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M. Velasco-Jiménez, R. Castro-López, E. Roca and F. V. Fernández

Email: {velasco,castro,eli,pacov}@imse-cnm.csic.es

Instituto de Microelectrónica de Sevilla, IMSE-CNM, CSIC and Universidad de Sevilla

Abstract—Emerging hierarchical design methodologies based
on the use of Pareto-optimal fronts (PoFs) are promising
candidates to reduce the bottleneck in the design of analog
circuits. However, little work has been reported about how to
transmit the information provided by the PoFs of low hierarchical
level blocks through the hierarchy to compose the performance
models of higher-level blocks. This composition actually poses
several problems such as the dependence of the PoF performances
on the surrounding circuitry and the complexity of dealing with
multi-dimensional PoFs in order to explore more efficiently the
design space. To deal with these problems, this paper proposes
new mechanisms to represent and select candidate solutions from
multi-dimensional PoFs that are transformed to the changing
operating conditions enforced by the surrounding circuitry.
These mechanisms are demonstrated with the generation of the
performance model of an active filter by composing previously
generated PoFs of operational amplifiers.

Keywords—Hierarchical design methodologies, Pareto-optimal
fronts, evolutionary algorithms.

I. INTRODUCTION

Analog components constitute a major bottleneck in
the design of analog and mixed-signal circuits and systems.
Electronic design automation (EDA) tools for analog circuits
are far behind the level of automation of the digital
domain. To bridge this gap, the knowledge of experienced
analog designers should be adequately systematized into more
efficient design methodologies that overcome the limitations
of traditional approaches. For instance, using a hierarchical
decomposition followed by a traditional top-down design
flow [1] (which maps top-level requirements into lower-level
block specifications), has three serious drawbacks. First,
specifications of some blocks may be impossible to achieve.
Second, when the whole system is verified it may not fulfill
the specifications. And finally, the design may be globally
suboptimal due to inappropriate specification transmission.
These problems may incur several iterations of the whole
design flow. To palliate these problems, emerging design
methodologies facing the design in a bottom-up style have
been proposed [2]-[4]. In these, the feasibility information
of each block in the hierarchy, beginning at the lowest level
(bottom-level) and ending at the system level (top-level), is
transmitted. Feasibility information can be given in the form of
performance models that can be generated and stored a priori
so that they can be reused later for the design of a different
system. In [5], the feasibility information of each block is given
in the form of Pareto-optimal Fronts (PoFs). The PoF of a

978-3-9815370-2-4/DATE14/ c©2014 EDAA

circuit is the set of all its possible designs that, altogether,
characterizes the best trade-offs between usually conflicting
performances. The generation of a PoF involves the resolution
of a multi-objective optimization problem (MOOP), which can
be defined as follows:

maximize/minimize y = fi(x) , i = 1, 2, ..., b (1)

subject to gj(x) ≥ 0 , j = 1, 2, ..., k (2)

where x is a vector whose components are the variables
involved in the design (such as transistors sizes or bias
currents), b is the number of design objectives (circuit
performances) and k is the number of constraints (requirements
the circuit has to fulfill). An efficient and extensively adopted
mechanism to solve MOOPs is based on the use of a
multi-objective evolutionary algorithm (EA) [6]. EAs are
based on the evolution of a set of the best designs solutions
(known as population of individuals) found during a number
of optimization iterations (known as generations). To attain the
final PoF, individuals are constantly mutated and crossed over
(i.e., their design variables are slightly changed and swapped
with other individuals’ variables, emulating the rules of natural
evolution).

For the sake of illustration, let us consider the generation
of the PoF of an operational amplifier (opamp). The design
objectives are a set of conflicting performances, like the
dc-gain, the unity-gain frequency, the power consumption
and the area. The design variables are those that define the
performances of the opamp, such as transistor sizes and bias
currents and voltages. Some constraints must be considered
to guarantee the correct operation of the circuits: to impose
all transistors to operate in saturation regime or to have a
phase margin greater than a given value. At the end of the
process, the PoF of the opamp will be composed of a set
of different designs that are fully sized and non-dominated.
The non-dominance characteristic means that there is not any
design better than other in all design objectives. The advantage
of using PoFs is that, once generated, they can be stored to be
used later as performance models of the circuits in the design
of a more complex system. For example, if the block at level
i+ 1 is an active filter that uses two opamps, we can use the
PoFs of the opamps from level i that have been previously
generated to compose them and generate the PoF of the active
filter.

