
Startup error detection and containment to improve
the robustness of hybrid FlexRay networks

Alexander Kordes
Faculty IV / ETI / OSDS

University of Siegen
Siegen, Germany

Bart Vermeulen
Central R&D

NXP Semiconductors
The Netherlands

Abhijit Deb
Central R&D

NXP Semiconductors
The Netherlands

Michael G. Wahl
Faculty IV / ETI / MSE

University of Siegen
Siegen, Germany

Abstract—The research and development on in-vehicle net-
works (IVNs) is driven by two main requirements: bandwidth and
robustness. In this paper we address the robustness requirement.
We focus on FlexRay IVNs that are used for safety-critical
applications. We analyze and discuss faults that may affect the
startup and operation of a FlexRay network. These failures may
not only occur during the startup phase of the vehicle, but they
may also happen due to a bus problem that requires the bus to be
reinitialized during normal operation. Here any startup failure
leads to a critical situation like a brake system failure.

The fault scenarios we discuss in this paper are the resetting
leading coldstart node (RLCN), the deaf coldstart node (DCN),
and the babbling idiot (BI). These faults are described in litera-
ture, but neither the precise behavior of all involved nodes, nor a
clear solution is provided to contain their impact. The idea of a
bus guardian (BG) is given in a draft specification of the FlexRay
consortium, but no details are given. In this paper, we extend on
these ideas by investigating and implementing a detailed (BG)
concept, based on our fault analysis. We subsequently evaluate
the successful containment of the three fault types in simulation.
We also quantify the chip area cost of our solution.

I. INTRODUCTION

Robust communication is a stringent requirement for safety-
critical applications on in-vehicle networks (IVNs), e.g., when
they are used for x-by-wire applications such as brake-by-
wire [1]. Unfortunately, the perfect fail-safe network has not
yet been defined. The FlexRay network [2], [3] is one of
the IVNs that is used to connect electronic controller nodes.
Conceptually, each node contains an electronic control unit
(ECU), sensors, actuators, and a bus driver (BD) to transmit
and receive data. Typically, the ECU implements the commu-
nication controller (CC), which realizes the FlexRay protocol.
FlexRay has been designed with safety-critical applications
in mind. It is one of the most fail-safe network protocols
known [1]. Still, under very special circumstances a failure
may occur. One critical phase is the network startup process.
A failure in this phase can cause the network to not start at all.
If a transient error occurs during driving, it may be necessary
to reinitialize the IVN communication. An error occurring at
this point in time can be critical. This is why we focus in
this paper on the possible problems in the startup phase of the
FlexRay IVN.

In literature, as discussed in more detail in Sections III
and IV, three different failure scenarios are described, which

may prevent a FlexRay IVN from starting up. These are the
resetting leading coldstart node (RLCN), the deaf coldstart
node (DCN), and the babbling idiot (BI). They are based on
mathematical models and do not reflect the precise timing of
all involved nodes during the presence of a fault. The FlexRay
consortium published a draft specification, which outlines a
central bus guardian (CBG). Its tasks are to observe the traffic
on the FlexRay IVN, identify potential faults, and prevent a
failure of the IVN through the containment of the faulty node.
This draft specification however does not provide enough
guidelines to realize this bus guardian (BG) functionality. In
this paper, we analyze the three types of faults, and detail
how a central and a local FlexRay BG can be implemented to
recognize them and take appropriate action to prevent these
faults from affecting the startup of a FlexRay IVN.

This paper is organized as follows: we describe the relevant
parts of the FlexRay startup process in Section II. In Section III
we state the problem consisting of these three known failure
scenarios. The related work is discussed in Section IV. In
Section V, we present the proposed detectors and contain-
ment methods based on our failure analysis. We also discuss
their hardware implementation and integration in an existing
FlexRay switch design. The effectiveness of these BGs and
their implementation costs are reviewed in Section VI. We
conclude this paper in Section VII.

