
978-3-9815370-2-4/DATE14/©2014 EDAA

dSVM: Energy-Efficient Distributed Scratchpad Video Memory

Architecture for the Next-Generation High Efficiency Video Coding
Felipe Sampaio

1
, Muhammad Shafique

2
, Bruno Zatt

3
, Sergio Bampi

1
, Jörg Henkel

2

1
Informatics Institute, PPGC, Federal University of Rio Grande do Sul (UFRGS), Brazil

2
Chair for Embedded Systems (CES), Karlsruhe Institute of Technology (KIT), Germany

3
GACI, PPGC, CDTec, Federal University of Pelotas (UFPel), Brazil

{felipe.sampaio, bampi}@inf.ufrgs.br, bzatt@inf.ufpel.edu.br, {muhammad.shafique, henkel}@kit.edu

Abstract— An energy-efficient distributed Scratchpad Video

Memory Architecture (dSVM) for the next-generation parallel High
Efficiency Video Coding is presented. Our dSVM combines private and
overlapping (shared) Scratchpad Memories (SPMs) to support data
reuse within and across different cores concurrently executing multiple
parallel HEVC threads. We developed a statistical method to size and
design the organization of the SPMs along with a supporting memory
reading policy for energy efficiency. The key is to leverage the HEVC
and video content knowledge. Furthermore, we integrate an adaptive
power management policy for SPMs to manage the power states of
different memory parts at run time depending upon the varying video
content properties. Our experimental results illustrate that our dSVM
architecture reduces the overall memory energy consumption by up to
51%-61% compared to parallelized state-of-the-art solutions [11]. The
dSVM external memory energy savings increase with an increasing
number of parallel HEVC threads and size of search window.
Moreover, our SPM power management reacts to the current video
properties and achieves up to 54% on-chip leakage energy savings.

Keywords—Video Memory, Scratchpad Memory, HEVC,

Application-Specific Optimizations, Energy Efficiency, Adaptivity.

I. INTRODUCTION

To bridge the increasing gaps between the processor and memory
scaling/speed in many-cores era with memory-intensive applications,
specialization of memory architectures has become one of most
important design issues. Multiple cores simultaneously accessing the
same memory infrastructure incur high energy consumption and
contention. Meanwhile, embedded multi-/many-core processors are
subjected to stringent energy constraints. These issues intricate when
executing memory-intensive applications like video coding, image
matching, etc.

The High Efficiency Video Coding (HEVC) is the next-generation
video coding standard [1] that provides double compression compared to
its predecessor H.264/AVC. However, this comes at the cost of >40%
more computation effort compared to the H.264 encoder as shown by
our experimental analysis in Fig. 1a. This increased complexity is due to
the novel Coding Tree Unit (CTU) structure [2] and a plethora of new
prediction modes that result in an increase mode decision space [3].
Moreover, these new coding features lead to >2x more memory accesses
compared to H.264/AVC due to more intensive reference frames storage
and transmission (as in Fig. 1b). A large amount of off-/on-chip memory
accesses and large-sized on-chip memories lead to high energy
consumption in HEVC encoders. To achieve high performance, HEVC
encoders can be parallelized on multi-/many-core processing platforms.
However, this may lead to further increase in the energy consumption
and memory pressure due to multiple encoding cores requiring the same
data from the memory infrastructure, posing new challenges for the
embedded multimedia systems.

A large body of research explored efficient cache organizations and
on-chip memory architectures for general purpose multi-/many-core
processors [18]. To overcome/alleviate the hardware overhead of caches,
Scratch-Pad Memories (SPMs) evolved for energy-constrained
embedded systems [19]. Instead of providing hardware support for
mapping data/code from off-chip to on-chip memory, SPM allows
designer/compiler to perform content management saving up to 30% of

energy compared to complete caches under certain operating scenarios
[19]1. The challenge is to efficiently utilize the SPMs.

Considering the above-discussed memory issues of HEVC, general-
purpose techniques for SPM management [20]-[22] may not be energy
efficient. Recent trends demonstrated benefits of application-specific
SPMs management for low-power H.264 video encoding for single core
or ASIC-based systems [4]-[7]. However, these works lack support for
many-cores which are more memory restrictive and do not address
memory contention in private vs. shared memories for cores
synchronization. Moreover, these works do not account for the novel
coding model of the advanced HEVC that can be leveraged to achieve
even higher energy savings as we will motivate in Section I.B.

In summary, there is a strong need for application-specific memory
design targeting energy-efficient high efficiency video encoding on
embedded multi-/many-core platforms. Our goal is to leverage the
application-specific characteristics of the emerging HEVC standard to
increase the potential of energy savings.

HEVC H.264/AVC

0

2E+11

4E+11

6E+11

8E+11

1E+12

1,2E+12

1,4E+12

1 2 3
M

e
m

o
ry

 B
W

.
[G

B
/s

]

0.5

1.5

1

3

2

2.5

0
HD720 HD1080 2K

0

2

4

6

8

10

12

HD720 HD1080 2K

E
n

co
d

in
g

 T
im

e
 [

h
o

u
rs

]

6

3

9

12

0
HD720p HD1080p 2K

(a) (b)

Fig. 1 HEVC vs. H.264/AVC encoder (a) encoding time; (b) memory accesses.

