
Energy-Efficient Scheduling
for Memory-Intensive GPGPU Workloads

Seokwoo Song, Minseok Lee, John Kim
KAIST

Daejeon, Korea

{sukwoo24, lms135, jjk12}@kaist.ac.kr

Woong Seo, Yeongon Cho, Soojung Ryu
Samsung Electronics

Giheung, Korea

{brad.seo, yeongon.cho, soojung.ryu}@samsung.com

Abstract—High performance for a GPGPU workload is ob-
tained by maximizing parallelism and fully utilizing the available
resources. However, this is not necessarily energy efficient, es-
pecially for memory-intensive GPGPU workloads. In this work,
we propose Throttle CTA (cooperative-thread array) Scheduling
(TCS) where we leverage two type of throttling – throttling the
number of actives cores and throttling of warp execution in
the cores – to improve energy-efficiency for memory-intensive
GPGPU workloads. The algorithm requires the global CTA or
thread block scheduler to reduce the number of cores with
assigned thread blocks while leveraging the local warp scheduler
to throttle memory requests for some of the cores to further
reduce power consumption. The proposed TCS scheduling does
not require off-line analysis but can be done dynamically during
execution. Instead of relying on conventional metrics such as
miss-per-kilo-instruction (MPKI), we leverage the memory ac-
cess latency metric to determine the memory intensity of the
workloads. Our evaluations show that TCS reduces energy by
up to 48% (38% on average) across different memory-intensive
workload while having very little impact on performance for
compute-intensive workloads.

I. INTRODUCTION

Because of the significant computing capability, accelera-
tors such as GPGPU are becoming widely used for different
workloads [15]. These architectures allow for thousands of
threads to be executed in parallel through programming models
such as CUDA or OpenCL. The programming models results
in a hierarchy of threads – a group of threads forming a
warp or a wavefront, and a collection of warps forming a
thread block, referred to as CTA (cooperative thread array)
or a working group. As a result, there are two levels of
scheduling within a GPGPU – a thread block or CTA scheduler
to assign the CTAs to each core and a warp scheduler to
determine which warp is executed within a core. To increase
performance of these parallel architectures, alternative warp
schedulers [19], [14], [17], [7] have been proposed to improve
resource utilization and performance. Recently, an alternative
CTA scheduler has been proposed to reduce the number of
CTAs per core to maximize performance by reducing the
memory system contention [8], [11]. In this work, we propose
an combined CTA-warp scheduling that throttles both CTA
and warp execution to improve energy-efficiency of memory-
intensive workloads. We observe that the increasing the num-
ber of cores does not continuously improve the performance of
memory-intensive workloads and thus, dynamically determine

This work was supported in part by the IT R&D program of MSIP/KEIT
(10041313, UX-oriented Mobile SW Platform) and in part by Basic Science
Research Program through the National Research Foundation of Korea(NRF)
funded by the MSIP (NRF-2011-0015039).

CTA Scheduler

CORECORE ... CORE CORE

Interconnection Network

L2$
MC

L2$
MC

L2$
MC

...

Fig. 1: Baseline GPGPU Architecture Bloack Diagram.

the optimal number of cores and power-gate the remaining
cores.

The memory system can be the bottleneck in multi-
threaded workloads since multiple threads contend for fi-
nite memory bandwidth. Prior work has investigated thread
throttling to improve performance [4], [19] in multithreaded
architectures. In the GPGPU architectures that we consider, the
large number of threads increases this problem for memory-
intensive workloads. Thus, the challenge is in properly deter-
mining the optimal number of cores to power-gate such that
there is minimal impact on performance while reducing the
overall energy. It is also critical that the cores are not power-
gated for compute-intensive workloads which have a signif-
icant amount of data parallelism. In this work, we propose
throttle CTA scheduling (TCS) – an online CTA 1 scheduling
mechanism which combines dynamically detecting memory
intensive workloads with throttling to determine the optimal
number of cores. The TCS is partitioned into two phases –
MONITOR and REDUCE phase and this process is repeated
for each kernel within each workload.

II. MOTIVATION

In this section, we first describe the simulation methodol-
ogy used in our evaluation and show the impact of static power
consumed in GPGPUs. We then show how the performance
changes as the number of cores increases and its impact on
the energy consumption of GPGPUs.