In a bottom-up flow, the PoFs of the blocks at each level
are composed to form the PoFs of higher-level blocks. This
hierarchical composition, although it is an essential aspect



of the bottom-up flow, has deserved little attention in the
literature. Actually, it poses two key issues. The first one is
related to the context for which a PoF was generated. In the
example of the opamp, this context is defined by the loading
conditions. If these conditions change when the opamps of the
PoF are used in the filter, the PoF must be re-generated as their
performances will be different or not valid any more. In [7] a
solution is proposed to transform PoFs of opamps to different
loading conditions using a hybrid-2 parameter characterization.

The second problem is related to how low-level PoFs are
used in the exploration of the design space for the generation
of higher-level blocks. For low-level PoFs, the design space
is a uniformly distributed set of values of transistor widths,
lengths, resistance values, etc. Searching over this design space
using the EA mutation operator is straightforward, as a slight
movement in the space means a small change of width, length,
resistance, etc. For higher-level PoF generation, the design
space is composed of the finite set of design solutions of
each lower-level PoF. Searching over this space is not as
straightforward as before as we need a representation of such
a complex space that allows the mutation operator (and, thus,
the exploration mechanisms of the EA) to adequately move
from one low-level design solution to a slightly different one
(following thus the correct use of the mutation operator). A
possible representation is to assign to each individual of the
PoF of lower-level blocks (e.g., opamps) an integer value, an
indexing variable, in such a way that each value of this
variable represents a different individual of the lower-level
PoF. This variable can be used as design variable during the
generation of the PoF of the higher-level block (e.g., the active
filter). However simple, this representation does not guarantee
that mutation provides slightly different design solutions of
the higher-level block, as the two close values of the indexing
variables does not necessarily represent two slightly similar
individuals of a lower-level PoF. For instance, when applied
to the generation of the PoF of the filter, a slight change of
the indexing variables representing the PoFs of the opamps
does not guarantee a slight change of the filter performances
because the index value assigned to each opamp solution is
totally independent of its performances.

A direct solution is to sort the individuals of the PoF.
A simple approach is to use the euclidean distance in the
performance space to sort the population with respect the
individual being mutated (the reference individual). In [8] a
similar solution is proposed that assigns a relative position
to each individual for each design objective. These positions
are used to sort the population with respect to the reference
individual. The main advantage of this approach with respect
to the euclidean distance calculation is that the sorting process
is performed in two steps, one previous to the composition
of fronts (pre-sorting) and one that is performed during the
composition. This requires that the lower-level PoF to compose
is always the same. However, as discussed above, in a real
situation the PoF must be transformed and this transformation
affects the sorting. Therefore the pre-sorting process cannot be
performed a priori in many situations.

Both approaches represent the design space of the
lower-level PoFs with a single indexing variable, which does
not resemble to what is done at lower-levels (where there are
as many design variables as parameters can be changed). This,
as it will be shown later, strongly affects the efficiency of the
generation of the higher-level PoF.

In this work, we propose a different sorting approach that
performs a representation of the PoF that uses (n−1) indexing
variables for each individual (where n is the number of design
objectives of each lower-level PoF). These indexes can be used
later as design variables.

The paper is structured as follows. Section II describes
different approaches that can be considered for the
implementation of the hierarchical generation of PoFs. Section
III describes the problem that has been used to make the
comparisons between the different approaches. Finally in
section IV the results are shown.

II. REPRESENTATION APPROACHES

A. Using a Unique Indexing Variable

This approach is based on the use of a unique indexing
variable to codify the information of the individuals of a PoF.
The mutation of this variable, whose value points to a reference
individual, is carried out by assigning a position to each other
individual according to the value of a distance to the reference
individual. This distance can be the normalized euclidean
distance in the performance space between individuals, which
is calculated as in 3:
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where rj is the range covered by the population in design
objective j.

An example is shown in Fig.1 where individual 0 is the
reference individual. It can be seen that the position assigned
to each individual does not always coincide with the value of
the indexing variable.