(average results for commonly used test sequences [13], 128x128 search window,

H.264/AVC and HEVC test models, 300 frames)

Before moving further, we will present basics of HEVC to the level
of details necessary to understand our novel contribution.

A. Overview of HEVC Coding Tools and Related Memory Issues

To facilitate parallelization with minimal quality loss, the
standardization committee (JCT-VC) introduced the novel concept of
Tiles2 in HEVC, which is different from slices that are used for video
streaming [17]. Tiles divide one video frame into rectangular regions that
can be coded independent of each other, thus increasing the thread level
parallelism [15][16]. Fig. 2 presents an example of 4-Tile partitioning.
Each Tile is assigned to a specific core without any data dependency
with another Tile processing.

The inter-frame prediction with Motion Estimation (ME) is the most
complex processing step in the HEVC encoder as it corresponds to
>80% of the computation time and energy consumption of HEVC
encoders. ME searches the best match of a block from the current frame
in a set of so-called reference frames3. The search is performed in a
restricted search window. The reference frames are typically stored in
the external/off-chip memory while the search windows are stored in on-
chip memories. Due to the memory management for fetching the search
window samples from the off-chip and increased leakage energy for
keeping them in the on-chip memory, the ME becomes the most

1
 Examples: IBM Cell Processor [23], ARM10E [24], TI TMS370CX7X [25], etc.

2
 These are video Tiles, i.e. different from hardware tiles in many-core processors.

3
 These are previously coded and reconstructed frames.

memory–intensive processing block [4]-[7]. As a result, 70%-90% of the
ME energy is spent in the off-chip and on-chip memories (leakage and
dynamic) [4]-[7]. Furthermore, multiple Tiles amplify the memory
pressure since more data must be fetched/stored during the same time
instant.

Tile 0 Tile 1

Tile 2 Tile 3

Tiles Boundaries

Multicore Processor

Core 0

Core 1

Core 2

Core 3

Video Frame

Independent data

processing for different tiles

M
e
m

o
ry

H

ie
ra

rc
h

y

Fig. 2 Video Tiles and multicore organization for parallel HEVC.

Another novel coding tool of the HEVC that aggravates the memory
problem is variable-sized Coding Units (CUs). The HEVC decision is
based on a quad-tree structure (see Fig. 3). The root for the decision is
the 64x64 CU, called coding-tree block (CTB). The encoder is
responsible for deciding what is the best partitioning for the current CTB
that provides the best coding efficiency, in terms of bitrate and coded
video quality. Current HEVC draft also supports 32x32, 16x16 and 8x8
CU sizes [17].

(0) (8)

(1) (2) (3) (9) (10) (18)

(17)(12)(11)(7)(5) (6)(4)

(13) (14) (15) (16)

64

64

(0)

(1) (2)

(3)

(8)

(9) (10)

(18)

(4) (5)

(6) (7)

(12)(11)

(17)

(13) (14)(15) (16)

Fig. 3 An example of HEVC coding tree unit organization

B. Goals and Motivational Analysis

The main goal of our work is to leverage the application-specific
knowledge of the emerging HEVC standard (i.e. its new coding tools)
and video content properties to develop an energy-efficient SPM-based
on-chip video memory. The key is (1) to analyze and exploit the memory
access behavior in the video Tiles-based processing; and (2) the
overlapping reference samples that define the shared access patterns for
different cores processing different Tiles. The samples near to the tile
boundaries in the reference frame must be fetched/stored by multiple
cores, leading to external memory contention, redundant memory access
and extra on-chip storage (causing energy wastage). An example in Fig.
4a depicts the overlapping accesses performed for more than one tile
processing core (gray and black regions).

In the following, we highlight important memory related issues
during the Tile-based HEVC processing with the help of our
experimental case study and expose the potential of application-specific
optimization with the help of several observations.

Analysis-1: The overlapping regions tend to grow for an increased
number of Tiles (assuming 1 Tile per core). The overlap size trend is
plotted for growing number of Tiles in the Fig. 4b. In the worst case, the
overlap reaches 50% in a 16-core HEVC encoder. As larger is the
overlapping area, more cores must concurrently access the same
reference data from the external memory without any data reuse.
Therefore, it may be beneficial to design dedicated SPMs for the
overlapping regions to avoid external memory retransmission of the
Tiles shared reference data, saving off-chip memory energy.

Analysis-2: Although the ME is performed within a search window,
the search algorithm may not require all the samples. For instance, the
TZ search algorithm in the HEVC software [14] does not necessarily
explores the entire search window analysis [6]. Moreover, adaptive ME
algorithms feature changing centering of the search window depending
upon the already coded neighboring CUs. As a result, the Tiles overlap
shape may substantially vary according to the video content as shown in

Fig. 5. Furthermore, the samples inside the overlapping regions have
different access intensities. It shows that, not all parts of the on-chip
video memory (storing the overlapping samples) will be accessed for
every CU depending on the video content. Even for the accessed sectors,
the access distribution is different depending on the video content
characteristics. Therefore, the key is to leverage the overlapping memory
access knowledge to predict the unused or less-frequently used memory
sectors for adaptive power management of the SPMs.

CTUA CTUB

Tile 0 Tile 1

Tile 2 Tile 3 Overlapping region!

