
Multi-Variant-based Design Space Exploration for
Automotive Embedded Systems

Sebastian Graf, Michael Glaß, and Jürgen Teich
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

Email: sebastian.graf, glass, teich}@cs.fau.de

Christoph Lauer
AUDI AG Ingolstadt, Germany
Email: christoph.lauer@audi.de

Abstract—This paper proposes a novel design method for
modern automotive electrical and electronic (E/E) architecture
component platforms. The addressed challenge is to derive an
optimized component platform termed Baukasten where compo-
nents, i. e., different manifestations of Electronic Control Units
(ECUs), are reused across different car configurations, models,
or even OEM companies. The proposed approach derives an
efficient graph-based exploration model from defined functional
variants. From this, a novel symbolic formulation of multi-variant
resource allocation, task binding, and message routing serves
as input for a state-of-the-art hybrid optimization technique to
derive the individual architecture for each functional variant and
the resulting Baukasten at once. For the first time, this enables
a concurrent analysis and optimization of individual variants
and the Baukasten. Given each manifestation of a component
in the Baukasten induces production, storage, and maintenance
overhead, we particularly investigate the trade-off between the
number of different hardware variants and other established
design objectives like monetary cost. We apply the proposed
technique to a real-world automotive use case, i. e., a subsystem
within the safety domain, to illustrate the advantages of the multi-
variant-based design space exploration approach.

I. INTRODUCTION

Modern automotive systems consist of a tremendous amount
of applications that are implemented as a networked embedded
system based on up to 100 Electronic Control Units (ECUs)
and numerous sensors and actuators, all connected via several
field buses. While the sheer problem complexity of the E/E
architecture of a specific car has gained much attention (e. g.,
in system design [1], [2], new communication networks [3], or
enhanced diagnosis capabilities [4]), existing design automa-
tion approaches have largely neglected the challenging task of
definition and management of all different manifestations of
the involved components within the overall series of different
car models. Consider only the safety architecture as an exam-
ple. The varying number of ignition circuits which depends on
the number and kind of installed airbags already creates several
manifestations of a single ECU. More than ten years ago, han-
dling these degrees of freedom was not a main issue because
each functionality was mapped to dedicated hardware com-
ponents and, thus, functionality was integrated or configured
in a car by just mounting the respective components. Today,
model-driven software development together with a hardware-
independent distributed implementation (cf. AUTOSAR [5]),
powerful general purpose ECUs and high-bandwidth commu-
nication links enable the implementation of functionalities on

#hardware variants

co
st

x x
x x x x x

architecture template

functional
variant 1 architecture 1

functional
variant 2 architecture 2 …

overall
architecture

selection
(“Baukasten”)

overspecified
application

model

multi-variant
design space
exploration

functional
variant 2

functional
variant 1

…

variants

Figure 1. The proposed multi-variant-based design space exploration: Given
are a classic architecture template as well as a novel overspecified application
model from which designers constitute concrete variants. The novel combined
optimization delivers (a) concrete architectures for each defined variant and (b)
the resulting overall architecture, i. e., the Baukasten. This enables to evaluate
and optimize both, the objectives (cost, timing, etc.) of individual variants and
the Baukasten (overall cost, number of hardware variants, etc.) concurrently.

shared resources. Thus, most of the features and functions
are no longer exclusively mappable to one specific hardware
resource; also, a hardware resource is not only developed for
the implementation of a single set of functions. As a measure
against the ever-growing cost pressure, the automotive industry
nowadays combines not only different features selectable by
the customer for one car model, but even the architectures and
features of different car models into one combined flexible E/E
architecture; the Baukasten (engl. component platform). The
resulting re-usability of components and subsystems helps to
lower the number of different architecture manifestations and,
thus, to lower the cost of developing, managing, maintaining,
and storing different architectures. But, these cost savings are
bought by trading-off highly-optimized specific architecture
variants for variants that re-use the Baukasten components,
inducing a possible over-dimensioning.

