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Abstract—The paper describes an approach for semi-symbolic
analysis of mixed-signal systems that contain discontinuous func-
tions, e.g. due to modeling comparators. For modeling and semi-
symbolic simulation, we use extended Affine Arithmetic. Affine
Arithmetic is currently limited to accurate analysis of linear func-
tions and mild non-linear functions, but not yet discontinuities. In
this paper we extend the approach to also handle discontinuities.
For demonstration, we symbolically analyze a Σ∆-modulator.

I. INTRODUCTION

Embedded systems include an increasing number of mixed-
signal circuits. Verification is a challenge, because system
properties result from interaction of analog circuits with pa-
rameter variations and SW/DSP systems that compensate these
variations. For verification of corner cases multi-run simulation
techniques like Monte-Carlo (e.g. [1]) and Worst Case analysis
(e.g. [2], [3]) are used. However, they often require a very high
number of simulation runs to validate all corners.

Formal methods for analog or mixed-signal systems are
a rather new field of intensive research that could offer inter-
esting alternatives to multi-run simulations. Formal approaches
for analog/mixed-signal circuits and systems allow equivalence
checking [4], model checking [5], or symbolic analysis [6]
deal with pure continuous behavior of analog circuits. At
a much higher level of abstraction, Henzinger [7] suggests
modeling hybrid systems with linear hybrid automata on which
algorithmic analysis can be performed. However, this method
is limited to very abstract and simple systems.

A less formal approach is semi-symbolic simulation [8]
based on Affine Arithmetic [9]) that we use in this work. For
simulation we use (symbolic) affine expressions instead of real
values. Affine terms describe the impact of different sources
of uncertainty/deviation in a symbolic way. The method has
two advantages:

1) Modeling parameter uncertainties and deviations as
ranges allows us to simulate all possible corner cases
in a single simulation run

2) Representation of uncertainties with deviation sym-
bols allows clear traceability of a violation in system
performances back to contributions of corners of (e.g.
technological) parameters.

In previous work, the semi-symbolic simulation has been used
successfully with block diagram level models [8], and even
circuits [10]. Affine Arithmetic is also used in static analysis of
floating point errors of DSP algorithms [11]. A problem not yet
solved within such semi-symbolic simulation is the transition

between discrete and continuous behavior. In [8], an ADC
between discrete controller and continuous plant is modeled by
adding quantization noise to a linear transfer function. Mod-
eling/simulation of discontinuous functions with considering
two (or more) separate cases was not possible. In this work
we extend semi-symbolic simulation to handle discontinuities
in such a way. In Section II we describe simulation based on
Affine Arithmetic Forms (AAF). In Section III we describe
a new method for modeling/simulation of discontinuities. In
Section IV we demonstrate applicability by analysis of a Σ∆-
modulator.

II. SEMI-SYMBOLIC SIMULATION WITH AAF

Affine Arithmetic [9] allows accurate computation with
ranges. In each affine form, the influence of uncorrelated
sources of uncertainty i to a value with the ‘ideal’, central value
x0 is represented by a sum of terms xiεi. Noise (also:deviation)
symbols εi are unknown values from the interval [−1, 1] that
are scaled by partial deviations xi:

x̃ = x0 +
∑
i∈Nx̃

xiεi εi ∈ [−1, 1] .

Nx̃ represents a set of natural numbers identifying deviation
terms xiεi in x̃. Linear operations are accurate, because
noise terms keep correlation information. However, non-linear
operations introduce more or less over-approximation that
guarantees safe inclusions.

For semi-symbolic analysis of circuits and systems, we
model uncertainties and parameter variations of circuits and
systems such as noise, aging, drift, offsets, etc. by noise
symbols εi scaled by xi. This gives us a symbolic description
of all parameters that influence the traces for a given stimuli
and parameter ranges. Fig. 1 for example shows semi-symbolic
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Fig. 1: Semi-symbolic simulation results and it‘s visualization
by plotting diameters of signals.
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representation of the step response of a control loop. Output of
simulation is a symbolic representation of the output signals
for a given input stimuli (i.e. step function) representing all
parameter combinations. It consists of the ideal output values,
and terms xiεi that - for each time step - describe contributions
of uncertainties. The symbolic output can be visualized as
shown in Figure 1 by setting εi to 1 resp. −1.