CTUC CTUD

0%

20%

40%

60%

80%

100%

1 Tile 2 Tiles 4 Tiles 8 Tiles 16 Tiles

Overlapping Private

0

40

20

100

T
il

e
s

O
v

e
rl

a
p

p
in

g

[%
 o

f
fr

a
m

e
 d

a
ta

]

2-core
encoder

60

80

4-core
encoder

8-core
encoder

12-core
encoder

16-core
encoder

Overlapping Increasing

Current Frame Reference Frame(a)

(b)

Search Window

Fig. 4 (a) Example of Tile partitioning and of the overlapping problem;

(b) Evaluation of overlapping accesses for different number of Cores (HD1080p;

“BasketballDrive” sequence; 127x127 search window)

Hint-2: Heterogeneous overlapping

region: sizing and shaping

Hint-1: Different memory access

intensity: high/low motion regions

High accessLow access

0 600 1200 1800

0

500

1000

750

250

x coordinate

y
 c

o
o

rd
in

a
te

700
800

900

1000
1100

1100

500

600

700

800

1000

900
Zoom

Fig. 5 Distribution of the overlapping samples

(HD1080p; “BasketballDrive” sequence; 127x127 search window)

C. Our Novel Contributions

We propose an energy efficient distributed Scratchpad video
memory architecture (dSVM) for the next-generation High-Efficiency
Video Coding (HEVC) exploiting the video Tiles based parallel
processing on multi/many-core processors. It employs:

• A Distributed Scratchpad Video Memory Architecture (Section
III) that integrates several private and overlapping (shared) SPMs to
support intra-Tile and inter-Tiles data reuse, respectively, among
various cores. We develop a scheme that leverages the offline
statistical analysis of HEVC and video content to size and design the
organization of SPMs. A reading policy is designed for energy-
efficient data fetching.

• Adaptive Power Management of dSVM (Section IV) that takes
into account the size and the shape of the predicted overlapping area
to select appropriate sleep states for different regions of private and
overlapping SPMs.

We evaluate the energy efficiency of our dSVM architecture for
various recommended test video sequences for different number of Tiles.

To the best of authors’ knowledge, this is the first work towards
energy-efficient on-chip memory hierarchy for the emerging Tile-based
parallel HEVC encoders.

II. MEMORY MODELS AND NOTATIONS

Every data transmission from/to memory is based on a fixed basic
access unit (BU), which corresponds to a BUSize*BUSize picture block.
When external memory communication is required, then several BUs
are accessed in one burst operation to increase the energy efficiency.

On-Chip SRAM Organization Model: We adopt a bank-based
partitioning Scratchpad memory (SPM) model to allow for parallel data
accesses; see Fig. 6. Each SPM is composed of NB number of banks. To
facilitate parallel reading, different rows of a BU are stored in parallel

banks. A bank Bi is composed of NS sectors of size SS. Each sector has NL

number of lines of size SL.

Different sectors of the SPM can be individually power-gated using
a multiple sleep-state transistor model supporting four power states [12]:
S0=OFF, [S1,S2]=Data Retentive and S3=ON, where EStatic(S0) <
EStatic(S1) < EStatic(S2) < EStatic(S3). Still, each state have also increasing
associated wake-up energies (WE(S0)> WE(S1)> WE(S2)> WE(S3)= 0).

Scratchpad Video Memory

…Bank 0 Bank NB-1Bank 1 Bank 2

… ………

Sector

Memory
line

…On-Chip
Power
Gating
Control

Sleep
transistors

ST

ST

Fig. 6 Organization model of our scratchpad video memory

Off-Chip DDR DRAM Model: For energy estimation of the off-
chip memory, we adopt the DDR (Dual Data Rate) DRAM model
depicted in [9]-[10]. The total power is derived by the composition of six
components: (1) page activation energy (EACT), (2) write energy (EWR),
(3) read energy (ERD), (4) I/O pins energy (EDQ), (5) refresh energy
(EREF), and (6) standby energy (ESTBY). In the experimental analysis, we
assume that the memory will always operate in the active state and the
standby energy will be equivalent to the EACT_STBY component.

III. ARCHITECTURE OF OUR DISTRIBUTED SCRATCHPAD

VIDEO MEMORY

Fig. 7 depicts the block diagram of our distributed Scratchpad video
memory architecture (dSVM) for multi-core HEVC encoding. Each
core4 is assigned the processing of one out of the n video Tiles. The
SPMs are used to store different parts of the reference frame used for
ME or other encoding blocks. We propose two levels of SPMs:
1) A core-private SPM (PrivSPM) to store the search window data

corresponding to each CU for intra-Tile data reuse, and
2) A core-shared SPM (OvSPM) to store the Tiles overlapping

reference data for inter-Tiles data reuse.

Data Bus

Address Bus

External Memory

D
D

R

A
rb

it
e

r

Multicore Processor

Processing
Core 0

Processing
Core 1

Processing
Core 2

Processing
Core 3

Processing
Core n

…

Cache
Hierarchy

(Instruction
and Program

Data)

Memory
Controller

Adaptive
Power

Management
of SPMs

SPM Access
Management

Unit

Private SPMs

SPM0

SPM1

SPM2

SPM3

SPMn

…

Motion
Estimation
Analyzer

Overlapping SPMs
(Tiles Shared)

SPMHor

SPMVer

Interconnect Bus
External

Memory AGU

Fig. 7 Our dSVM architecture integrated in a HEVC encoder

4
 A core has a small private instruction and data cache to store the program code and
common data (like variables). The SPM is used for large data like reference frame.