A. Methodology
The GPGPU that we model consist of 28 cores (or stream-

ing multiprocessors (SMs)) connected to 8 memory controllers.
A high-level block diagram of our baseline architecture is

1In this work, we use the term CTA and thread block interchangeably.

978-3-9815370-2-4/DATE14/ c©2014 EDAA

TABLE I: Baseline Configuration

Compute Units 28

Warp Size 32

Resources / Core MAX. 1536 Threads, 32768 Registers
32 MSHRs

Core / ICNT / Memory Clock 1400 MHz / 1400 MHz / 1848 MHz

Shared Memory 48KB

Constant Cache 8KB

Texture Cache 32KB, 16-way, 64B line

L1 Data Cache 32KB, 8-way,
LRU, 128B line

L2 Cache 128KB/Memory Channel, 8-way,
LRU, 256B line

Interconnect Crossbar, 32B channel width

DRAM Model FR-FCFS memory scheduling,
8MCs, 16 DRAM banks/MC

GDDR5 Timing tCL=12, tRP =12, tRC=40
tRAS=28, tRCD=12, tRRD=6

TABLE II: GPGPU Workload Description.

Name Abbr. # of Grid Type
kernels Dim.

MUMmerGPU[2] MUM 1 (196,1,1) Mem

Lattrice-Boltzmann Method[18] LBM 1 (100,130,1) Mem

Kmeans[3] KMN 1 (1936,1,1) Mem

Breadth First Search[3] BFS 24 (1954,1,1) Mem

(1,1,1)
(128,1,1)

Page View Count[5] PVC 29 (256,1,1) Mem
(1953,1,1)
(3907,1,1)

Separable Convolution Filter[16] CONV 34 (24,768,1) Com

Black-Schole option pricing[16] BLK 1 (480,1,1) Com

Back Propagation[3] BP 2 (1,4096,1) Com

Binomial Options[16] BINO 1 (512,1,1) Com

DXT Compression[16] DXTC 2 (16384,1,1) Com

shown in Figure 1 and is similar to prior work on GPG-
PUs [17], [1]. Each core has its own private L1 data cache,
texture cache, and shared memory while each memory con-
troller has a slice of the L2 cache that is shared. The cores and
the memory controllers are interconnected through a crossbar
network. We use a detailed GPGPU simulator (GPGPU-sim
v3) [2] in our evaluation and the different parameters are
described in Table I. The simulator was modified to imple-
ment the different scheduling that we evaluate in this work.
We considered a wide range of GPGPU CUDA workloads,
including applications from Rodinia [3], Parboil [18], MapRe-
duce [5] NVIDIA SDK [16], and workloads from GPGPU-
sim [2] – and include both memory-intensive and computer-
intensive workloads (Table I). All of the workloads are run
until completion, except for workloads from [5] which are
simulated for 2 billion instructions. Power is estimated using
GPUWattch [12] – a tool which has been shown to accurately
match actual hardware – and we assume 45nm technology. We
assume a warp size of 32 threads and each core or SM (stream
multiprocessor) can have a maximum of 1536 threads, similar
to the NVIDIA GTX480 architecture. Within the GPGPU
architecture, there are two schedulers – a warp scheduler within
each core that determines which warp is issued while the
CTA scheduler (referred to as GigaThread scheduler using
NVIDIA terminology) determines which CTA is assigned to
which cores. In this work, we leverage both the CTA-warp
scheduler to implement throttle-based scheduling to power-
gate cores and improve energy-efficiency.

B. Static Power in GPUs

As technology continues to shrink, it is well-known that
static power consumed in modern CPUs cannot be ignored [9].

0.0
0.2
0.4
0.6
0.8
1.0

M
UM LB

M
KM

N
BF

S
PV

C
CO

NV BL
K BP

BI
NO

DX
TC

HM
EA

N

Po
w

er
(W

)

dynamic
static

Mem. Intensive Com. Intensive

Fig. 2: Average static power consumption ratio of GPU for the different
workloads.

Co
m
pu

te
-in

te
ns
iv
e

(a) (b)

(c) (d)

M
em

or
y-
in
te
ns
iv
e

Fig. 3: (a,c) Normalized performance and (b,d) normalized memory latency
values as the number of cores is varied. (a,b) are the results from

compute-intensive workloads while (c,d) are from memory-intensive
workloads. Performance is measured in terms of IPC and thus, higher is

better.

