruction and data cache to store the program code and 
common data (like variables). The SPM is used for large data like reference frame. 

Each core sends the search window data requests to the SPM access 
management module using the vertical/horizontal frame coordinates. The 
SPM access management unit will schedule the memory accesses 
according to our DRAM/SPM reading policy (see Section III.A). The 
overlap patters and size is extracted by the Motion Estimation Analyzer 
and forwarded to (i) the SPM access management module to map the 
overlapping region to the on-chip OvSPMs; and (ii) the adaptive power 
management unit for selecting an appropriate sleep state for the idle 
SPM regions. If external memory access is required, the frame positions 
are translated to physical DRAM memory position addresses by the 
Address Generation Unit (External Memory AGU in Fig. 7). The 
adaptive power management unit analyzes the Tiles overlap size to 
adaptively predict the less-likely accessed or idle memory sectors of the 
PrivSPMs and OvSPMs and to select an appropriate sleep state in order 
to save SPM leakage energy. 

In the following sections, we detail the SPM access management 
module, SPM sizing and design, and adaptive power management 
policy. 

A. SPM Access Management Unit: Reading Policy and External 

Memory Arbitering 

Our SPM access management unit implements the memory reading 
policy (see flowchart of Fig. 8) that takes advantage from the tiles 
overlap to increase the data-reuse of the reference frames samples. If a 
core i requests data from the SPM memory organization, as the first step, 
the SPM access management unit checks along with the overlap 
prediction if the requested data potentially belongs to one tiles 
overlapping region. Assuming that the data is inside an overlap related to 
the tiles intersection T, the corresponding cores-shared OvSPMT is then 
accessed. In this case, the inter-Tiles data reuse is exploited, since all 
tiles that share the tile boundary T may request the same data. For non-
overlapping regions, the PrivSPMi is accessed, leading to intra-Tile data 
reuse. Note that for each core data request, either the shared (OvSPMT) 
or the private (PrivSPMi) memory is accessed. In the case of a hit, the 
data is simply forwarded to core i. In case of a miss, the data must be 
fetched from the external memory and forwarded to the core i. For 
improved energy efficiency, the SPM access management unit requests a 
burst of samples from the DRAM memory, which reduces the DRAM 
page activation energy and amortizes the initial latency for memory 
random access [7]. Furthermore, the corresponding SPM is filled with 
the fetched data. To handle parallel accesses to the OvSPM, we employ a 
priority based scheduling. 

 

Fig. 8 Flow of our SPM access management unit with the reading policy 

Hit Miss DRAM

Core 0 Core 1 Core 0 Core 1 Core 0 Core 1

N Y N Y N Y N Y N

(a) (b) (c)

 

Fig. 9 An example of data interaction for a 2-core system 

An Example: Fig. 9 illustrates an example for our memory reading 
policy in three different cases for a 2-core encoding system. 



a) In the beginning, the on-chip SPMs are empty and each request will 
lead to external memory fetching (OvSPM and PrivSPM misses). 
Fig. 9 shows that the overlap prediction is analyzed to determine 
whether the reference data is stored in the PrivSPMi or in the 
OvSPMT. During the frame processing, due to the intra-Tile and 
inter-Tiles reused data, more hits occur and even less external 
memory communication is needed. 

b) The second case in Fig. 9 depicts tile-centering CUs processing 
where only the PrivSPMs is accessed (i.e. only intra-Tile data reuse). 

c) The last case shows the best case of energy efficiency, where 
memory hits are observed for both PrivSPMs (i.e. intra-Tile data 
reuse) and OvSPMs (i.e. inter-Tiles data reuse) accessing. 

B. Design of Scratchpad Video Memories 

A key challenge is to determine an appropriate size and organization 
of different SPMs (PrivSPMs and OvSPMs) to optimize for leakage and 
dynamic energy. We propose an application-guided methodology that 
exploits the statistical analysis of memory access behavior Tile-
parallelized HEVC in order to increase the energy efficiency of our 
dSVM architecture. 