Each core sends the search window data requests to the SPM access
management module using the vertical/horizontal frame coordinates. The
SPM access management unit will schedule the memory accesses
according to our DRAM/SPM reading policy (see Section III.A). The
overlap patters and size is extracted by the Motion Estimation Analyzer
and forwarded to (i) the SPM access management module to map the
overlapping region to the on-chip OvSPMs; and (ii) the adaptive power
management unit for selecting an appropriate sleep state for the idle
SPM regions. If external memory access is required, the frame positions
are translated to physical DRAM memory position addresses by the
Address Generation Unit (External Memory AGU in Fig. 7). The
adaptive power management unit analyzes the Tiles overlap size to
adaptively predict the less-likely accessed or idle memory sectors of the
PrivSPMs and OvSPMs and to select an appropriate sleep state in order
to save SPM leakage energy.

In the following sections, we detail the SPM access management
module, SPM sizing and design, and adaptive power management
policy.

A. SPM Access Management Unit: Reading Policy and External

Memory Arbitering

Our SPM access management unit implements the memory reading
policy (see flowchart of Fig. 8) that takes advantage from the tiles
overlap to increase the data-reuse of the reference frames samples. If a
core i requests data from the SPM memory organization, as the first step,
the SPM access management unit checks along with the overlap
prediction if the requested data potentially belongs to one tiles
overlapping region. Assuming that the data is inside an overlap related to
the tiles intersection T, the corresponding cores-shared OvSPMT is then
accessed. In this case, the inter-Tiles data reuse is exploited, since all
tiles that share the tile boundary T may request the same data. For non-
overlapping regions, the PrivSPMi is accessed, leading to intra-Tile data
reuse. Note that for each core data request, either the shared (OvSPMT)
or the private (PrivSPMi) memory is accessed. In the case of a hit, the
data is simply forwarded to core i. In case of a miss, the data must be
fetched from the external memory and forwarded to the core i. For
improved energy efficiency, the SPM access management unit requests a
burst of samples from the DRAM memory, which reduces the DRAM
page activation energy and amortizes the initial latency for memory
random access [7]. Furthermore, the corresponding SPM is filled with
the fetched data. To handle parallel accesses to the OvSPM, we employ a
priority based scheduling.

Fig. 8 Flow of our SPM access management unit with the reading policy

Hit Miss DRAM

Core 0 Core 1 Core 0 Core 1 Core 0 Core 1

N Y N Y N Y N Y N

(a) (b) (c)

Fig. 9 An example of data interaction for a 2-core system

An Example: Fig. 9 illustrates an example for our memory reading
policy in three different cases for a 2-core encoding system.

a) In the beginning, the on-chip SPMs are empty and each request will
lead to external memory fetching (OvSPM and PrivSPM misses).
Fig. 9 shows that the overlap prediction is analyzed to determine
whether the reference data is stored in the PrivSPMi or in the
OvSPMT. During the frame processing, due to the intra-Tile and
inter-Tiles reused data, more hits occur and even less external
memory communication is needed.

b) The second case in Fig. 9 depicts tile-centering CUs processing
where only the PrivSPMs is accessed (i.e. only intra-Tile data reuse).

c) The last case shows the best case of energy efficiency, where
memory hits are observed for both PrivSPMs (i.e. intra-Tile data
reuse) and OvSPMs (i.e. inter-Tiles data reuse) accessing.

B. Design of Scratchpad Video Memories

A key challenge is to determine an appropriate size and organization
of different SPMs (PrivSPMs and OvSPMs) to optimize for leakage and
dynamic energy. We propose an application-guided methodology that
exploits the statistical analysis of memory access behavior Tile-
parallelized HEVC in order to increase the energy efficiency of our
dSVM architecture.

Our methodology leverages the Tiles overlap behavior that depends
on the search window size and the video motion properties. Adaptive ME
algorithms change the center of their search windows by using spatial
predictors (i.e., motion vectors of previously-coded CUs). Moreover, low
motion CUs will lead to less search window usage. Hence, the optimal
overlapping memory size for each video sequence follows a statistical
distribution of the near-boundaries ME motion predictors. Fig. 10a
depicts statistics of the tiles overlap varying the search window size. On
average, the overlap linearly increases with the increase n the search
range. The more or less concentrated distribution around the average size
hints towards the video motion properties. Different regions near the tile
boundaries have different motion characteristic, which leads to more or
less memory access overlaps.

-10 -8 -6 -4 -2 0 2 4 6 8 10

(a) Overlapping Statistics (b) Motion Delta PDF

32x32 64x64 128x128 192x192 256x256
0

100

200

300

400

Search Window

O
v

e
rl

a
p

 T
h

ic
k

n
e

ss

[#
sa

m
p

le
s]

1.4

1.2

1.0

0.8

0.6

0.4

0
0 10-10 -5 5

Motion Delta

0.2

P
ro

b
a

b
il

it
y

BasketballDrive

Cactus

BQTerrace

Kimono

Fig. 10 (a) Overlapping statistics for increasing search window size for the

“BasketballDrive” test video sequence;