Because of the relative large die size of GPUs, static power
also represents a significant portion of the total power in
GPUs. In Figure 2, the breakdown of static and dynamic
power across the different workloads is shown using the
configuration described earlier in Table I. The power estimate
includes all on-chip components, including the cores, on-
chip network, shared memory, and all of the cache structures.
Results show that static power can represent over 60% of the
total power for some workloads and on average, approximately
40% of the total power. As a result, by power-gating cores
that do not significantly contribute to overall performance,
there is opportunity to save overall power in GPUs and
improve energy-efficiency. Modern CPUs often have support
to power-gate cores individually. To the best of our knowledge,
current modern GPUs do not have the capability to power-gate
individual cores but since power is also a concern in GPUs, we
expect GPUs to support this in the future. Recent work [13]
has shown that per-core power gating overhead results in a
leakage power of roughly a milliwatt and thus, overhead to
support per-core power gating is relatively small.

C. Impact of the Number of Cores

Figure 3 shows the performance of different workloads as
the number of cores increases. For some of the workloads
(compute-intensive workloads), performance continues to in-
crease linearly as the number of cores increases (Figure 3(a)).

Fig. 4: Power consumption for memory intensive workloads.

This is expected for many data-parallel workloads which im-
prove in performance as additional computing resources (e.g.,
cores) are added. However, for other workloads (Figure 3(c)),
the performance initially increases as the number of cores
increases, but at some point, the performance saturates and
there is little or no improvement in performance. These work-
loads are often memory-intensive workloads with the memory-
system being the bottleneck. As the number of cores increases,
the memory system performance (e.g., memory latency) can
actually degrade and many of the cores are effectively stalled,
waiting for data to return from memory.

The average memory access latency is shown in Figure 3(d)
for the memory-intensive workloads – with the latency normal-
ized to the latency value when the number of cores is one. As
the number of cores increase, the average memory latency can
increase significantly – by up to 7.5× for some workloads and
on average, approximately a 4× increase in latency when all
of the cores are fully utilized. In comparison, for compute-
intensive workloads, the memory latency can also increase but
the increase is significantly smaller (only up to 1.5×) while for
some workloads, there is no increase in memory latency. In this
work, we focus on identifying memory-intensive workloads
and identify the number of cores to utilize such that the
remaining cores can be power-gated – while ensuring that we
do not unnecessarily power-gate cores for compute-intensive
workloads.

Figure 4 plots the total power consumed for memory-
intensive workloads. Even though the performance saturates
around 5-10 cores for these workloads, the power consumption
continues to increase since the additional cores results in
increased static power. As a result, fully utilizing all of the
cores does not necessarily result in the most energy-efficient
system. In this work, we optimize for the EDP (energy-delay-
product) metric and the optimal number of cores is defined as
the number of cores with minimal EDP. The optimal number of
cores is determined statically by varying the number of cores
to determine the number of cores with the lowest EDP. The
proposed TCS attempts to determine this optimal number of
cores dynamically and we show that TCS can nearly match it.

III. THROTTLE-CTA SCHEDULING (TCS)

A. Overview

The goal of TCS is to identify the optimal number of cores
to achieve energy-efficiency – i.e., find the number of cores to
power-gate for memory-intensive workloads. An example of
TCS is shown in Figure 5 for a 6-core system. Initially, the
CTA scheduler assigns CTAs to all of the cores (Figure 5(a)).
However, if a core is determined to be memory intensive, then
the number of active core is reduced by 1. In Figure 5(b),

Fig. 5: Throttle CTA scheduling(TCS) example for a 6-core(CO-C5) system.

Algorithm 1 MONITOR Algorithm within TCS Scheduling

stall cycle : number of cycles stalled from the memory unit (per core)
thr: threshold to determine whether memory system is congested (per core)
mon cycle: monitoring period in cycle (per core) 8192 cycles
AMAT: average memory latency (per core)
Cmem: the number of active cores that are memory-bound
Cactive: the number of active cores
Cthrottle: the number of cores throttled

procedure MONITOR

for each (mon cycle) do
for (i=1; i <= Cactive; i++) do

if stall cycle(i) > mon cycle/2 and AMAT(i) > thr(i) then
Cmem++
stall cycle(i) = 0

end if
end for
if Cmem >= Cactive / 2 then

select a COREj that is in ACTIVE state.
COREj switch from ACTIVE to THROTTLE state.
Cthrottle++
Cactive−−
Cmem = 0