Existing automatic design space exploration (DSE) ap-
proaches already struggle with various degrees of freedom
like assimilable computation resources (different processors,
ASICs, FPGAs, etc.) and communication controllers for nu-
merous field bus systems when performing system synthesis.
But, they only target one variant (e. g. for maximum function-
ality) and gather one optimized architecture. This not only fails
to assist Baukasten developers, it also neglects the possible978-3-9815370-2-4/DATE14/ c©2014 EDAA

re-use and synergy effects for components across various car
models neglecting for example that some redundant parts in an
ECU may provide a broad applicability and avoid numerous
additional ECU versions to be maintained.

As a remedy, the work at hand proposes an approach
for automatic multi-variant-based design space exploration
as depicted in Fig. 1. The key feature of this technique is
that it (a) starts with one consistent overall application model,
cf. [6], from which designers can seamlessly define functional
variants, (b) defines a 0-1 Integer Linear Program (ILP) formu-
lation that performs system synthesis for all defined variants
concurrently employing a state-of-the-art hybrid optimization
technique, and (c) delivers both concrete architectures for
each defined variant and the resulting overall Baukasten. This
holistic approach with its variant layer particularly enables to
automatically analyze and optimize the trade-off of the quality
of individual variants and the respective overall Baukasten
w.r.t. the previously outlined aspects of performance numbers
and arising costs in a multi-objective fashion. To the best of
our knowledge, the presented approach is the first tackling this
kind of optimization problem as it regularly appears in the
design phase of new car series within the automotive domain.

The rest of the paper is structured as follows: Section II
discusses related work while Sec. III introduces required fun-
damentals for the employed overall system model and design
space exploration. In Sec. IV, the proposed multi-variant-
based DSE model, the 0-1 ILP encoding for the concurrent
synthesis of all variants and the Baukasten is introduced.
Section V proposes how to evaluate the Baukasten and the
individual variant’s architectures and how to use the results as
design objectives. Section VI presents a real-world use case
of a sub-domain of the safety architecture that was optimized
and evaluated using our presented multi-variant approach.
Section VII concludes the paper.

II. RELATED WORK

In recent years, especially in the automotive domain, ar-
chitectural design decisions gained importance to the overall
system design. As the overall search space is very large,
automatic design space exploration approaches as presented
in [7], [1] become familiar, but are not yet established in
general. Moreover, several tools and approaches for platform-
based system-level design like MESCAL [8], Metropolis [9],
SCE [10], Sesame [11], and SystemCoDesigner [12] have
been proposed. But, most of these methodologies for system-
level design, typically targeting SoC or MPSoC platforms,
try to decouple the functional description from the hardware
implementation and, thus, to find one optimized architecture
for a specific functional input. But nowadays, as already
pointed out in the introduction, typically multiple different
functional variants have to be implemented on the same hard-
ware architecture and, thus, this modeling and optimization
always has to consider the overall maximum functionality
to be implemented on the system hardware architecture to
ensure the correct usage. This neglects the architecture design
and optimization to handle multiple but alternative functional
variants. Here, our approach integrates the possibility to model
multiple functional variants explicitly and integrates them in

4

p1

p2

p3

c1

c3

r1

r2

r3

r4 p4

Figure 2. Classic model of the design space exploration. The functional
model (left side of the figure) and the architecture template (right side of
the figure), both represented by graph-based models, are linked by mapping
edges.

a design space exploration approach to optimize a systems
architecture for multiple variants.

Some approaches already try to tackle the handling of
multiple different functional variants in case of multi-mode
systems (see [13]) or different scenarios (as in [14]). They
tackle the problem of further optimizing the architectures
extracted by a DSE to better fit the real-world behavior of
the overall functionality. But typically, the result of the DSE
is to extract only one specific architecture implementing all
possible variants of the functionality. This neglects to hold
multiple architecture variants in a Baukasten to implement
only subsets of the functionality and, thus, to add hardware
variants as an additional layer of freedom to the designer.
To reach this goal, our work proposes a multi-variant-based
design space exploration with the additional capability to
extract a hardware Baukasten implementing a set of subsets
of functionality in case of pre-defined functional variants.
This allows the architectural designer to trade-off between the
number of different hardware variants (e. g. the size of the
Baukasten) and common objectives as already known from
DSE approaches.