(b) motion delta distribution for several test video sequences

To statistically define the motion property near a specific tile boundary
of a given video, we define the ∆Motion (motion delta) metric as being the
video correlated parameter used for determining the overlap size, as
presented in Fig. 11. For each frame of the video and for each defined
Tile boundary, the algorithm obtains the used ME spatial predictors
(lines 7-8). The difference of the predictors used by the near-boundary
CUs from the two Tile boundary sides (SideA and SideB) is then
calculated (lines 12-17). This difference will represent the access search
range of SideA CUs in the SideB reference frame region, and vice-versa.
The Probability Density Function (PDF) of the motion delta metric is
then calculated (line 20), where µ∆ and σ∆ are the statistical average and
standard deviation, respectively, of the motion delta parameters extracted
from the video. The PDFs for HD1080p test sequences are plotted in Fig.
10b. We can note diverse behaviors depending on the input video: high
motion videos like BasketballDrive and Kimono present more spread
distributions, while low motion videos like Cactus and BQTerrace have
more concentrated distributions. Using the motion parameter and the
search window dimension, we define the Tiles overlap sizing formula for
the overlap thickness (OvThickness) and length (OvLength) in Eq. (1)-(2),
respectively. The signal of the motion delta represents the video motion
direction near the target tiles boundary. Negative values mean that we

have opposite motion directions, which decreases the overlap size, while
positive motion delta values increases the range of the overlap.

1. determineMotionDelta(Video: V; TilePartitioning: TP):
2. ListΔ = [];
3. For all Frame Є V
4. For all TileID Є TP
5. PredMap[TileID] = [];
6. For all CU Є TileID
7. CU.performMotionEstimation();
8. PredMap[TileID].insert(CU.getUsedPredictor());
9. End For
10. For all TileBoundaryID Є TP
11. //Let SideA and SideB the two tile boundary sides
12. For all CUSideA, CUSideB Є TileBoundaryID
13. PredA := PredMap[TileSideA][CUSideA][CoordID];
14. PredB := PredMap[TileSideB][CUSideB][CoordID];
15. ΔValue := |PredA – PredB|;
16. ListΔ.append(DeltaValue);
17. End For
18. End For
19. End For
20. {µΔ, σΔ} = norm_dist(ListΔ);
21. return {µΔ, σΔ};

Fig. 11 Motion knowledge extraction for overlapping SPM sizing Ov������	

(TileBoundary��) = 	2 × SW + Δ#$%�$�	
where: Δ#$%�$� = μ' + 2 ∗ σ' (1)

 Ov*	�+%�(TileBoundary��) = ,H./01	W./01	 	if	vertical	if	horizontal	 (2)

Based on statistical evaluations and the memory organization model
defined in the Section II, we determine the physical sizing for SPMs in
our dSVM; see Eq. (3)-(7). For the overlapping data, each Tile boundary
will leads to a specific OvSPM design. Our sizing formulation is based
on the definition of the BU size (BUSize), which is the smaller unit that
can be accessed. For instance, a BUSize equals to 16 means that the
smaller data transmission unit is one 16x16 reference block. The BU size
is a design decision for efficient power management depending on the
adopted search window dimension. One BU in the overlap is mapped to
a specific memory line (composed of OvSPMSL bytes) along the
OvSPMNB memory banks. Each OvSPM sector groups specific rows of
the BUs along the overlap thickness (OvSPMSS). One entire line of BUs
is completely stored into a group of same positioned sectors along the

OvSPMNB memory blocks. In total, each OvSPM has OvSPMNS, to store
the complete overlapping data. N89:;# = N��<	
=$>�?0/�	
 (3) OvSPM:B = BU:�D	 (4) OvSPMEF = BU:�D	 (5) OvSPM:G = HOv�����	

/BU:�D	J ∗ S* (6) OvSPMEG = OvSPMEF ∗ HOv�����	

/BU:�D	J (7)

The PrivSPM stores the search window samples, as expressed in Eq.
(8)-(12). The data organization is similar to that presented for the
OvSPMs except that the PrivSPM must store core-private search window
instead of Tile overlaps. N;/�9:;# = N��<	
 (8) PrivSPM:B = BU:�D	 (9) PrivSPMEF = BU:�D	 (10) PrivSPM:G = HSWK/BU:�D	J ∗ S* (11) PrivSPMEG = PrivSPMEF ∗ HLMN/OPQRSTJ (12)

IV. ADAPTIVE POWER MANAGEMENT OF SPMS

In case where the overlap size is reduced when low motion is
captured around the tiles boundary, we propose an adaptive power

management scheme for the OvSPM in our dSVM architecture to reduce
its leakage energy. Furthermore, PrivSPMs are less accessed when CUs
near the Tile boundaries are encoded since most memory requests are
actually performed in the OvSPMs. Therefore, our scheme power-gates
the PrivSPMs regions that are not accessed due to the overlap
intersection.

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

300

200

100

0
6 100 4 9

#ME Order [Random Access HEVC Configuration]

O
v
e

rl
a

p
 S

iz
e

 [
K

B
]

|D|=2

|D|=4
|D|=8

|D|=1

1 2 3 75 8 11 12 13 14

Relaxed Power-Gating Aggressive Power-Gating

Fig. 12 Overlap sizing variation for several temporal distances (D factor).