end if
end for

end procedure

one of the cores (C5) is switched to THROTTLE state and
the number of active cores is reduced by 1. This process
continues until the optimal number of active cores is reached –
in this example, we assume the optimal number of cores is two
(Figure 5(c)). Once the optimal number of cores is reached, the
ACTIVE cores run until completion – i.e., all CTAs assigned
to the core are completed. In Figure 5(d), we assumed that C1
is the first core to finish. Instead of assigning additional CTAs
to this core, this core is power-gated and one of the cores in the
THROTTLE state (C2) is switched to the ACTIVE state. This
process is repeated until the optimal number of active cores is
reached (Figure 5(e)) and the remaining cores are power-gated.
The details of TCS are described in the following section.

B. Algorithm Description

The high-level description of the proposed Throttle CTA
scheduling (TCS) is described in Algorithm 1. Each core can
be in one of three states : ACTIVE, THROTTLE, or OFF
states.

• ACTIVE: The core has active CTAs and is currently
executing the CTAs 2

• THROTTLE: The core has active CTAs assigned to
the cores but the CTA scheduler determines to throttle
the memory requests.

• OFF: The core is power-gated and no CTAs are
assigned to that particular core for the given kernel.

In addition, the TCS is partitioned into two phases – MONI-
TOR phase and the REDUCE phase. In the MONITOR phase,
the cores are monitored to determine the optimal number of
cores to utilize in order to minimize energy. In the REDUCE
phase, the cores are power-gated appropriately to reduce the
number of active cores.

The goal of the MONITOR phase is to classify memory-
intensive workloads and gradually decrement the number of
cores to reduce memory contention in the system. Within
each core, we monitor the number of consecutive cycles when
the core is stalled from the memory unit (stall cycle) and
compare it with a threshold value to determine if the workload
is memory intensive. This stall often occurs because memory
instructions cannot be issued or the memory requests cannot
be injected into the network – i.e., this frequently occurs
when the Miss Status Holding Register (MSHR) is fully
occupied. In addition to this condition, we compare the average
memory latency (AMAT) with a threshold value (thr) to de-
termine if the workload is memory-intensive. Most prior work
have commonly leveraged MPKI (miss-per-kilo-instructions)
to determine memory-intensive workloads. However, for the
GPGPU workloads that we evaluate, MPKI does not provide
an accurate representation of the memory intensity because of
the different memory access characteristics (e.g., a warp can
result in up to 32 “misses”, a higher row locality memory
access pattern, etc.). As a result, we use the AMAT parameter
to determine memory-intensive workloads. The thr parameter
is empirically determined and is based on the approximate
contention-free memory-access latency that includes the on-
chip network latency.

Once a core is identified to be memory-intensive, that par-
ticular core is switched to THROTTLE state and no additional
CTAs or thread blocks are assigned to that particular core in the
MONITOR phase. The MONITOR phase continues until the
first CTA completes, or 10,000 cycles, which ever occurs later.
We used the unit of a CTA since the workload is partitioned
into units of CTA within a kernel and one CTA is sufficient to
understand the characteristics of a given kernel. However, we
empirically added a threshold of 10000 cycles since for some
of the workloads, the CTAs finished very early and thus, a
single CTA was not sufficient to properly estimate the memory
intensity of the workload.

Once the MONITOR phase is completed, the number
of active cores is identical to the optimal number of cores
determined by the algorithm while the remaining cores are in
a throttled state. In the REDUCE phase, the object is to power
gate Cthrottle number of cores such that only Coptimal found
in the MONITOR phase are used for the remaining execution
of the kernel. The REDUCE phase is described in Algorithm 2

2The core can be stalled for various reasons but we classify the core as
ACTIVE for the purpose of TCS.

Algorithm 2 REDUCE Algorithm within TCS

Cthrottle: number of cores in THROTTLE state after MONITOR phase

procedure REDUCE
while Cthrottle > 0 do

if COREi finished then
power gate COREi

select a COREj that is in Cthrottle state.
COREj switch from THROTTLE to ACTIVE state.
Cthrottle−−

end if
end while

end procedure

– as each active core finishes, that particular core is power-
gated while another core is switched from the THROTTLE
state to the ACTIVE state. This process repeats until there are
no cores in the THROTTLE phase. At the end of a kernel, all of
cores are switches back to ACTIVE states and the MONITOR-
REDUCE phase is repeated. As we show in Section IV, some
workloads have both memory-intensive and compute-intensive
kernels and thus, this is necessary.