Our methodology leverages the Tiles overlap behavior that depends 
on the search window size and the video motion properties. Adaptive ME 
algorithms change the center of their search windows by using spatial 
predictors (i.e., motion vectors of previously-coded CUs). Moreover, low 
motion CUs will lead to less search window usage. Hence, the optimal 
overlapping memory size for each video sequence follows a statistical 
distribution of the near-boundaries ME motion predictors. Fig. 10a 
depicts statistics of the tiles overlap varying the search window size. On 
average, the overlap linearly increases with the increase n the search 
range. The more or less concentrated distribution around the average size 
hints towards the video motion properties. Different regions near the tile 
boundaries have different motion characteristic, which leads to more or 
less memory access overlaps.  
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Fig. 10 (a) Overlapping statistics for increasing search window size for the 

“BasketballDrive” test video sequence;  

(b) motion delta distribution for several test video sequences 

To statistically define the motion property near a specific tile boundary 
of a given video, we define the ∆Motion (motion delta) metric as being the 
video correlated parameter used for determining the overlap size, as 
presented in Fig. 11. For each frame of the video and for each defined 
Tile boundary, the algorithm obtains the used ME spatial predictors 
(lines 7-8). The difference of the predictors used by the near-boundary 
CUs from the two Tile boundary sides (SideA and SideB) is then 
calculated (lines 12-17). This difference will represent the access search 
range of SideA CUs in the SideB reference frame region, and vice-versa. 
The Probability Density Function (PDF) of the motion delta metric is 
then calculated (line 20), where µ∆ and σ∆ are the statistical average and 
standard deviation, respectively, of the motion delta parameters extracted 
from the video. The PDFs for HD1080p test sequences are plotted in Fig. 
10b. We can note diverse behaviors depending on the input video: high 
motion videos like BasketballDrive and Kimono present more spread 
distributions, while low motion videos like Cactus and BQTerrace have 
more concentrated distributions. Using the motion parameter and the 
search window dimension, we define the Tiles overlap sizing formula for 
the overlap thickness (OvThickness) and length (OvLength) in Eq. (1)-(2), 
respectively. The signal of the motion delta represents the video motion 
direction near the target tiles boundary. Negative values mean that we 

have opposite motion directions, which decreases the overlap size, while 
positive motion delta values increases the range of the overlap.  

1. determineMotionDelta(Video: V;  TilePartitioning: TP): 
2. ListΔ = [ ]; 
3. For all Frame Є V 
4.      For all TileID Є TP 
5.           PredMap[TileID] = [ ]; 
6.           For all CU Є TileID 
7.                CU.performMotionEstimation(); 
8.                PredMap[TileID].insert(CU.getUsedPredictor()); 
9.           End For 
10.      For all TileBoundaryID Є TP 
11.            //Let SideA and SideB the two tile boundary sides  
12.           For all CUSideA, CUSideB Є TileBoundaryID 
13.                PredA := PredMap[TileSideA][CUSideA][CoordID]; 
14.                PredB := PredMap[TileSideB][CUSideB][CoordID]; 
15.                ΔValue := |PredA – PredB|; 
16.                ListΔ.append(DeltaValue); 
17.           End For 
18.      End For 
19. End For 
20. {µΔ, σΔ}  = norm_dist(ListΔ); 
21. return {µΔ, σΔ}; 

Fig. 11 Motion knowledge extraction for overlapping SPM sizing Ov������	

(TileBoundary��) = 	2 × SW + Δ#$%�$�	
where:   Δ#$%�$� = μ' + 2 ∗ σ' (1) 

  Ov*	�+%�(TileBoundary��) = ,H./01	W./01	 	if	vertical	if	horizontal	 (2) 

Based on statistical evaluations and the memory organization model 
defined in the Section II, we determine the physical sizing for SPMs in 
our dSVM; see Eq. (3)-(7). For the overlapping data, each Tile boundary 
will leads to a specific OvSPM design. Our sizing formulation is based 
on the definition of the BU size (BUSize), which is the smaller unit that 
can be accessed. For instance, a BUSize equals to 16 means that the 
smaller data transmission unit is one 16x16 reference block. The BU size 
is a design decision for efficient power management depending on the 
adopted search window dimension. One BU in the overlap is mapped to 
a specific memory line (composed of OvSPMSL bytes) along the 
OvSPMNB memory banks. Each OvSPM sector groups specific rows of 
the BUs along the overlap thickness (OvSPMSS). One entire line of BUs 
is completely stored into a group of same positioned sectors along the 