To capture the impact of temporal distance for overlap size
prediction, we define a term “D” as the distance between the current and
reference frames. This distance directly affects our overlap prediction.
More distant frames (i.e. high D values) lead to high overlap size due to
more intense motion activity. Smaller overlaps can be noted when D is
decreasing. Fig. 12 illustrates the overlap size for MEs with different D
factors. Our power management selects an appropriate sleep state
according to the motion behavior: relaxed power-gating (i.e. putting idle
sectors in data retentive modes) is used when we have high motion
overlaps. In case of low motion overlaps, aggressive power-gating (i.e.
putting sectors in power-OFF mode) is applied to save more leakage
energy.

1. managePowerOverlapSPM (Frame: FCurrent, FReference;
TileBoundary: TileBoundaryID) //frame-level management

2. currOverlapUsage := 0;
3. {µUsage, σUsage} := getOverlapUsages(); //run-time statistics
4. DME := getPoc(FCurrent) – getPoc(FReference); //overlap prediction (lines 3-4)

5. PredOv(TileBoundaryID) := U μV
0+	 − σV
0+		μV
0+		μV
0+	 + σV
0+		μV
0+	 + 2. σV
0+		
If		D#[= 1If	2 ≥ D#[≥ 3If	4 ≥ D#[≥ 7If	D#[≥ 8

6. PowerMapOv(x,y) := b			S0			S3 										If	(x, y) ∈ to	predicted	overlap							otherwise

7. For all CTU Є {Tile0, Tile1, …, Tilen-1} //CTU-level management
8. SearchLimits := getSearchLimits(CTU);

9. PowerMapOv(x,y) := jPowerMap89S1S2
If	(x, y) ∉ (PredOv ∩ SearchLimits)	Else	If	(x, y)	shared	by	2	tilesElse	If	(x, y)	shared	by > 2	rstuv

10. SPM[TileBoundaryID].powerGate(PowerMapOv);
11. currOverlapUsage += performMotionEstimation();
12. End For
13. store(currOverlapUsage);
14. return;

Fig. 13 Adaptive power management policy for the Overlapping SPM.

1. managePowerPrivateSPM(Frame Tile: TileID)
2. (∀	(x,y)	Є PowerMapSW, PowerMapSW(x,y) := S3);
3. For all CTU Є TIleID //CU level power-gating
4. For all TileBoundaryID Є TilePartitioning

5. PowerMapSW(x,y):=, S0PowerMap:x if		(x, y) ∈ PredOv(TileBoundary��)otherwise

6. End For
7. SPMPriv[TileID].powerGate(PowerMapSW);
8. performMotionEstimation();
9. End For
10. return;

Fig. 14 Adaptive power management policy for the Private SPM .

Fig. 13 depicts our adaptive power management policy for the
OvSPM. At frame level, online statistics of overlap SPMs usages for
previous ME are generated (line 2). As shown in Fig. 12, using the “D”
factor of the current ME as parameter, we predict the current overlap size
(line 5). For all SPM lines outside the predicted overlap, the OFF state

(S0) is assigned to the PowerMapOv corresponding position; otherwise,
the ON state is assigned (S3). In CTU processing level (line 7), our
power management checks for the non-accessed OvSPM positions that
are inside the overlap prediction to put them in data retentive states
(lines 8-9). S2 state is assigned for positions potentially accessed by
more than two Tiles, while S1 state is used for overlap positions shared
for only two Tiles. The overlap usage for the current ME is updated at
every CTU processing (line 11) and saved to be used for future overlap
predictions (line 13).

The adaptive power management policy for the PrivSPMs is
depicted in Fig. 14. At the beginning of a CTU processing, it checks for
intersected positions between the core-private search window and any
predicted overlap. For each intersection, it power-gates the
corresponding PrivSPM positions (line 5 in Fig. 14). Note, both OvSPM
and PrivSPM managements work in parallel in our dSVM system.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

The experimental analysis is based on the recommended HEVC
common test conditions [13] using the HEVC test model (HM 11.0)
[14]. We execute the experiments for 4-Tile and 8-Tile scenarios (each
Tile executes on a dedicated core) with five search window dimensions:
64x64, 96x96, 128x128, 192x192, and 256x256. Six test video
sequences with different properties were evaluated: BaskettballDrive
(BDrive), BQTerrace, Cactus and Kimono (HD1080p: 1920x1080),
PeopleOnStreet (People) and NebutaFestival (Nebuta) (2K: 2500x1600).
Other encoder specifications are: GOP=8, CABAC, FRExt, Random
Access configuration, and TZ Search algorithm.

For memory energy evaluation, we use the CACTI 6.5
leakage/dynamic energies estimation for a 32nm SRAM-based SPM.
The leakage reduction and wake-up energies were derived from the
analytical model presented in [12]. The 4-Gbit Low-Power DDR2
(LPDDR2) DRAM MT42L128M16D1GU-25WT electrical
specifications [8] were used to determine all external memory energy
components mentioned in Section II. As a design decision for combined
coarse- and fine-grained SPM management, considering the most widely
used video resolutions and search window sizes (as listed above), we
adopt BUSize=16.

To evaluate the savings of our dSVM architecture, we select two
other comparison partners: (a) SPMs with Level C-based data reuse for
each core, and (b) our dSVM with only the PrivSPMs and no shared
OvSPMs. The energy evaluations consider the first 30 consecutive
frames of each test video sequence.