Although not shown in either Algorithm 1 or Algorithm 2,
TCS requires the support of the warp scheduler to ensure
that cores in the THROTTLE state have their memory request
throttled. Once a core enters the THROTTLE state, the warp
scheduler continues to issue warps for execution until a warp
needs to execute a memory instruction. These warps are stalled
(e.g., not scheduled) to throttle requests into the memory
system; once all warps are stalled, the core is effectively in the
THROTTLE state. As we shown in Section IV, this throttling
help to improve the energy efficiency of TCS.

C. Half TCS (hTCS)

The current TCS assumes that all of the cores are allocated
with CTAs in the beginning of execution and as necessary,
reduce the number of active cores. However, this does intro-
duce overhead in finding the optimal number of cores to reach
energy-efficiency. As a result, we also evaluate an half TCS
(hTCS) where instead of allocating CTAs to all of the cores,
only half of the cores are initially allocated CTAs initially. For
memory intensive workloads, if necessary, the number of cores
will be further power-gated or for other workloads that require
more than N/2 cores (or compute-intensive workloads), more
cores will be activated as necessary. This also introduces trade-
off between energy-efficiency and performance – for memory-
intensive workloads, hTCS provides an opportunity for more
energy savings while for compute-intensive workloads, it can
result in performance degradation.

IV. EVALUATION

Using the experimental setup described earlier in Sec-
tion II-A, we evaluated the impact of Throttle CTA Scheduling
(TCS) on performance (IPC) and energy. The results are
normalized to the baseline when all of the cores fully utilized
in Figure 6. For memory-intensive workloads, the average per-
formance degradation is approximately 6% while the average
energy reduction is approximately 38% for TCS. For some of
the workloads (such as LBM and BFS), it is interesting to
note that performance actually improved with TCS – 6% for
LBM and, 5% for BFS. With the relatively small L2 cache

TCS

0
0.2
0.4
0.6
0.8

1
1.2

MUM LBM KMN BFS PVC HMEAN

No
rm

al
ize

d
en

er
gy

0
0.2
0.4
0.6
0.8

1
1.2

MUM LBM KMN BFS PVC HMEAN

No
rm

al
ize

d
pe

rf.
M
em

or
y-
in
te
ns
iv
e

(a) (b)

0
0.2
0.4
0.6
0.8

1
1.2

CONV BLK BP BINO DXTC HMEAN

No
rm

al
ize

d
en

er
gy

0
0.2
0.4
0.6
0.8

1
1.2

CONV BLK BP BINO DXTC HMEAN

No
rm

al
ize

d
pe

rf.
Co

m
pu

te
-in

te
ns
iv
e

(c) (d)

Fig. 6: Evaluation of TCS and hTCS for (a,c) performance and (b,d) energy
for (a,b) memory-intensive workloads and (c,d) compute-intensive workloads.

0
4
8

12
16
20
24
28

M
UM LB

M

KM
N

BF
S

PV
C

CO
NV BL

K BP

BI
NO

DX
TC

#
 o

f c
or

e

of optimal core TCS hTCS

Fig. 7: Comparison of the number of optimal cores to minimize EDP.

size in modern GPUs, the smaller number of cores increase
the cache utilization as the L2 hit rate increased by 35% (7%)
for LBM (BFS) and improved overall performance. For the
compute-intensive workloads, there is almost no degradation
of performance with TCS.

By initially allocating only half of the cores with CTAs,
hTCS can further reduce energy by up to 18% (6% on average)
by power-gating the cores earlier – while having minimal im-
pact on overall performance. For compute-intensive workloads,
hTCS reduces overall performance by 1.5% on average (and
up to 5% for BLK) since half the cores are inactive in the
MONITOR phase. The impact was more significant for BLK
because of the relatively short execution time. For most of
the workloads, the TCS algorithm was almost able to find an
optimal number of cores. as shown in Figure 7 where TCS
is compared with the optimal number of cores through static
analysis, as described earlier in Section II. For the compute-
intensive workloads, TCS did not reduce the number of cores
while for memory-intensive workloads, TCS was within 6%
the optimal number of cores from static analysis. Our on-line
analysis provided significantly higher accuracy than the model
propose by Hong and Kim [6], which is discussed further in
Section V.