OvSPMNB memory blocks. In total, each OvSPM has OvSPMNS, to store 
the complete overlapping data. N89:;# = N��<	
=$>�?0/�	
 (3) OvSPM:B = BU:�D	 (4) OvSPMEF = BU:�D	 (5) OvSPM:G = HOv�����	

/BU:�D	J ∗ S*  (6) OvSPMEG = OvSPMEF ∗ HOv�����	

/BU:�D	J (7) 

The PrivSPM stores the search window samples, as expressed in Eq. 
(8)-(12). The data organization is similar to that presented for the 
OvSPMs except that the PrivSPM must store core-private search window 
instead of Tile overlaps. N;/�9:;# = N��<	
 (8) PrivSPM:B = BU:�D	 (9) PrivSPMEF = BU:�D	 (10) PrivSPM:G = HSWK/BU:�D	J ∗ S* (11) PrivSPMEG = PrivSPMEF ∗ HLMN/OPQRSTJ (12) 

IV. ADAPTIVE POWER MANAGEMENT OF SPMS 

In case where the overlap size is reduced when low motion is 
captured around the tiles boundary, we propose an adaptive power 



management scheme for the OvSPM in our dSVM architecture to reduce 
its leakage energy. Furthermore, PrivSPMs are less accessed when CUs 
near the Tile boundaries are encoded since most memory requests are 
actually performed in the OvSPMs. Therefore, our scheme power-gates 
the PrivSPMs regions that are not accessed due to the overlap 
intersection. 
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Fig. 12 Overlap sizing variation for several temporal distances (D factor). 

To capture the impact of temporal distance for overlap size 
prediction, we define a term “D” as the distance between the current and 
reference frames. This distance directly affects our overlap prediction. 
More distant frames (i.e. high D values) lead to high overlap size due to 
more intense motion activity. Smaller overlaps can be noted when D is 
decreasing. Fig. 12 illustrates the overlap size for MEs with different D 
factors. Our power management selects an appropriate sleep state 
according to the motion behavior: relaxed power-gating (i.e. putting idle 
sectors in data retentive modes) is used when we have high motion 
overlaps. In case of low motion overlaps, aggressive power-gating (i.e. 
putting sectors in power-OFF mode) is applied to save more leakage 
energy. 

1. managePowerOverlapSPM (Frame: FCurrent, FReference;  
TileBoundary: TileBoundaryID)     //frame-level management 

2. currOverlapUsage := 0;  
3. {µUsage, σUsage} := getOverlapUsages();     //run-time statistics 
4. DME := getPoc(FCurrent) – getPoc(FReference);     //overlap prediction (lines 3-4) 

5. PredOv(TileBoundaryID) := U μV
0+	 − σV
0+		μV
0+		μV
0+	 + σV
0+		μV
0+	 + 2. σV
0+		
If		D#[ = 1If	2 ≥ D#[ ≥ 3If	4 ≥ D#[ ≥ 7If	D#[ ≥ 8  

6. PowerMapOv(x,y) := b			S0			S3 										If	(x, y) ∈ to	predicted	overlap							otherwise  

7. For all CTU Є {Tile0, Tile1, …, Tilen-1}     //CTU-level management 
8.      SearchLimits := getSearchLimits(CTU); 

9.      PowerMapOv(x,y) := jPowerMap89S1S2
If	(x, y) ∉ (PredOv ∩ SearchLimits)	Else	If	(x, y)	shared	by	2	tilesElse	If	(x, y)	shared	by > 2	rstuv  

10.      SPM[TileBoundaryID].powerGate(PowerMapOv); 
11.      currOverlapUsage += performMotionEstimation(); 
12. End For 
13. store(currOverlapUsage); 
14. return; 

Fig. 13 Adaptive power management policy for the Overlapping SPM. 