B. Energy Savings

Tab. 1 presents the overall energy evaluation with a breakdown of
off-chip and on-chip memory energy consumption.

TAB. 1 OVERALL ENERGY CONSUMPTION EVALUATION

SPMs
Size
[KB]

On-Chip
Energy

[mJ]

Off-Chip
Energy

[mJ]

Overall
Energy

[mJ]

Savings
dSVM

[%]
Scenario 1: 4-Tile HD1080, 129x129 search window

Level C [11] 144 16 587 603 36%
Our PrivSPM Only 144 16 469 485 21%
Our dSVM 614 33 351 384 -

Scenario 2: 8-Tile HD1080, 129x129 search window

Level C [11] 288 33 587 620 61%
Our PrivSPM Only 288 32 462 494 51%
Our dSVM 1098 63 179 242 -

Tab. 1 shows that our complete dSVM architecture provides the
best energy efficiency for the two tested scenarios. Considering the
accumulated size of SPM blocks (private plus overlapping), the dSVM
architecture presents the highest memory usage. However, our adaptive
power management is able to significantly reduce the leakage
consumption and accordingly adapting the power states to the predicted

overlap size and shape. Therefore, the dSVM architecture can reduce
the on-chip energy consumption being competitive with the related non-
shared memories approaches. Furthermore, this slight on-chip energy
overhead is amortized by significant savings in the external memory
transfers that leads to overall savings of 21%-36% compared to Level C
and our PrivSPM Only solution (scenario 1), respectively. In the
scenario 2, our energy savings even increase to 51%-61% compared to
Level C and our PrivSPM Only solution, respectively. Note that our
dSVM architecture provides increasing overall savings when more Tiles
(i.e. parallel HEVC threads) are used (2x higher savings, on average).
Extrapolating our results for more than 8 video Tiles (as more inter-
Tiles data reuse potential can be exploited), our dSVM can achieve
even higher memory energy savings.

0%

20%

40%

60%

80%

1 2 3 4 5

0%

20%

40%

60%

80%

1 2 3 4 5 6

80

60

40

20

0

E
x

te
rn

a
l
M

e
m

o
ry

 E
n

e
rg

y
 S

a
v

in
g

s
 [

%
]

(O
u

rs
 c

o
m

p
a
re

d
 t
o

 L
e
ve

l
C

 a
n

d
 O

u
rs

 P
ri
v-

O
n

ly
)

BDrive BQTerrace Cactus Kimono Nebuta People

80

60

40

20

0
32x32 64x64 128x128 192x192 256x256

Our savings compared to Level C

Our savings compared to Priv-Only
4-Tile 8-Tile

Search window size

Video sequence

(a)

(b)

Fig. 15 External memory energy savings for 4-tile and 8-tile scenarios: (a)

average savings for all sequences varying the search window size and (b) savings

for each tested sequence (128x128 search window size)

0%

20%

40%

60%

80%

4-Tile 8-Tile

BDrive BQTerrace Cactus Kimono Nebuta People

80

60

40

20

0

O
n

-C
h

ip
 E

n
e

rg
y

S
a
v

in
g

s
 [
%

]

Fig. 16 Leakage energy savings due to our dynamic power management of

the dSVM architecture (128x128 search window size)

Off-Chip Memory Energy Savings: Fig. 15 depicts the external
memory energy savings of our dSVM for different search window sizes,
input video test sequences, and the number of parallelized Tiles. Fig. 15
shows that as more Tiles are used, more external memory energy is
saved due to the larger overlap. Our dSVM architecture supersedes other
comparison partners by exploiting our novel concept of both intra-Tile
and inter-Tiles data reuse. The dSVM savings increase with the growing
search window from 7% to 58% for the 4-Tiles partitioning and from
17% to 71% for the 8-Tiles partitioning. This due to exploiting the
shared memory accesses coming from different processing cores.
Furthermore, there are savings also vary depending upon the video
content: low motion videos leads to less overlap and less potential of
reduction. In the best case, the Cactus sequence achieves an external
memory energy reduction of 55% and 74% for 4-Tiles and 8-Tiles
partitioning (using 128x128 search window size).

On-Chip Memory Energy Savings: Fig. 16 depicts the on-chip
leakage energy savings of our dSVM architecture due to our adaptive
power management policy. On average, our policy reduces the leakage
energy by 54% and 52%, considering 4-Tile and 8-Tile scenarios. Part of
the savings is related to the PrivSPMs energy management, which
captures the intersections of the search window positions with the any

predicted overlap. Regarding the OvSPMs, our scheme can significantly
reduce the leakage energy for low motion ME, where the overlap tends
to be small.

VI. CONCLUSION

This work presented a distributed Scratchpad Video Memory
Architecture for the next-generation parallel High Efficiency Video
Coding. It exploits intra- and inter- video Tile level data reuse jointly
through private and shared SPMs of different cores executing parallel
HEVC threads. The SPM design is based on application-specific
knowledge of HEVC and statistical analysis of memory access behavior
w.r.t. the video content properties. To further reduce the leakage energy,
we integrated an adaptive power management policy for SPMs that
exploit the prediction of the overlapping accesses from different cores
and their relationship to the video content properties. Our dSVM
architecture provides up to 61% reduction in the overall memory energy
and 54% in the leakage energy compared to state-of-the-art. Our
proposed contribution enables energy-efficient multimedia systems
supporting multiple threads of the next-generation HEVC encoder.