II. FLEXRAY STARTUP PROCESS

The FlexRay protocol [2] partitions time into consecutive
communication cycles, where each cycle consists of a static
segment, a dynamic segment, a symbol window, and a network
idle time (NIT) interval. The static segment is further divided
into constant length time division multiple access (TDMA)
slots, called static slots. In each static slot, one node can
send a frame. These frames consist of a header, a payload,
and a trailer. The assignment of frames to slots is specified
at design time in a communication schedule. Typically, the
ECU of each FlexRay node contains a CC, which realizes the
FlexRay protocol. The nodes may be connected on a single
bus; one node on each branch of a central star component; or
using a hybrid topology that contains one or multiple nodes
on each branch of a star component. The process of initiating
a network startup is called a coldstart. The nodes that are
configured to initiate a startup are called the coldstart nodes978-3-9815370-2-4/DATE14/ c©2014 EDAA



(CNs). All CNs first listen to the IVN for two communication
cycles. If no other node transmits a valid frame header or a
collision avoidance symbol (CAS) in this period, one or more
CNs transmit a CAS to initiate startup. In the special case in
which more than one CN transmit a CAS at the same time, the
nodes involved cannot decode the CAS of the other node(s).
This is because the FlexRay protocol specification specifies
that nodes cannot listen to the IVN while they transmit. The
designer of the FlexRay IVN assigns each CN a unique so-
called key slot, in which this node transmits its startup frame.
Hence, the node with the lowest configured key slot transmits
its frame first.

The FlexRay protocol furthermore specifies that all nodes
select the node that transmits its frame in the earliest TDMA
slot to be the leading coldstart node (LCN). The other nodes
decode the frame header from the LCN, and abort their own
startup attempt to join the on-going startup process. These
CNs become known as following CNs. The FlexRay protocol
specification defines the signals, frames, and the timing that
are necessary to establish the time base for communication.

The LCN transmits startup frames in five consecutive com-
munication cycles to synchronize the following CNs. In the
absence of errors, each synchronized following CN answers in
the fifth communication cycle with a synchronization frame,
after it has synchronized. The nodes therefore count correctly-
decoded frames starting from an even cycle. The frame header
contains the cycle number for this purpose. If no other CN is
answering, the LCN stops transmitting for one communication
cycle and aborts its coldstart attempt. It subsequently performs
another coldstart attempt, consisting of another set of five
startup frames in consecutive cycles. Every CN is initially
configured with a number of possible coldstart attempts. This
number is decremented on each attempt. To startup a FlexRay
IVN, a CN needs to have at least two coldstart attempts
left. The first coldstart attempt is used to transmit the CAS.
Other nodes join the communication when they decode two
startup frames per cycle in two consecutive cycles. Afterwards,
the FlexRay IVN is in normal operation mode and the data
communication starts.

III. PROBLEM STATEMENT

A FlexRay IVN can be prevented from starting up or from
communicating after startup by several, specific failure sce-
narios. Earlier studies mention the following three scenarios:
RLCN [4]–[6], DCN [6], [7] and BI [8], [9]. In each of these
scenarios, the failure prevents one or more FlexRay nodes
from behaving fault-free. These failures need to be analyzed,
detected and handled.

A. Resetting leading coldstart node

If the LCN is periodically reset due to a failure, then it can
be prevented from transmitting messages in four consecutive
communication cycles. The reset of the LCN causes the
following CNs to abort the startup phase [5]. While the
CNs reinitialize the startup process, the reset node takes the
lead again and so forth. The network experiences a startup

failure [4]. We call this node an RLCN. In the worst-case,
this periodic reset occurs indefinitely [4]. In the case of a
FlexRay IVN, the four consecutive frames in the first four
communication cycles of a startup attempt are transmitted in
the coldstart collision resolution state of a node.

B. Deaf coldstart node

The DCN failure, also called an incoming link failure,
prevents the affected node from listening to the IVN [1], [2],
[6], [7]. This causes a startup problem when the node is one of
three CNs and overwrites parts of the header of the LCN with
its CAS and subsequently every trailer of the third CN, which
becomes the next LCN. This causes noise on the IVN instead.
Hence, startup frames from the LCN cannot be decoded as
valid. All CNs lose their startup attempts and stop transmitting,
causing a startup failure.

C. Babbling idiot

The BI failure scenario is defined as a node transmitting
outside of its specified time interval [8]. By transmitting noise
or frames at unspecified time intervals in a FlexRay IVN, it
is possible that the BI interrupts the startup process as well
as any ongoing communication after startup. A FlexRay IVN
with a BI can therefore lose synchronization, if the BI sends
data or when other nodes can no longer transmit valid data.

IV. RELATED WORK

For the detection and possible containment of failures on
an IVN, the authors of [10] describe a so-called BG solution.
This is a device, which observes the ongoing communication
of a transmitting device in a network. When the observed
device generates a failure, the BG disconnects the device from
the IVN to contain its failure. The first application of this
concept to TDMA-based communication, without the highly-
redundant aspect, is described in [11]. The BG can disable
the communication when it detects faulty behavior from the
observed node. Therefore, the BG has to know the TDMA
schedule of the observed node. When the node violates the
timing requirements, it is silenced by deactivating its BD. This
approach is called fail-silence.