III. FUNDAMENTALS

Our DSE approach follows the Y-Chart approach as pro-
posed, e. g., in [15]. Its basic model separates the functionality
from the architecture and allows to perform system synthesis,
i. e., resource allocation, task binding, and message routing.

The basic system model, see [7], termed specification is
a graph-based model comprising an application graph GT

modeling the system’s functionality, an architecture graph GR

representing the overall architecture template, and mapping
edges EM between functionality and architecture. The appli-
cation is modeled as a bipartite graph GT = {T,ET }: Each
vertex t ∈ T = P ∪ C is either a functional task p ∈ P or
a message c ∈ C. Each directed edge e ∈ ET connects a
function in P with a message in C and vice versa. Whereas
a function can have multiple preceding and succeeding mes-
sages, each message has exactly one sender but may have
multiple receivers, implementing a dataflow with multicast
communication semantics. The architecture design space is
spanned by an overspecified template of possible hardware
components and represented by a directed graph GR(R,ER).
Each vertex r ∈ R represents a hardware resource like an
ECU, sensor, actuator, or a communication controller or field
bus. The set of directed edges ER ⊆ R×R represents commu-

nication connections between adjacent resources and, in this
case links between hardware components. The mapping edges
EM ⊆ P ×R specify on which resources each function may
be implemented, i. e., each mapping edge m = (p, r) ∈ EM

represents a possible implementation of task p on resource r.
Given such a model, a hybrid optimization approach is

proposed in [16] where the specification and system synthesis
are formulated as a 0-1 ILP, efficiently solvable by a Pseudo-
Boolean (PB) solver. A meta-heuristic optimization algorithm,
e. g., an evolutionary algorithm, is then employing the solver
and performing a multi-objective optimization by influenc-
ing the solver’s search strategy, gathering different system
implementations, respectively. In the following section, we
introduce our novel multi-variant-based design space explo-
ration that extends the introduced basic system model to a
multi-variant specification. Moreover, although following the
principles of [16], we formulate a new 0-1 ILP that solves
the system synthesis problem for all specified variants to
derive optimized variant implementations and an optimized
Baukasten concurrently.

IV. MULTI-VARIANT-BASED DESIGN SPACE EXPLORATION

In the following, we present the proposed system model,
capable of considering multiple functional variants within
one single system specification. Afterwards, we introduce an
efficient 0-1 ILP encoding to be employed in a state-of-the-
art hybrid optimization technique, cf. [16], [7], now capable
of concurrently synthesizing all defined variants within one
single DSE.

A. Multi-Variant Model
Our first proposed extension for a multi-variant-based DSE

is to extend the graph-based specification to
• integrate multiple different application models, each rep-

resenting a functional variant v ∈ V , forming
• an overspecified application model that combines all

specified variants and represents the overall functional
model.

This results in an extension of a specification to a multi-
variant specification that is a tupel (GT , Go, GR, EM). GT =

{G1
T , G

2
T , G

3
T , ..., G

|V |
T } contains a set of pre-defined appli-

cation graphs Gv
T = (T v = (P v ∪ Cv), Ev

T) ∈ Gv for
each variant v. Go = {To, Eo} with To = Po ∪ Co is the
overspecified application model, given by the union (overall
hull) To =

⋃
v∈V T v and Eo =

⋃
v∈V Ev

T of all variants’
application graphs Gv

T ∈ GT . Note that EM and GR are not
specific to a variant v, thus, requiring no changes to the basic
system model.