ACKNOWLEDGMENTS

This work was partly supported by the German Research Foundation
(DFG) as part of the Transregional Collaborative Research Centre
"Invasive Computing" (SFB/TR 89); http://invasic.de and partly
supported by DAAD and CAPES as part of the PROBRAL project
"VideoArch3D - Power-Efficient Techniques for 3D-Multimedia".

REFERENCES

[1] B. Bross, W. J. Han, J. R. Ohm, G. J. Sullivan, T. Wiegand, “High Efficiency Video
Coding (HEVC) text specification draft 7”, May 2012.

[2] D. Marpe, et al, “Video compression using nested quadtree structures, leaf merging,
and improved techniques for motion representation and entropy coding,” IEEE
TCSVT, vol. 20, no. 12, pp. 1676–1687, 2010.

[3] B. M. T. Pourazad, C. Doutre, M. Azimi, P, Nasiopoulos, “HEVC: The New Gold
Standard for Video Compression: How Does HEVC Compare with H.264/AVC?,”
IEEE CEM, pp. 36-46, 2012.

[4] B. Zatt, M. Shafique, F. Sampaio, L. Agostini, S. Bampi, J. Henkel, "Run-time
adaptive energy-aware motion and disparity estimation in multiview video coding",
IEEE/ACM/EDA DAC, pp. 1026-1031, 2011.

[5] M. Shafique, B. Zatt, F. L. Walter, S. Bampi, J. Henkel, “Adaptive Power
Management of On-Chip Video Mamory for Multiview Video Coding”,
IEEE/ACM/EDA DAC, pp. 866-875, 2012.

[6] B. Zatt, M. Shafique, S. Bampi, J. Henkel, “A Low-Power Memory Architecture with
Application-Aware Power Management for Motion & Disparity Estimation in
Multiview Video Coding”,IEEE/ACM ICCAD, pp. 40-47, 2011.

[7] F. Sampaio, B. Zatt, M. Shafique, J. Henkel, S. Bampi, “Energy-Efficient Memory
Hierarchy for Motion and Disparity Estimation in Multiview Video Coding”,
IEEE/ACM DATE, pp. 665-670, 2013.

[8] Micron. “4Gb: x16, x32 Mob. LPDDR2 SDRAM S4”. Rev. N 05/13 EN, 168p, 2013.

[9] Micron. “TN-46-03 – Calc. DDR Mem. System Power”. Rev. B 3/05 EN, 26p, 2005.

[10] Micron. “TN-46-12: Mob. DRAM Power-Sav. Features/Calc.”, 10p, 2009.

[11] C.-Y. Chen, C.-Y. Chen, C.-T. Huang, L.-G. Chen. “Level C+ Data Reuse Scheme
for Motion Estimation with Corresponding Coding Orders”, IEEE TCSVT, vol. 16,
no. 4, p. 553-558, 2006.

[12] H. Singh, L. Agarwal, D. Sylvester, K.J. Nowka, "Enhanced leakage reduction
techniques using intermediate strength power gating", IEEE TVLSI, vol. 15, no. 11,
pp. 1215-1224, 2007.

[13] F. Bossen, “Common test conditions and software reference configurations”, ITU-
T/ISO/IEC JCTVC-K1100, October 2012.

[14] JCT-VC. HEVC Software SVN, 2011. Available in: <https://hevc.hhi.fraunhofer.de/>

[15] Misra, K.; Segall, A.; Horowitz, M.; Xu, S.; Fuldseth, A.; Zhou, M., "An overview of
tiles in HEVC," IEEE JSTSP, no.99, 2013

[16] C. Blumenberg, D. Palomino, B. Zatt, S. Bampi. “Adaptive Content-Based Tile
Partitioning Algorithm for the HEVC Standard”, PCS, p. 185-188, 2014.

[17] JCT-VC, “High Efficiency Video Coding (HEVC) text spec. draft 10”, 2013.

[18] Iyengar, A., "Design and performance of a general-purpose software cache," IEEE
IPCCC, vol., no., pp.329,336, 1999.

[19] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, P. Marwedel, “Scratchpad
Memory: Design Alternative for Cache on-chip Memory in Embedded Systems,”
CODES+ISSS, pp. 73–78, 2002.

[20] K. Bai and A. Shrivastava, “Automatic and efficient heap data management for
limited local memory multicore architectures,” IEEE DATE, 2013, 2013, pp. 593-598.

[21] N. Deng, W. Ji, J. Li, F. Shi, and Y. Wang, “A Novel Adaptive Scratchpad Memory
Management Strategy,” IEEE RTCSA pp. 236–241, 2009.

[22] B. Egger, S. Kim, C. Jang, J. Lee, S. L. Min, and H. Shin, “Scratchpad Memory
Management Techniques for Code in Embedded Systems without an MMU” IEEE
TC, vol. 59, no. 8, pp.1047-1062, 2010.

[23] IBM, “The Cell Project”, Last Accessed: Sep. 2013,
<http://researcher.watson.ibm.com/researcher/view_project.php?id=2649>.

[24] ARM, “ARM10 Family: An Overview”, pp. 11, 2005

[25] Texas Instruments, “TMS370CX7X from Texas Instruments”,
<www.ti.com/mcu/docs/mcuorphan.tsp?contentId=15364>.