For FlexRay, a local bus guardian (LBG) concept is de-
scribed in a preliminary specification [12]. This specification
only provides the BG concept, but does not provide any
implementation details. It uses most of the functionality of
a FlexRay CC. To separate the BG from the local CC, it is
necessary for the BG to have its own clock synchronization
process (CSP). Therefore, an ECU contains two CCs, one for
the node and one for the LBG. This separation makes the BG
independent from possible failures in the observed CC and
provides it with its own local view of the global time. The
CC of the BG is not used to transmit any frames.

A BI failure scenario can be partly avoided in a time-
triggered communication system with the concept presented
in [11]. The authors describe that the node is set in a fail-
silent mode, when the BG detects communication from the
observed node at incorrect points in time. This concept is



extended in [12] to additionally detect content errors of the
frame header. The authors of [11] however indicate that their
approach can only prevent a special form of this failure, called
the babbling CAS idiot that periodically transmits a CAS. The
endless startup scenario describes a CN, which periodically
initiates the coldstart sequence. This can refer to the RLCN
scenario, but it is not discussed in more detail. The authors
of [12] describe that the LBG could detect and contain such
a failure scenario.

The FlexRay consortium also published the concept of a
CBG [5]. This CBG is also a device with a functional subset
of a FlexRay CC. Nodes are connected directly or via a bus on
several branches to a CBG. In general, it follows the concept of
the LBG. It cannot transmit frames itself. The CBG integrates
and observes the FlexRay communication and uses a CC to
determine the communication cycle number, segment, and slot
numbers. The schedule of critical nodes, such as the coldstart
and synchronization nodes, is stored in a CBG to protect the
critical functions [13]. The CBG limits the bandwidth of the
connected nodes or branches when failures are detected.

This conceptual CBG can also be used to contain an RLCN
in a FlexRay IVN [5]. The CBG punishes the branch after
a configurable number of faults, whenever an RLCN error is
detected. An active branch is detected by a race-arbitration
state. The first transmitting node is allowed to broadcast to all
other nodes. The other branches are forced to listen until the
end of the transmission or an error is detected. This prevents
a BI from sending at incorrect points in time. If an error
is detected and assigned to a branch, the CBG punishes the
branch for the configurable period of time.

The related work described above focuses on an LBG or
a CBG as an approach to increase the robustness of an IVN.
The BG specifications are however preliminary and do not
focus on specific error detection or the implementation of a
BG for a specific IVN. In this paper, we present details of our
implementation of a CBG and an LBG. These implementations
and their evaluation are part of a larger project. Some early
analysis results on a CBG have previously been published
in [14]. These results however needed to be updated and
extended as a result of a more extensive evaluation, which
resulting in new insights and subsequent architectural changes
to the design of the CBG. In this process, we also evaluated
the consequences for the implementation of a LBG. This has,
among others, led to significantly different values for the
silicon area cost of our detectors. The effects of all these
changes are described in more detail in Section VI. For
completeness and to be able to properly position this new
work, we first summarize our analysis results below and extend
them with details on our CBG and LBG implementations.

V. BUS GUARDIAN ANALYSIS AND IMPLEMENTATION

We describe in this section our analysis and implementation
of both a FlexRay CBG and a FlexRay LBG. Both BGs
have to detect and handle the three startup failures described
previously. We first summarize the options to detect and
contain these failures. For this, we use the models of the

RLCN, DCN, and BI failure types available in literature. We
subsequently provide implementation details on how these
detectors can be integrated in a FlexRay IVN.

A. RLCN detector

The analysis of the RLCN has been done by scrutinizing
the first 11 communication cycles of the startup process. This
analysis led to a succession of 19 identified phases P1 to
P19, as shown in Fig. 1. A phase is a time interval in which
a reset of the RLCN has the same effect. The process starts
with the CAS symbol, followed by specific frames required
for the initialization of the IVN. Critical phases are e.g. P2
and P10. In P3 and P7, all CNs lose one coldstart attempt
per communication cycle. Non-critical phases usually cause
another CN than the RLCN to take the lead and to successfully
start the network. In the worst case (P13), the completion of
the startup process is delayed with the duration of all coldstart
attempts added to the time the RLCN takes to calculate the
result of its synchronization. This phase is outside of the
coldstart collision resolution state [5]. Our RLCN detector
monitors the IVN and tracks the progress through these phases.
It stops monitoring as soon as a coldstart attempt is successful
and transitions back to the start state to wait for a CAS
indicating a new coldstart attempt.