In [8] the Manhattan distance is used to sort the
individuals to a reference individual. It is calculated
using positions assigned to each individual according to
its performance values. Individuals with lower number of
differing performances are preferred.

Whether using the euclidean or the Manhattan distance, the
mutation process of the indexing variable is done as follows:

1) Calculate the normalized euclidean/Manhattan distance in
the performance space between each individual and the
reference individual.
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Fig. 1: Calculation of the distance of each individual to the
reference individual.



2) Sort the individuals in increasing order of this
distance, assigning to each individual its position in the
arrangement.

3) Perform a mutation on the position of the arrangement.
The resulted value points to the individual that will be
selected.

An example is depicted in Fig.2 where the set of design
variables is form by an indexing variable called cont and other
regular variables. The population is sorted in increasing order
of euclidean/Manhattan distance to the performances of the
reference individual. A slight variation of the position of the
arrange gives as result position X, which points to the new
individual cont’.

B. Our Approach

The approach proposed in this work assigns a set of
coordinates to the individuals of the PoF that represent their
position in each design objective. Since a PoF is a hyper
surface of (n−1) dimensions, where n is the number of design
objectives, the individuals can be characterized using (n − 1)
coordinates. The process is done as described below:

• Individuals of the PoF are grouped according to
their value of the first design objective and the first
coordinate is assigned to them.

• Individuals in each one of these groups is sub-grouped
according to their value of the second design objective
and the second coordinate is assigned to them.

The process is repeated for (M − 1) design objectives until
each individual of the PoF has a unique set of coordinates.

An example is represented in Fig.3, where a PoF that has
been generated for 3 design objectives is mapped using two
coordinates.

The coordinates can later be used as design variables during
the generation of the PoF of a higher-level block. No special
treatment is necessary for these variables since individuals with
similar performances will have near coordinates. Moreover,
as each coordinate will mutate independently of the others,
the mutation operator can decide the direction of the change.
Furthermore, the crossover operator also contributes to the
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Fig. 2: Mutation of the indexing variable using the
euclidean/Manhattan distance.
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Fig. 3: Mapping of a PoF in a 3D space using two coordinates.

design space exploration when the opamps of the PoF are
represented by several indexing variables.

III. DEMONSTRATION VEHICLE

To demonstrate the validity of the mechanism proposed
in this work we will focus on the generation of the PoF of
one component of an IQ Digital-to-Analog (IQ DA) transmit
interface system [9]: a continuous-time low-pass filter (CT LP
filter) whose schematic is shown in Fig.4. The function of the
filter can be summarized in three points:

• To attenuate the image components of the baseband
spectrum at multiples of the clock frequency.

• To smooth the output signals generated by
the preceding segmented current-steering
Digital-to-Analog converter.

• To provide the required current-to-voltage conversion.

The transfer function of the filter, assuming ideal opamps
(with infinite gain and bandwidth) is that in 4:

F (s) =
Vout

Iin
(s) =

GFF

GFBGFF +G1C1s+ C1C2s2
(4)
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Fig. 4: Schematic of the CT-LP filter.



The DC-Gain of the filter is determined by the value of the
overall feedback resistance, RFB . Thus, if the full-scale output
current of the preceding DA converter takes a fixed value IFS

and the resistance must guarantee a full-scale output voltage
VFS , its value is given by 5:

RFB =
VFS

IFS

(5)

The quality factor and the natural frequency are given by
6 and 7.
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1
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√
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The quality factor must be equal to 1/
√
2 to ensure a

maximally-flat transfer of the baseband signal to the filter
output. Besides, the cut-off frequency fp,CTF of the filter must
be set in accordance to the minimum image rejection imposed
by the standard, which defines the filter natural frequency as:

ωn = 2πfp,CTF (8)

The CT-LP filter is composed of two opamps whose finite
DC gain and bandwidth will have a major impact on its
performances. The folded-cascode with Miller compensation
opamp shown in Fig.5 will be used to implement both opamps
of the filter (although they may be differently sized). The
design variables that will be used to generate the PoF of
opamps are also shown in the figure.

To generate the PoF of the LP-CT filter, the elements
defining the design space are:

(a) The design variables characterizing all the passive devices
and

(b) a previously generated, load-independent PoF of the
opamp (following the methodology explained in [7]).