B. Model Encoding / System Synthesis
The main contribution of our work is the seamless integra-

tion of the proposed multi-variant specification in a design
space exploration to realize a concurrent optimization of
multiple variants and obtain a Baukasten which is to select
a set of subsets of resources RB ⊆ R that will be used in
the architecture of one or more variants. The task of system
synthesis within multi-variant-based design space exploration
now comprises the following tasks:

• Select a subset of resources RB ⊆ R that defines
the overall Baukasten and is used to define alternating
components of the Baukasten.

• Select a subset Rv ∈ RB of the Baukasten resources
RB for each variant v ∈ V , forming the architecture for
variant v.

• For each variant v, bind each task p ∈ P v to exactly one
resource of the variant’s architecture Rv .

• For each variant v, route all messages c ∈ Cv according
to the computed binding and the topology of the variant’s
architecture Rv .

As outlined, this novel synthesis problem is formulated sym-
bolically as a 0-1 ILP using the following binary variables, all
given in boldface:
• r - indicating whether a resource r ∈ R is included in

the Baukasten (1) or not (0).
• rv - indicating whether a resource r ∈ R is included in

the architecture Rv of variant v (1) or not (0).
• pr - one variable for each mapping of a task p ∈ Po to a

resource r ∈ R, indicating the task is mapped to resource
r (1) or not (0).

• pr,v - one variable per mapping of a task p ∈ P v of each
variant v ∈ V to a resource r ∈ Rv , indicating the task
in this variant is mapped to resource r (1) or not (0).

• cr - a set of variables for each message c ∈ Co and the
resources r ∈ R, indicating whether the message might
be routed over resource r (1) or not (0).

• cr,v - a set of variables for each message c ∈ Cv and
the resources r ∈ Rv , indicating whether the message is
routed over the resource r in variant v (1) or not (0).

• cr,h,v - additional variables for each variant v ∈ V ,
indicating on which communication step h ∈ N a
message c ∈ Cv is routed over resource r ∈ R.

In the following, we present the constraints of the 0-1 ILP
according to the two concurrent synthesis steps of generating
the overall Baukasten and determining the allocation, binding,
and routing for each variant.

1) Baukasten Constraints: The generation of the overall
Baukasten is given follows:
∀p ∈ Po : ∑

r∈R
pr ≥ 1 (1a)

∀p ∈ Po, r ∈ R :

r − pr ≥ 0 (1b)

∀c ∈ Co, r ∈ R :

r − cr ≥ 0 (1c)

∀r ∈ R :

−r +
∑
c∈Co

cr +
∑
p∈Po

pr ≥ 0 (1d)

For the overall Baukasten, Eq. (1a) ensures that each task p
of the overspecified application model has at least one active
mapping. Equation (1b) guarantees that a mapping pr for
task p can only be active if the corresponding resource r is

included in the Baukasten allocation. Equation (1c) ensures
that messages are only routed over allocated resources. To
remove unused resources, Eq. (1d) forces each active resource
r to be used by at least one active mapping pr or routing cr.

2) Variant-Specific Constraints: The addition of the follow-
ing individual variant-specific constraints induces that each
variant v ∈ V is uniquely implemented. For the sake of
simplicity, we first introduce per-variant and then Baukasten-
related variant constraints. The following linear constraints are
generated for each variant v ∈ V :1

∀p ∈ P v : ∑
r∈R

pr,v = 1 (2a)

∀p ∈ P v,∀r ∈ R :

rv + pr,v ≥ 1 (2b)

∀p ∈ P v,∀r ∈ R,∀c ∈ Cv : (c, p) ∈ Ev
T :

cr,v + pr,v ≥ 1 (2c)

∀c ∈ Cv,∀r ∈ R :

rv + cr,v ≥ 1 (2d)∑
h={0,..,n−1}

cr,h,v − cr,v ≥ 0 (2e)

∑
h={0,..,n−1}

cr,h,v ≤ 1 (2f)