Our central detector stores the branch information of the
active branch when a communication element (CE) start is
decoded. This is the case for the first frame. When all CNs
start at the same time, the node with the first assigned key slot
takes the lead (refer to Section II). Therefore the first critical
phase starts after decoding the header of the frame sent by
the RLCN. Our detector implementation extracts the frame
identifier (id) of the RLCN, thereby identifying the node in the
IVN. It signals all detectable failure cases. The decoded frame
id is used to check if an RLCN is trying to startup the network
for a second time. Another indicator for an RLCN is when a
frame is expected and not received after the time specified in
the specification (“tSecondFrame”). All other identified reset
scenarios cause corrupted frames, because the RLCN resets
while it transmits a frame. The bus is set to idle when no
node is transmitting anymore. Therefore, the detector checks
the header and trailer for a decoded channel idle recognition
point (CHIRP). When the detector decodes it, it will signal an
RLCN failure.

To contain the failure, the RLCN is identified by the
arguments of the RLCN error signal, the frame id, and the
branch information. The LBG sets the misbehaving node to
fail-silent, whereas the CBG sets the identified branch to fail-
silent. The other CNs are no longer affected by the RLCN,

CAS Frame Header Frame TrailerLegend: Critical Phase

P1 P2 P3 P4 P5 P6 P8P7

P12

P9 P10 P11

P14P13 P15 P16 P17 P18 P19

time(t)

time(t)

Fig. 1. RLCN phases



and one of them can subsequently take the lead and start up
the network. Hence, it is necessary to configure the network in
such a way that two CNs are not affected by the containment.
The containment of the RLCN is released after a normal
startup. The RLCN subsequently behaves like a following CN
and does not impact the communication any more.

B. DCN detector

We analyzed the four known failure modes of a deaf node
that affect the startup process. First, a DCN is not listening
to the IVN. It tries to start the network up by sending out
a CAS and transmitting startup frames. Because it cannot
decode valid frames, it waits one cycle after each coldstart
attempt until it runs out of coldstart attempts and subsequently
remains quiet. We analyzed the second and third DCN failure
mode of [1] and [6] and concluded that these modes do not
follow the FlexRay protocol specification. We therefore do not
consider these two failures modes for the implementation of
our DCN detector. A further study, however, led us to another
DCN failure mode [14]. This failure consists of three CNs
with the minimal configured startup attempts of two. This
mode was confirmed later on in [7]. We decided to consider
this failure mode for our DCN detector, even though it can
be circumvented during the design of the FlexRay IVN, by
configuring the CNs with a number of startup attempts that is
larger than two.

Our DCN detector observes the startup of the IVN from the
first CAS until the network is started up. A started network
consists at least of three startup frames decoded in the correct
schedule of a communication cycle. If the CE is the start of a
frame, the detector decodes it and checks for decoding errors.
A decoding error during a frame is signaled when one of the
sequences Frame Start Sequence, Byte Start Sequence, Frame
End Sequence, or when one of the cyclic redundancy check
(CRC) checks is corrupted. In contrast to a FlexRay node, our
detector does not stop decoding the frame after a decoding
error is detected, but it continues to check the next sequence.
If the check returns another decoding error, the frame was
overwritten by another node and the detector flags this as a
DCN error.

The detector knows the following sequence for the second
check, because it gets the specific location of the first decoding
error as an argument of the decoding error signal. Therefore,
we extended the existing decoding error signal of the decoding
process with a more specific error type. This narrows the
decoding error of the first sequence down to the sequence
type, the location in the frame and the first or second bit of
the sequence, if it is a two bit sequence.

Our detector also reacts when a second CAS is transmitted
during a time window “tAllowCAS.” This indicates that the
transmitting node has not reacted to the first CAS by aborting
the coldstart attempt. Hence our detector signals a DCN error.

If the detector is used in a central device, it receives the
active branch for each CE start and decoding error. This allows
our detector to compare the active branches from a CE start
with the ones from a decoding error. If the branches differ,

then two nodes are communicating at the same time, and a
DCN error is flagged. The information on the active branches
is used by the containment method. When a branch with the
DCN is identified, this containment method sets it to fail-
silent. After the time the DCN needs to transmit all coldstart
attempts the fail-silence is released. The DCN cannot affect the
communication anymore and the network successfully starts
up. This requires that the CNs are placed on different branches
in a star or hybrid network.