At each iteration of the optimization process, the following
critical steps are taken:

1) During the mutation of the indexing variables/coordinates,
the PoFs of the opamps must be transformed to the
load conditions imposed by the passive elements of the
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Fig. 5: Folded-cascode, Miller-compensated Operational
Amplifier.

filter, which are also variables. This is done by using the
approach presented in [7].

2) Once transformed, the indexing variables/coordinates can
be established according to the new performances of the
opamps.

To better illustrate the effect of the contribution of this
paper, the values of the passive devices will not be considered
as design variables in this work and they will be determined
a priori. As the loading conditions will be thus fixed, a PoF
of opamps previously generated will be transformed to these
loading conditions only once at the beginning of the process.
This allows isolating the sorting issue to study the effects that
each approach produces in the generation of the PoF of the
filter.

IV. RESULTS

The values of the passive devices are determined by the
design considerations of the filter detailed in section III and
the specifications of the GSM standard. The results are shown
in Table I. These values define the load seen by OPAMP1 and
OPAMP2. The loads are both resistive and capacitive and they
can be easily obtained by simulation. The results are shown in
Table II.

The PoFs of the opamps are obtained by transforming a
previously generated PoF to these loading conditions using the
technique described in [7]. This PoF was generated considering
as design variables the widths and lengths of the transistors, the
values of the compensation capacitor and resistor and the value
of the bias current. This makes a total of 17 design variables.
The design objectives and contraints were those shown in
Table III. Constraints dmi are the drain-source voltage over
the effective voltage of each transistor. It ensures the transistors
to operate in saturation regime. It is important to emphasize
here the fact that the same PoF of the opamps can be used in
any other design problem and no extra time is required for its
generation.

Figure 6 shows the projections onto the DC Gain - unity
gain frequency plane of the PoFs of opamps transformed to
loading conditions 1 and 2. The PoF of the filter, for the design
objectives and constraints shown in Table IV, will be generated
by selecting the opamps from these PoFs.

The constraints are imposed by the analog back-end
specifications and are shown in Fig.7. At.1 to At.3 are
measurements of the attenuation at multiples of the sampling
clock frequency of the preceding current-steering DAC used
in the GSM standard. Parameters dimar1 and dimar2 ensure

TABLE I: Elements of the Passive Network.

Element Value

R1 30kΩ

Rff 10kΩ

Rfb 2.85kΩ

C1, C2 23pF

TABLE II: Load conditions of each opamp in the filter.

Element Value

RLOAD1 30kΩ

CLOAD1 4.08pF

RLOAD2 2.3075kΩ

CLOAD2 1.0052pF



TABLE III: Design Objectives and Constraints for the
Optimization of the OPAMP.

Name Treatment

Design Objectives

DC-Gain maximize

fu maximize

Power Consumption minimize

Area minimize

Constraints

dmi > 1.1

Phase Margin (PM) > 60
◦

Output Swing (OS) > 3.6V
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Fig. 6: Projections onto the DC Gain - fu plane of the PoFs
of opamps transformed to load conditions 1 (a) and 2 (b).

that these attenuations increase with frequency. This helps
to reduce the bump that appears in the filter stop-band
characteristics as a result of the effect of the output impedance
of the opamps.

To compare the different approaches described in Section
II, the PoF of the filter will be generated using the following
approaches:

1) NO SORT method. Two indexing variables are used to
represent the combination of the two opamps that are
being used by each filter in the population. We call these
variables cont1 and cont2. These indexing variables will
be treated as regular variables.

2) EUCLIDEAN method. The indexing variables cont1 and
cont2 are also used, but for their mutation the approach
based on the euclidean distance in the performance space
described in section II is used.

3) METHOD IN [8]. The indexing variables cont1 and
cont2 are also used, but for their mutation the approach
described in [8] is used.

TABLE IV: Design Objectives and Constraints for the
Optimization of the Filter.

Name Treatment

Design Objectives
Area minimize

Power minimize

Constraints

At.1 > 30 dB

At.2 > 30 dB

At.3 > 30 dB

dimar 1 < 1

dimar 2 < 1

DC-Gain > 50 dB

fcut < 6.0 MHz

f

Gain

DC-Gain

3dB

fcut f1 f2 f3

at.1at.2at.3

dimar1 = at.1 - at.2

dimar2 = at.1 - at.3

Fig. 7: Constraints imposed by the analog back-end
specifications.