∀c ∈ Cv,∀r ∈ R, h = {0, .., n− 1} :

cr,v − cr,h,v ≥ 0 (2g)∑
r̃∈R,(r̃,r)∈Ev

R

cr̃,h,v − cr,h+1,v ≥ 0 (2h)

∑
r̃∈R,(r,r̃)∈Ev

R

cr̃,h+1,v + cr,h,v ≥ 1 (2i)

∀c ∈ Cv,∀r ∈ R, p ∈ P v, (p, r) ∈ EM , (p, c) ∈ Ev
T :

cr,0,v − pr,v = 0 (2j)

∀c ∈ Cv,∀r ∈ R, p ∈ P v, (p, r) 6∈ EM , (p, c) ∈ Ev
T :

cr,0,v ≥ 1 (2k)

∀c ∈ Cv : ∑
∀r∈R,p∈Pv,(p,r)∈EM ,(p,c)∈Ev

T

cr,0,v = 1 (2l)

Equation (2a) ensures that each task p ∈ P v is mapped to
exactly one resource, whereas Eq. (2b) ensures that a resource
is included in the variant allocation if a mapping to the
resource is active. Equation (2c) enforces that each incoming
message is routed to the resource its receiving tasks p ∈ P v is

1n is set to the architecture network diameter or to a maximum number of
hops that a message is allowed to pass on its route.

mapped to. Equation (2d) ensures that a message can only be
routed on resources included in the architecture of the variant.
Equation (2e) forces a message to be active only on the route,
i. e., it is a hop and Eq. (2f) eliminates cycles in the route. If
a resource is a hop of a route, the message on this resource is
activated, ensured by Eq. (2g). Equations (2h) and (2i) make
sure the contiguous hops on a route are adjacent resources.
Equation (2j) ensures that only a sending resource is allowed
to be the first hop of a message routing. Finally, Eq. (2k)
prevents the first hop to be located on a non-sending resource
and Eq. (2l) ensures each message has exactly one sender.

The constraints are completed by linking individual variants
and Baukasten together, by means of the following constraints:
∀p ∈ Po, r ∈ R :

|V | · pr −
∑

v∈V :p∈Pv

pr,v ≥ 0 (3a)

pr −
∑

v∈V :p∈Pv

pr,v ≤ 0 (3b)

∀r ∈ R :

|V | · r −
∑
v∈V

rv ≥ 0 (3c)

r −
∑
v∈V

rv ≤ 0 (3d)

∀c ∈ Co, r ∈ R :

|V | · cr −
∑

v∈V,c∈Cv

cr,v ≥ 0 (3e)

cr −
∑

v∈V,c∈Cv

cr,v ≤ 0 (3f)

∀c ∈ Co,∀r ∈ R,∀v ∈ V, c ∈ Cv :

cr − cr,v ≥ 0 (3g)

First, it is ensured that each mapping (Eq. (3a)), resource
(Eq. (3c)), and communication (Eq. (3e)) is activated in the
overall Baukasten RB if it is activated in at least one defined
variant v ∈ V . To prevent the Baukasten from containing
unused components, Equations (3b), (3d), (3f), and (3g) ensure
that mappings, resources, and communications are deactivated
in the Baukasten if they are not activated in at least one variant.
These constraints achieve consistency between Baukasten and
the individual architectures of each defined variant at all times.

Solving the introduced constraints via a standard PB solver
directly delivers an overall Baukasten allocation and respective
architectures for each variant as follows: The overall Baukas-
ten allocation RB is an induced subgraph of GR, given by
the activated variables r = 1. For each variant v ∈ V , Rv is
an induced subgraph of GR by the activated variables rv = 1
while the task binding and message routing is directly deduced
from the activated variables pr,v = 1 and cr,h,v = 1. Whereas,
in case of a design space exploration of a single ECU, each
unique allocation of resources for variants that might be
reused in other variants is equivalent to one component in
the Baukasten of the E/E architecture, the task binding and
message routing might be specific per variant.