III. MODELING DISCONTINUITIES WITH AAF

To handle discontinuities, we split and merge non-
contiguous range-based signals and states (spaces for multiple
signals/states) . Let ỹ be a sample of a signal represented
by AAF (informally, a range). When the signal is compared
with a threshold vth which represents a border between two
consecutive discontinuous values, we have to consider three
cases:

1) The whole signal range is below vth
2) One part of the signal range is below vth, and the

other above vth. Hence, we must take both possible
results into account.

3) The whole signal range is above vth

Cases (1) and (3) require no changes, because the result
remains contiguous. In case (2) we must split system behavior,
and handle both cases separately in the following simulation.

In case (2), output is first computed considering a value of
discontinuous signal which corresponds to the case for which
ỹ ≥ vth. In the following, we name this case above. Then,
the case for which ỹ < vth must be considered and the output
for this value must be computed. We name this case below.
Both cases are handled currently by separate semi-symbolic
simulation runs.

Implementation note: For implementation, we handle
both cases separately by repeating time steps in SystemC
AMS. Both computations cannot be performed at the same
time step of simulation. However, SystemC AMS 2.0 Dy-
namic Timed Data Flow (DTDF) [12] model of computa-
tion allows repeating a time step, e.g. to handle crossing
of borders. We (mis-)use this feature of SystemC-AMS 2.0
to allow us to repeat time steps by calling the function
request next activation(SC ZERO TIME) with zero time step
as an argument. A zero time step repeats the time step at which
the value for below case was written to the output, but we use
input for above case to compute the output.

When both outputs are available they can be merged in
order to generate a single result represented by affine terms.
The idea used to merge both outputs is described below.

In the following the symbols ỹa and ỹb are used to assign
the outputs computed for above and below discontinuous sig-
nal values, respectively. Since deviations of system parameters
are modeled as affine terms, ỹa and ỹb are also affine terms:

ỹa = ya0 +
∑

i∈Nỹa

εiyai εi ∈ [−1, 1]

and
ỹb = yb0 +

∑
i∈Nỹb

εiybi εi ∈ [−1, 1].

The basic idea to merge ỹa and ỹb is to treat them as bounds of
a range which is also modeled with Affine Arithmetic. Hence,
the following holds:

[ỹb, ỹa] = ỹc + εNỹ+1ỹdiam εNỹ+1 ∈ [−1, 1] (1)

where ỹc represents the central value of the range [ỹb, ỹa] and
it is calculated as:

ỹc =
(ỹa + ỹb)

2
=
ya0 + yb0

2
+
∑
i∈Nỹ

εi(
yai + ybi

2
).

The parameter ỹdiam is the diameter of the range [ỹb, ỹa] and
Nỹ is the set of deviation symbols of the merged output (Nỹ =
Nỹb
∪Nỹa

).

The diameter of the range is calculated as:

ỹdiam =
|ỹa − ỹb|

2
=

1

2

∣∣∣∣∣∣ya0 − yb0 +
∑
i∈Nỹ

εi(yai − ybi)

∣∣∣∣∣∣ .
Note that since for calculation of ỹdiam the absolute value of
ỹa − ỹb is used, it will not effect the merged result either ỹb
and ỹa are treated as lower and upper bounds of the range
[ỹb, ỹa] or via versa.

One can note that in (1) multiplication of the parame-
ter ỹdiam with εNỹ+1 will beside affine terms also contain
quadratic ones. Hence in order to compute the merged result
using pure affine terms, ỹdiam will be over approximated by
the following:

ỹdiam =
|ỹa − ỹb|

2
⊆ [0, l].

The value l represents maximum of |ỹa−ỹb|
2 and is calculated

as:

l = max(
|ỹa − ỹb|

2
) =

1

2
(|ya0 − yb0|+

∑
i∈Nỹ

|yai − ybi|)

since it holds:

|ỹa − ỹb| =

∣∣∣∣∣∣ya0 − yb0 +
∑
i∈Nỹ

εi(yai − ybi)

∣∣∣∣∣∣
≤ |ya0 − yb0|+

∑
i∈Nỹ

|yai − ybi| .