4) OUR APPROACH. As the PoFs of the opamps have four
dimensions, in our approach three integer coordinates are
assigned to each individual in these PoFs according to
the values of its performances. These coordinates will be
used as design variables and can be mutated as regular
variables.

With a sufficient number of generations, all approaches will
converge to the same region of the performance space, that
is, the performance model with best trade-offs that could be
achieved. However, for a real design problem, where design
time is important, the critical aspect is the convergence rate to
that region. In Fig.8 the PoFs generated by each approach at
generation 10 in a typical run are shown. As it can be seen,
the PoF generated by our approach dominates the rest in terms
of convergence rate. In other words, it has converged faster to
the region with better trade-offs between the area and power
consumption.

Due to the stochastic nature of the optimization algorithms,
it is necessary to perform a statistical study to find if some
approach is consistently advantageous over the other ones.
The convergence of the PoFs resulting from the different
approaches will be compared by using the two-set coverage
metric (CS) [10]. This metric is defined as:

C(B,A) =
|{a ∈ A|∃b ∈ B, b ≺= a}|

|A| (9)

where b ≺= a means a is dominated by b. It calculates
the number of individuals in PoF A that are dominated by
individuals in PoF B. If all individuals in PoF A are dominated
by individuals in PoF B, then CS(B,A) = 1.

A set of 17 runs is carried out for each approach using
a population of 100 individuals during 200 generations. In
Table V the average value of the coverage metric between
the PoFs generated in those runs are shown. Each cell has the
result of CS(Column,Row). The PoF generated using our
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TABLE V: Coverage metric between the PoFs generated by
each approach.

NO SORTING EUCLIDEAN [8] OURS

NO SORTING 0.5294 0.4506 0.7718

EUCLIDEAN 0.3471 0.3988 0.7241

[8] 0.3706 0.4524 0.7571

OURS 0.0653 0.1153 0.1159

approach dominates more than 70% of the individuals of the
PoFs generated using the rest of approaches. This demonstrates
that our approach consistently produces a faster convergence
to the non-dominated region.

The convergence to the true PoF can also be studied in
this particular experiment. The true PoF is composed of those
filter designs with best power consumption vs. area occupation
trade-off values. Getting the true PoF is not always feasible
in a reasonable amount of CPU time, due to the complexity
of the optimization problem. In this case, where the only
variables were the opamp designs (having the passive network
fixed beforehand), the true PoF was found by exhaustively
simulating each combination of opamp1 and opamp2, taking
all possible opamp designs from the PoFs of the opamps in
Fig.6. To that end, 106 simulations were carried out. In Fig.9
the number of solutions of the true PoF found by each approach
vs. the number of generations is depicted. Taking into account
that the CPU Time per generation is similar for our approach
and for the Euclidean or [8] approaches (approx. 15 seconds),
the convergence of our approach is better since at generation
50 the double of solutions of the true POF have been found
compared to the other approaches.

V. CONCLUSIONS

This work presents a new mechanism that improves
the hierarchical composition of PoFs of analog circuits.
Unlike other approaches using a simpler representation of
the lower-level design spaces, the mechanism presented here
performs a mapping of the individuals of PoFs assigning
(n − 1) coordinates (with n being the dimensionality of each
lower-level PoF) depending on their relative position in the
performance space. This mechanism is compared to other
methods in the generation of the PoF of a continuous-time
low-pass active filter by composing PoFs of operational
amplifiers. Results show that our approach strongly improves
the convergence rate to better regions of the performance
space.
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M. Delgado-Restituto, F. V. Fernández, A. Rodrı́guez-Vázquez,
J. Ramos, and P. Santos, “Rapid-retargetability for reusability
of application-driven quadrature d/a interface block design,” in
Electronics, Circuits and Systems, 1999. Proceedings of ICECS’99.

The 6th IEEE International Conference on, vol. 3. IEEE, 1999, pp.
1679–1683.

[10] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective
evolutionary algorithms: Empirical results,” Evolutionary computation,
vol. 8, no. 2, pp. 173–195, 2000.