V. MULTI-VARIANT EVALUATION

The success of a multi-objective DSE also depends on the
proper definition of the relevant design objectives. Thus, to
extract proper objectives for the multi-variant-based DSE, we
have to consider the evaluation of the overall Baukasten, the
evaluation of the individual variants’ architectures, as well as
a system-wide view, bringing both aspects together.

A. Baukasten Evaluation

The main goal of the Baukasten evaluation is to rate the
whole multi-variant implementation. Thus, we propose to
use the overall Baukasten allocation, as well as each variant
allocation to extract at least the following two objectives:

a) Rating of the Baukasten allocation: One objective is
extracted from the overall Baukasten allocation and is derived
from each included element. As in the automotive domain
monetary cost is one very important issue and, thus, typically
should be minimized, we suggest to minimize the cost ob of
the overall Baukasten by the following objective function with
cost(r) supplying the cost of one resource r:

ob =
∑
∀r∈RB

cost(r) (4)

b) Rating of the hardware variants: The next proposed
objective ov represents the number of different allocations
within all variants V and, thus, gives the number of different
hardware variants required to implement all defined functional
variants v ∈ V . Moreover, a smaller value is an indicator for
more re-usage of hardware variants. It is determined by:

Rv =
⋃
v∈V

Rv (5)

ov = |Rv| (6)

Here, the set union operation returns Rv that comprises all
unique allocations required to implement all defined variants
v ∈ V . Each unique allocation corresponds to one individual
hardware variant that is included (and, hence, produced, stored,
and maintained) in the Baukasten. It holds that ov = [1, |V |],
i. e., the minimum is one hardware variant that is capable
of implementing all functional variants and at maximum one
specific hardware variant for each functional variant.

Additional to these two criteria, as ov is typically very
course grained, we suggest to use one guide objective og to
further enhance the optimization process to solutions with a
small number of hardware variants. As this typically results in
an optimization contrary to ob as additional unused resources
have to be added to merge two allocations to one hardware
variant, we use the overall difference from all variants’ allo-
cations to the overall Baukasten allocation as objective.

og =
∑
∀v∈V

(|RB | − |Rv|) (7)

B. Individual variant evaluation

Of course it is still possible to evaluate each single variant
v ∈ V individually and, thus, reuse existing evaluators
like cost, load, or timing evaluators for each variant. But,
this results in a very large number of objectives and, thus,
aggravates the overall optimization process. We propose to use
a condense evaluator that is able to combine the result ovi ≥ 0
of an individual evaluation of each variant v ∈ V , to a single
optimization criterion oi. Additional to this, e. g., to represent
different installation rates, a weighting factor wv ∈ W for
each variant v is included.

oi =
∑
∀v∈V

(wv · ovi) (8)

For our real-world use case, each individual objective ovi (as
monetary cost of the architecture) is equally involved in the
combined objective, thus, the weighting factor is assumed to
be 1 for all wv ∈ W . In case of other circumstances, this
can be extended to consider maintenance cost or management
overhead, but is not further discussed in this paper.

VI. EXPERIMENTAL RESULTS

The proposed multi-variant-based design space exploration
methodology is applied to a real-world case study from the
automotive domain, in particular, the design of a new safety
architecture for future car series. The existing degrees of free-
dom with respect to architectural decisions mostly stem from
different processors and on-board peripherals for airbag ECUs,
different ASIC and FPGA components for the connection of
external sensors and actuators, as well as additional smart
camera systems connected to the processors via field buses.
The resulting architecture template consists of about 120
different interconnected resources. Without loss of generality,
we assume the whole architecture to be assembled in one
monolithic ECU and, thus, each hardware variant is directly
related to one manifestation of the airbag ECU.

The functionality is explicitly modeled as different func-
tional variants v ∈ V as given in Table I.2 It consists of several
features related to the safety domain that are additionally
selectable in different variants or series of cars, respectively.
To gather the best-case in monetary cost, we performed an
individual design space exploration for each variant and, thus,
explored specific manifestations of the architecture.