1. managePowerPrivateSPM(Frame Tile: TileID) 
2. (∀	(x,y)	Є PowerMapSW, PowerMapSW(x,y) := S3); 
3. For all CTU Є TIleID     //CU level power-gating 
4.      For all TileBoundaryID Є TilePartitioning 

5.           PowerMapSW(x,y):=, S0PowerMap:x if		(x, y) ∈ PredOv(TileBoundary��)otherwise            

6.      End For 
7.      SPMPriv[TileID].powerGate(PowerMapSW); 
8.      performMotionEstimation(); 
9. End For 
10. return; 

Fig. 14 Adaptive power management policy for the Private SPM . 

Fig. 13 depicts our adaptive power management policy for the 
OvSPM. At frame level, online statistics of overlap SPMs usages for 
previous ME are generated (line 2). As shown in Fig. 12, using the “D” 
factor of the current ME as parameter, we predict the current overlap size 
(line 5). For all SPM lines outside the predicted overlap, the OFF state 

(S0) is assigned to the PowerMapOv corresponding position; otherwise, 
the ON state is assigned (S3). In CTU processing level (line 7), our 
power management checks for the non-accessed OvSPM positions that 
are inside the overlap prediction to put them in data retentive states 
(lines 8-9). S2 state is assigned for positions potentially accessed by 
more than two Tiles, while S1 state is used for overlap positions shared 
for only two Tiles. The overlap usage for the current ME is updated at 
every CTU processing (line 11) and saved to be used for future overlap 
predictions (line 13). 

The adaptive power management policy for the PrivSPMs is 
depicted in Fig. 14. At the beginning of a CTU processing, it checks for 
intersected positions between the core-private search window and any 
predicted overlap. For each intersection, it power-gates the 
corresponding PrivSPM positions (line 5 in Fig. 14). Note, both OvSPM 
and PrivSPM managements work in parallel in our dSVM system. 

V. EXPERIMENTAL RESULTS 

A. Experimental Setup 

The experimental analysis is based on the recommended HEVC 
common test conditions [13] using the HEVC test model (HM 11.0) 
[14]. We execute the experiments for 4-Tile and 8-Tile scenarios (each 
Tile executes on a dedicated core) with five search window dimensions: 
64x64, 96x96, 128x128, 192x192, and 256x256. Six test video 
sequences with different properties were evaluated: BaskettballDrive 
(BDrive), BQTerrace, Cactus and Kimono (HD1080p: 1920x1080), 
PeopleOnStreet (People) and NebutaFestival (Nebuta) (2K: 2500x1600). 
Other encoder specifications are: GOP=8, CABAC, FRExt, Random 
Access configuration, and TZ Search algorithm. 

For memory energy evaluation, we use the CACTI 6.5 
leakage/dynamic energies estimation for a 32nm SRAM-based SPM. 
The leakage reduction and wake-up energies were derived from the 
analytical model presented in [12]. The 4-Gbit Low-Power DDR2 
(LPDDR2) DRAM MT42L128M16D1GU-25WT electrical 
specifications [8] were used to determine all external memory energy 
components mentioned in Section II. As a design decision for combined 
coarse- and fine-grained SPM management, considering the most widely 
used video resolutions and search window sizes (as listed above), we 
adopt BUSize=16. 

To evaluate the savings of our dSVM architecture, we select two 
other comparison partners: (a) SPMs with Level C-based data reuse for 
each core, and (b) our dSVM with only the PrivSPMs and no shared 
OvSPMs. The energy evaluations consider the first 30 consecutive 
frames of each test video sequence. 

B. Energy Savings 

Tab. 1 presents the overall energy evaluation with a breakdown of 
off-chip and on-chip memory energy consumption. 