The deviation symbol εNỹ+1 in (1) is a new deviation symbol
added to ensure the conservativeness of the final result and
has a value lying in interval [−1, 1]. The actual value of this
symbol strongly depends on the values of deviation symbols
modeling uncertainties. This dependency is for every new
time step taken into account and hence if system behaviors
computed at current and previous time steps share in complete
deviation symbols, the same deviation symbol modeling over
approximation is added. On the other side, if there is inde-
pendency between system behaviors, an over approximation
term will contain new deviation symbol introduced to model
noncorrelation.



IV. CASE STUDY: THIRD-ORDER Σ∆ MODULATOR

For proof-of-concept we analyze a third-order Σ∆ mod-
ulator shown by Fig. 3. The objective is to get worst-case
and best-case performance figures, and ability to symbolically
reason about impact of variations, noise, integrator saturation,
etc. For simplicity, we focus on (simple) noise and process
variations of capacities whose impact and partial cancellation
is well-known, but that shall become visible in outputs of
semi-symbolic simulation. Adding more sophisticated models,
variances and deviations is straightforward.

A. Modeling the one bit quantizer

For semi-symbolic modeling/simulation we use basically
SystemC AMS simulation environment. All modules are im-
plemented using SystemC AMS TDF (Timed Data Flow).
The implementation of the quantizer, which simply compares
its input signal with a specified threshold, is extended to
support range-based signals using DTDF as it is explained in
Section III.

B. Modeling the SC integrator

Integrators in the Fig. 3 are implemented by a switched-
capacitor (SC) circuit. For simplicity, we model it using a
discrete-time integrator composed of a delay module and
a module whose gain is equal to an integrator gain. As
the integrator gets input from a one-bit quantizer that maps
noncontiguous ranges/states to emulated multi-run simulation
(repeating time step), in this place we must also support
multi-run simulations. Therefore, the integrator model has
an internal state that must be reseted to the old state and
recomputed for repeated time step. For the integrator, the
saturation effect is implemented as a nonideal behavior. The
integrator finally contains a merge module at its output to map
the noncontiguous affine outputs to a contiguous representation
using AAF (see Fig. 2). The integrator gain b from Fig. 2 is

Z
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saturation
x y

Fig. 2: Block level representation of modulator integrator
including merge module

equal to capacitor ratio C2/C1; process variations are mostly
cancelled because they are partially correlated. The values of
integrator capacitors of the third order Σ∆-modulator are given
in Table I. Tolerances of capacitor values are modeled by
deviation terms. It is supposed that 30% tolerance and 5%
of C2 value are correlated and noncorrelated with C1 value,

TABLE I: Modulator parameters

Integrator C2[pF ] C1[pF ]
1st Integrator 0.07333 + ε130% + ε25% 1 + ε130% + ε35%
2nd Integrator 0.2881 + ε130% + ε25% 1 + ε130% + ε35%
3rd Integrator 0.7997 + ε130% + ε25% 1 + ε130% + ε35%
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Fig. 3: Third order SC Σ∆-modulator

respectively. Hence, correlated values are modeled such that
they share deviation symbols, while noncorrelation is modeled
using different deviation symbols for each parameter deviation.

C. Modeling the integrator saturation

In case of single signal samples the implementation of
saturation module is simple. However, we use signal samples
that are Affine Arithmetic forms. Hence, we cannot simply
saturated a single value, since one part signal range can be
out of upper and one out of lower saturation value. The affine
representation of range-valued signal which may be saturated
is as following:

x̃ = x0 +
∑
i∈Nx̃

xiεi εi ∈ [−1, 1]