For the multi-variant-based design space exploration, we
used the objectives ob, ov , og , and oi (with equal weighted
monetary cost), see Section V, to optimize the architecture
and the Baukasten for all 8 predefined functional variants.
The best-case for overall cost is to implement all variants on
their individually optimized architecture and, thus, to maintain
8 different hardware variants. For our example, this gives
the theoretical minimum cost of 435.64 as the sum of all
individual per-variant best-case monetary cost. As depicted
in Fig. 3 (x8), our approach delivers this solution and, thus,
has at least the same capability as individual per-variant DSE

2For reasons of secrecy, we cannot give specific details on the individual
functional features and real costs.

0 2 4 6 8
400

500

600

700

x1

x8

number of hardware variants (size of Baukasten (ov))

ov
er

al
l

ac
cu

m
ul

at
ed

co
st

s
(o

i)

Figure 3. Pareto-plot of the results of the use case as a two-dimensional
projection. Our approach extracted solutions with all possible numbers of
different hardware variants to implement the defined 8 functional variants and
finds solutions that reach the theoretical best-case calculated from individual
optimization processes (e. g. x1, x8).

approaches. The other extrema is spending only one architec-
ture for all defined variants, i. e., each variant is implemented
on exactly the same hardware setup. In our use case, the
architecture of variant v7 is able to implement all functional
features and, thus, is the only hardware variant that is able
to implement all functional variants. Thus, the theoretical
minimum for a single hardware variant solution cause an
overall monetary cost of 663.28. Also, as depicted by x1 in
Fig. 3, our approach finds this point as well, offering at least
the same capability as existing DSE approaches that extract
only one overall architecture. Beyond this, we deliver trade-
offs between the number of different hardware variants and
other optimization criteria like monetary cost and, thus, to
ponder between maintenance and management overhead for
providing different numbers of hardware variants and general
design objectives even early in the design process.

VII. CONCLUSION

In this paper, we have shown how to efficiently perform a
multi-variant-based design space exploration by formulating
the problem of finding proper E/E architecture component
platforms. Due to the symbolic encoding, it is possible to
efficiently integrate an additional variant layer that handles
multiple input variants in case of functionality as well as
multiple output variants in case of different hardware variants,

Table I
FUNCTIONAL VARIANTS OF THE CASE-STUDY WITH THEIR FUNCTIONAL

FEATURES AND THE LOWEST MONETARY COST FOR A DEDICATED
VARIANT ARCHITECTURE.

functional features best-case
variant f1 f2 f3 f4 f5 f6 f7 f8 monetary cost

v1 x 29.3
v2 x x 35.0
v3 x x 39.4
v4 x x x 45.11
v5 x x x x 72.81
v6 x x x x x 78.51
v7 x x x x x x x x 82.91
v8 x x 52.6

i. e., components in the Baukasten of the E/E architecture.
Additional to this, fitted objective functions to evaluate multi-
variant implementations are introduced. The proposed method-
ology was applied to a real-world use case and shows the
capabilities of the newly introduced variant layer. It could be
seen that our approach integrates the features of classical DSE
approaches in case of single variant optimizations as well as
capabilities of extracting overall architectures. Furthermore,
we contribute to extend a DSE approaches to integrate the
number of different hardware variants as an additional layer
of freedom. In the future, we want to extend our use case to
represent the whole safety subdomain and, thus, to holistically
handle multiple different Baukasten ECUs in parallel.

REFERENCES

[1] R. Moritz, T. Ulrich, and L. Thiele, “Evolutionary exploration of
e/e-architectures in automotive design,” in Proc. of the International
Conference on Operations Research, 2011, pp. 361–366.