TAB. 1 OVERALL ENERGY CONSUMPTION EVALUATION 

 
SPMs 
Size 
[KB] 

On-Chip 
Energy 

[mJ] 

Off-Chip 
Energy 

[mJ] 

Overall 
Energy 

[mJ] 

Savings 
dSVM 

[%] 
Scenario 1: 4-Tile HD1080, 129x129 search window 

Level C [11] 144 16 587 603 36% 
Our PrivSPM Only 144 16 469 485 21% 
Our dSVM  614 33 351 384 - 

Scenario 2: 8-Tile HD1080, 129x129 search window 

Level C [11] 288 33 587 620 61% 
Our PrivSPM Only 288 32 462 494 51% 
Our dSVM  1098 63 179 242 - 

Tab. 1 shows that our complete dSVM architecture provides the 
best energy efficiency for the two tested scenarios. Considering the 
accumulated size of SPM blocks (private plus overlapping), the dSVM 
architecture presents the highest memory usage. However, our adaptive 
power management is able to significantly reduce the leakage 
consumption and accordingly adapting the power states to the predicted 



overlap size and shape. Therefore, the dSVM architecture can reduce 
the on-chip energy consumption being competitive with the related non-
shared memories approaches. Furthermore, this slight on-chip energy 
overhead is amortized by significant savings in the external memory 
transfers that leads to overall savings of 21%-36% compared to Level C 
and our PrivSPM Only solution (scenario 1), respectively. In the 
scenario 2, our energy savings even increase to 51%-61% compared to 
Level C and our PrivSPM Only solution, respectively. Note that our 
dSVM architecture provides increasing overall savings when more Tiles 
(i.e. parallel HEVC threads) are used (2x higher savings, on average). 
Extrapolating our results for more than 8 video Tiles (as more inter-
Tiles data reuse potential can be exploited), our dSVM can achieve 
even higher memory energy savings. 
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Fig. 15  External memory energy savings for 4-tile and 8-tile scenarios: (a) 

average savings for all sequences varying the search window size and (b) savings 

for each tested sequence (128x128 search window size) 
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Fig. 16  Leakage energy savings due to our dynamic power management of 

the dSVM architecture (128x128 search window size) 

Off-Chip Memory Energy Savings: Fig. 15 depicts the external 
memory energy savings of our dSVM for different search window sizes, 
input video test sequences, and the number of parallelized Tiles. Fig. 15 
shows that as more Tiles are used, more external memory energy is 
saved due to the larger overlap. Our dSVM architecture supersedes other 
comparison partners by exploiting our novel concept of both intra-Tile 
and inter-Tiles data reuse. The dSVM savings increase with the growing 
search window from 7% to 58% for the 4-Tiles partitioning and from 
17% to 71% for the 8-Tiles partitioning. This due to exploiting the 
shared memory accesses coming from different processing cores. 
Furthermore, there are savings also vary depending upon the video 
content: low motion videos leads to less overlap and less potential of 
reduction. In the best case, the Cactus sequence achieves an external 
memory energy reduction of 55% and 74% for 4-Tiles and 8-Tiles 
partitioning (using 128x128 search window size). 

On-Chip Memory Energy Savings: Fig. 16 depicts the on-chip 
leakage energy savings of our dSVM architecture due to our adaptive 
power management policy. On average, our policy reduces the leakage 
energy by 54% and 52%, considering 4-Tile and 8-Tile scenarios. Part of 
the savings is related to the PrivSPMs energy management, which 
captures the intersections of the search window positions with the any 

predicted overlap. Regarding the OvSPMs, our scheme can significantly 
reduce the leakage energy for low motion ME, where the overlap tends 
to be small. 

VI. CONCLUSION 

This work presented a distributed Scratchpad Video Memory 
Architecture for the next-generation parallel High Efficiency Video 
Coding. It exploits intra- and inter- video Tile level data reuse jointly 
through private and shared SPMs of different cores executing parallel 
HEVC threads. The SPM design is based on application-specific 
knowledge of HEVC and statistical analysis of memory access behavior 
w.r.t. the video content properties. To further reduce the leakage energy, 
we integrated an adaptive power management policy for SPMs that 
exploit the prediction of the overlapping accesses from different cores 
and their relationship to the video content properties. Our dSVM 
architecture provides up to 61% reduction in the overall memory energy 
and 54% in the leakage energy compared to state-of-the-art. Our 
proposed contribution enables energy-efficient multimedia systems 
supporting multiple threads of the next-generation HEVC encoder. 
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