A detailed analysis of TCS and core throttling is shown
in Figure 8 with Aerialvision [1] – comparing the baseline
architecture with the maximum number of cores utilized (Fig-
ure 8(a)) to TCS where some cores are power-gated (Fig-
ure 8(b,c,d)). The y-axis represents the different cores and the
x-axis is the time (cycles) and the figure plots the performance
(IPC) of each core. The darker shading shows cores with higher
utilization (e.g., higher IPC) while lighter shading corresponds
to lower IPC. Figure 8(a) shows the baseline configuration
and the various regions of the plot with low IPC correspond

Fig. 8: Performance (IPC) with (a) baseline and maximum number of cores,
(b) TCS with throttling, (c) TCS without throttling and (d) hTCS with

throttling.

to cores which are mostly stalled and waiting for data from
the memory. In comparison, Figure 8(b) shows TCS and how
the activity of the cores change. Once the optimal number
of cores is determined to be 6, the first 6 cores are executing.
The remaining cores are throttled from injecting any additional
requests into the network and effectively stalls the cores –
hence the plots shows the remaining 22 cores to have zero
IPC. When some of the cores finish executing, additional CTAs
are not assigned to these cores but instead, they are power-
gated and then, the throttled cores are unthrottled as they begin
injecting requests into the network. 3 This process continues
until only 6 remaining cores are active.

For comparison, Figure 8(c) shows TCS without throttling.
Without throttling the cores, there is very little impact on
overall performance, as the performance degradation compared
to TCS is less than 2%. However, not using throttling reduces
the energy/power benefits of TCS since the time when the
cores can be power-gated is delayed. With all cores continuing
to inject packets into the network (and memory), all of the
cores are effectively delayed. As a result, instead of having
some cores finish earlier, all of the cores that would be power-
gated are delayed, reducing the energy benefit. Thus, without
throttling, there is still some energy savings over the baseline
but compared with TCS with throttling, the amount of energy
is increased by up to 15%. Figure 8(d) shows half TCS (hTCS)
with throttling. TCS only checks whether MAX/2 core is
sufficient or not during the first monitoring cycle. If a memory-
bound situation is detected, TCS starts to decrease the number
of cores from MAX/2 core.

The results in Figure 8 are shown for a workload with just
one kernel. However, workloads often have multiple kernels
and Figure 9 shows the impact of TCS across a workload with
multiple kernels. The result is shown for the BFS workload
consisting of 24 kernels which includes both compute-intensive
and memory-intensive kernels. Most of the compute-intensive
workloads are very short and thus, no power-gating is applied.

3Because of the scale of the plots, it appears as if the next set of 6 cores
are only executed when the first 6 cores finish executing. However, the cores
are executed one at a time.

Fig. 9: Impact of TCS across the different kernels within a benchmark. The
results are shown for BFS with TCS and power-gating.

However, for memory-intensive kernels 15, 17, and 19 which
are highlighted in the figure, TCS reduces the number of active
cores for each kernel differently – i.e., 8,9, and 17 active cores
for kernels 15,17, and 19, respectively. Thus, by monitoring
the behavior of each kernel separately, TCS is able to provide
a different number of optimal cores for different kernels.

V. RELATED WORK

Several prior work have also noticed that increasing the
number of threads does not necessarily increase performance.
However, these prior work have focused on conventional multi-
threaded architectures and are not necessarily appropriate for
massively multithreaded architectures, such as the GPGPU
accelerator architectures. Guz et al. [4] described the per-
formance valley and showed that although increasing threads
improves performance, too many threads can degrade perfor-
mance because of resource contention as explained earlier.
Similar to [4], we also note that increasing the number of
concurrent threads does not necessarily improve performance
and exploit it to improve energy efficiency. Suleman et al. [19]
proposed a dynamic method to find the optimal number of
threads for multi-threaded workload on CMPs through feed-
back system during run-time at the beginning of loop iterations.
In this work, we do not focus on loop iterations but focus on
the behavior of an entire CTA to determine the optimal number
of cores. Prior work [8], [11] also showed that more threads
(or thread blocks) per core can actually degrade performance
in a GPGPU and proposed alternative thread block scheduling
to reduce the number of thread blocks per core. Our work
is orthogonal to their work since we reduce the number of
cores utilized. It remains to be seen if both approaches can be
combined to further improve energy efficiency. Lee et al. [10]
describes how to scale the voltage and frequency of GPUs to
improve throughput in a power-constrained GPU. Their work
focuses on optimizing performance/throughput for a given
power constrained while we attempt to reduce power and
energy for memory-intensive workloads. Hong and Kim [6]
proposed an analytical power model to find optimal of cores for
highest performance per watt – similar to our work. However,
their work is limited to statically attempting to find the optimal
cores and cannot predict runtime characteristics. For example,
for MUM workload, the optimal number of cores was 6 cores
with TCS while the energy efficiency number of cores with
[6] was 28 since their model did not incorporate the impact of
texture cache which is utilized in the MUM workload.