[2] V. Rupanov, C. Buckl, L. Fiege, M. Armbruster, A. Knoll, and
G. Spiegelberg, “Early Safety Evaluation of Design Decisions in E/E
Architecture According to ISO 26262,” in Proc. of the 3rd International
Symposium on Architecting Critical Systems, 2012, pp. 1–10.

[3] M. Glaß, S. Graf, F. Reimann, and J. Teich, “Design and Evalu-
ation of Future Ethernet AVB-based ECU Networks,” in Embedded
Systems Development: From Functional Models to Implementations,
A. Sangiovanni-Vincentelli, H. Zeng, M. Di Natale, and P. Marwedel,
Eds. Springer, 2014, pp. 205–220.

[4] M. Eberl, M. Glaß, J. Teich, and U. Abelein, “Considering Diagnosis
Functionality during Automatic System-Level Design of Automotive
Networks,” in Proc. of DAC, 2012, pp. 205–213.

[5] S. Fürst, J. Mössinger, S. Bunzel, T. Weber, F. Kirschke-Biller,
P. Heitkämper, G. Kinkelin, K. Nishikawa, and K. Lange, “AUTOSAR–
A Worldwide Standard is on the Road,” in Proc. of 14th International
VDI Congress Electronic Systems for Vehicles, Baden-Baden, 2009.

[6] S. Graf, M. Glaß, D. Wintermann, J. Teich, and C. Lauer, “IVaM:
Implicit Variant Modeling and Management for Automotive Embedded
Systems,” in Proc. of CODES+ISSS, 2013, pp. 1–10.

[7] M. Lukasiewycz, M. Streubühr, M. Glaß, C. Haubelt, and J. Teich,
“Combined System Synthesis and Communication Architecture Explo-
ration for MPSoCs,” in Proc. of DATE, 2009, pp. 472–477.

[8] A. Mihal, C. Kulkarni, M. Moskewicz, M. Tsai, N. Shah, S. Weber,
Y. Jin, K. Keutzer, C. Sauer, K. Vissers, and S. Malik, “Developing
Architectural Platforms: A Disciplined Approach,” IEEE Design & Test,
vol. 19, pp. 6–16, 2002.

[9] H. Zeng, A. Davare, A. Sangiovanni-Vincentelli, S. Sonalkar, S. Kana-
jan, and C. Pinello, “Design Space Exploration of Automotive Platforms
in Metropolis,” in Society of Automotive Engineers Congress, 2006.

[10] R. Dömer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu, S. Abdi, and
D. D. Gajski, “System-on-chip environment: a SpecC-based framework
for heterogeneous MPSoC design,” EURASIP J. Embedded Syst., vol.
2008, pp. 5:1–5:13, Jan. 2008.

[11] A. D. Pimentel, C. Erbas, and S. Polstra, “A Systematic Approach
to Exploring Embedded System Architectures at Multiple Abstraction
Levels,” IEEE Transactions on Computers, vol. 55, pp. 99–112, 2006.

[12] J. Keinert, M. Streubühr, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt,
J. Teich, and M. Meredith, “SYSTEMCODESIGNER - An Automatic
ESL Synthesis Approach by Design Space Exploration and Behavioral
Synthesis for Streaming Applications,” TODAES ’09, vol. 14, no. 1, pp.
1–23, 2009.

[13] S. Wildermann, F. Reimann, J. Teich, and Z. Salcic, “Operational Mode
Exploration for Reconfigurable Systems with Multiple Applications,” in
Proc. of FPT, 2011, pp. 1–8.

[14] P. van Stralen and A. Pimentel, “Scenario-based design space exploration
of MPSoCs,” in Proc. of ICCD, 2010, pp. 305–312.

[15] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki
et al., Hardware-software co-design of embedded systems: the POLIS
approach. Kluwer Academic Publishers, 1997.

[16] M. Lukasiewycz, M. Glaß, C. Haubelt, and J. Teich, “Efficient Symbolic
Multi-Objective Design Space Exploration,” in Proc. of ASPDAC, 2008,
pp. 691–696.