where x0 is the nominal signal value and Nx̃ represents a
set of natural numbers identifying deviation terms xiεi in the
signal value. Firstly, assume that ∀εi ∈ [−1, 1] the whole
range of signal x̃ lies above upper x̃ > Vsathigh or below
lower saturation value x̃ < Vsatlow. In these cases saturation
procedure is trivial and requires x̃ to be saturated to one of
saturation values Vsathigh or Vsatlow. The second case to be
considered is the one for which it holds that ∃εi ∈ [−1, 1]
such that x̃ is below Vsatlow and(or) above Vsathigh and via
versa. In this case the affine term needs to be modified such
that new bounds of x̃ are saturated to Vsathigh or Vsatlow or
both of them depending which one is exceeded. For example, if
both bounds are exceeded, x̃ is modified such that new bounds
are [Vsatlow, Vsathigh]. For this purpose, new deviation symbol
modeling saturation is introduced:

x̃(sat) = x0 +
∑
i∈Nx̃

xiεi +

+ ((Vsatlow + Vsathigh)/2− x0) + εNx̃+1xNx̃+1

where the numerical value xNx̃+1 scaling new deviation sym-
bol εNx̃+1 is equal to:

xNx̃+1 =
(Vsathigh − x̃high)− (Vsatlow − x̃low)

2
.

The values x̃high and x̃low represent upper and lower bounds
of a range represented with affine term x̃:

x̃high = x0 +
∑
i∈Nx̃

|xi|

x̃low = x0 −
∑
i∈Nx̃

|xi| .



D. Semi-symbolic analysis of FFT

As an input signal a sinusoid of frequency f = 3.9kHz and
amplitude 600mV is considered. Fast Fourier Transformation
(FFT) of the range-based modulator output was calculated
at N = 8192 points with the sampling rate Ts = 0.125us.
For this purpose the extended version of FFT [13] supporting
range-based signals is used. The modulator was simulated for
8192 ∗ 0.125us = 1024us and simulation run including FFT
calculation took 110s.

The symbolic amplitude spectrum of the modulator out-
put v including quantization error is shown in Fig. 4. The
symbolic representation of the amplitude spectrum for each
frequency consists of the nominal amplitude values v0(f)
and the terms vi(f)εi that are superimposed to the nominal
value and represent different sources of uncertainties to the
final output. For example at f = 3.90625kHz ' 3.9kHz a
symbolic output a as function of deviation symbols ε1, ε2, ε3
is equal to a = 0.604032+ε10+ε20.013476−ε30.013476.....
Beside ε1, ε2 and ε3 the symbolic output also contains the
other deviation symbols added by nonlinear operations such
as calculation of capacitor ratio C2/C1, then merge operation,
saturation modeling and finally quantization noise. By setting
all deviation symbols εi to −1 and 1 the upper and lower
bounds of amplitude spectrum can be visualized (blue and red
line in Fig. 4). In order to show that lower and upper bounds
are safe inclusions of precise result, the impact of one set
of deviation terms vi(f)εi together with nominal amplitude
values is extracted and shown in the same figure.

Quantization noise is a dynamic uncertainty which repre-
sents a sequence of statistical uncorrelated values with 0 mean
value and variation σ2 = Q2

12 . Hence, it must be modeled by
using uncorrelated noise symbols as it is described in [8]:

noise(ỹ, σ) = ỹ + γ[n]σ

where γ is uncertainty representing Gauss distribution and σ
is standard deviation equal to the square root of variation.
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Fig. 4: Amplitude spectrum of the output signal v

V. CONCLUSION

We have shown a first approach that enables handling
functions with discontinuities such as quantizers in Affine

Arithmetic. This enables application of symbolic methods
to mixed-signal circuits that had not been possible before:
circuits that contain comparators, or limitation such as the Σ∆-
modulator analyzed for demonstration.

Compared with conventional single-valued simulation there
are still some open issues and limitations:

• First of all, the discrete domain is still limited to
manually modeling the possible simulation runs. Sym-
bolic simulation at one hand might provide much more
general and powerful results; at the other hand we
might loose ease-of-use as in the current SystemC
AMS implementation.

• We limited ourself to block diagram level; although
semi-symbolic circuit simulation has been imple-
mented. This is rather a tradeoff between simulation
performance and accuracy than a real limitation of the
approach.
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