VI. CONCLUSIONS

In this work, we showed that always maximally utilizing
all the cores is not necessarily energy-efficient for memory

intensive workloads in the GPGPU architecture as the memory
system becomes a bottleneck. To overcome this limitation, we
proposed Throttle CTA Scheduling (TCS) that reduces the
number of active cores (and throttles the individual cores)
to improve energy-efficiency by power-gating the remaining
cores. By leveraging the ratio of stall cycles from the memory
unit (compared with the active cycles) – as well as the change
in average memory latency, we gradually determine the number
of cores to power-gate. In combination with CTA scheduling,
we leverage the warp scheduler to throttle core requests into
the memory system while adjusting for the number of cores.
Our evaluations show that TCS can reduce energy by 48%
(38% on average) across different memory-intensive workload
while having a minimal impact on performance for compute-
intensive workloads. In this work, we focused on achieving
energy efficiency when executing only one kernel. However,
current GPU hardware can support multiple kernels simulta-
neously and it remains to be seen how TCS can be adapted
for multiple kernels. For example, the current TCS approach
is proposed to determine the energy-efficient number of cores
but instead of power-gating some of the cores, the remaining
cores could be utilized by another kernel.

REFERENCES

[1] A. Ariel et al., “Visualizing complex dynamics in many-core accelerator
architectures,” in ISPASS, 2010.

[2] A. Bakhoda et al., “Analyzing cuda workloads using a detailed gpu
simulator,” in ISPASS, 2009.

[3] S. Che et al., “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in IISWC, 2009.

[4] Z. Guz et al., “Many-core vs. many-thread machines: Stay away from
the valley,” IEEE Comput. Archit. Lett., vol. 8, no. 1, 2009.

[5] B. He et al., “Mars: a mapreduce framework on graphics processors,”
in PACT, 2008.

[6] S. Hong et al., “An integrated gpu power and performance model,” in
ISCA, 2010.

[7] A. Jog et al., “Owl: Cooperative thread array aware scheduling tech-
niques for improving gpgpu performance,” in ASPLOS, 2013.

[8] O. Kayiran et al., “Neither more nor less: Optimizing thread-level
parallelism for gpgpus,” in PACT, 2013.

[9] N. Kim et al., “Leakage current: Moore’s law meets static power,”
Computer, vol. 36, no. 12, 2003.

[10] J. Lee et al., “Improving throughput of power-constrained gpus using
dynamic voltage/frequency and core scaling,” in PACT, 2011.

[11] M. Lee et al., “Improving gpgpu resource utilization through alternative
thread block scheduling,” in HPCA, 2014.

[12] J. Leng et al., “Gpuwattch: enabling energy optimizations in gpgpus,”
in ISCA, 2013.

[13] J. Leverich et al., “Power management of datacenter workloads using
per-core power gating,” IEEE Comput. Archit. Lett., vol. 8, no. 2, pp.
48–51, Jul. 2009.

[14] V. Narasiman et al., “Improving gpu performance via large warps and
two-level warp scheduling,” in MICRO, 2011.

[15] J. Nickolls et al., “The gpu computing era,” MICRO, IEEE, 2010.

[16] NVIDIA, “Cuda c/c++ sdk code samples,” 2011.

[17] T. Rogers et al., “Cache-conscious wavefront scheduling,” in MICRO,
2012.

[18] J. Stratton et al., “Parboil: A revised benchmark suite for scientific
and commercial throughput computing,” In IMPACT Technical Report.
IMPACT-12-01, 2012.

[19] M. A. Suleman et al., “Feedback-driven threading: power-efficient and
high-performance execution of multi-threaded workloads on cmps,” in
ASPLOS, 2008.