C. BI detector

We restricted our analysis of the BI scenario to the static
segment, in which the nodes communicate their synchroniza-
tion information. We assume the network has successfully
started up and all nodes are already synchronized. A BI can
transmit data at any point in the schedule. If the idle phase
between the frames is corrupted, other nodes try to decode a
frame. A starting frame has not been decoded when no CHIRP
on A event is decoded at the end of the idle phase. Decoding
errors occur when the faulty node transmits data that collides
with a frame. This causes receiving nodes to stop decoding the
frame and wait for the next generated CE start event. A BI
can also transmit correct frames in wrong slots. These frames
are decoded by the other nodes and cause a content error,
because the decoded frame id or cycle counter are incorrect.
These frames are subsequently discarded. The other nodes
may however lose synchronization when this process causes
synchronization frames to be discarded. They restart and try
to synchronize again.

The BI detector monitors the IVN for the correct schedule
and possible collisions. It is started when the BG becomes
synchronized. The idle phases on slot boundaries are defined
by the FlexRay protocol parameters. The detector observes the
IVN during these phases and flags an BI error if it decodes a
CE. This is done in the static segment and the NIT. Frames
are transmitted in a time window where a CE is allowed. The
detector only reacts on content and decoding errors in those
time windows. A content error indicates a wrong schedule and
a decoding error indicates a collision. The detector is designed
to increase an error counter if such an event is generated. The
BI detector signals an BI error when the counter exceeds a
configurable parameter.

To contain a BI failure, it is necessary for our detector
to identify the misbehaving node and exclude it by itself
from the bus communication. It is also possible to set a
whole branch fail-silent. Therefore, the central device stores
the active branches when it receives a CE start or an decoding
error and transmits it as an argument of the BI error signal. In
both cases the network has to be configured in a way to provide
enough startup and synchronization nodes that are not affected
by the containment, to possibly startup and synchronize the
network after the impact of the BI. The contained node or
branch has to be checked after some time. If the failure is not
present anymore, the containment can be released.



D. BG implementations

In general, BG functionality can be placed locally, near the
CC and bus driver of an ECU (LBG), or in a central device
(CBG). Our detector modules are suited for both. The basis
for our CBG and LBG implementations is an existing VHDL
RTL design of a FleyRay Switch [15] with six branches. We
made four key changes with respect to the existing FlexRay
switch implementation to be able to add our BG functionality
to it. First, we added branch identification logic for the case
in which the BG functionality is used in a central device.
This logic helps identify the branch with a faulty node and
is based on the FlexRay CODEC process [2]. By leaving
the unused CODEC output signals unconnected, the synthesis
tool automatically removes any unused CODEC logic. Second,
we added extra registers to be able to control and query our
detectors from the outside of the BGs via a serial peripheral
interface (SPI). Third, we made changes in the underlying
router module that handles the communication between the six
branches. With the updated router module, we can support race
arbitration and bit reshaping [5], and can more easily constrain
the timing during synthesis and future layout steps. Fourth,
we have implemented the branch containment functionality,
by adding extra masking logic in the signal router module of
the switch, to contain a branch with a faulty node.

We derived the implementation of the LBG from our CBG
implementation through a number of deconfiguration steps.
First, a LBG does not require six branch inputs and outputs.
Instead, we only support a single, local branch in our LBG
implementation. We also removed the branch identification
logic and parametrized the instantiation of our detectors to the
local use case. This last step among others removes the logic in
the detectors that is used to store the identity of the branch that
initiated certain CEs. Furthermore, we removed all switching
functionality, which includes the slot table addressing logic.

VI. EXPERIMENTAL RESULTS

In this section, we first evaluate the effectiveness of our BG
implementation. We do this using the CBG implementation, as
the CBG implementation contains a superset of the function-
ality of our LBG implementation. We subsequently evaluate
the silicon area cost associated with the BG functionality, both
for the CBG as well as for the LBG.

A. Failure Detection

The FlexRay network architecture used for our simulation
is shown in Fig. 2. To verify our CBG functionality, we
connected a configurable number of FlexRay nodes to its
branches. These FlexRay nodes are configurable in their be-
havior and are implemented in SystemC [16]. We subsequently
performed mixed-level simulations to verify the functionality
of our FlexRay CBG for each failure type using four consecu-
tive steps. First, we simulated the implementation without the
presence of a failure and confirmed the correct behavior of the
IVN. In our second step, one node was configured with one of
the failure types. In the subsequent simulation, we confirmed
that the associated detector successfully detects the failure

FlexRay
switch

detectors &
support logic

FlexRay
node

FlexRay
node

FlexRay
node

FlexRay
node

FlexRay
node

FlexRay
node

Branch 0

Branch 1

Branch 2

Branch 3

Branch 4

Branch 5

containment

VHDL

SystemC SystemCoptinonal
failure 

injectionFlexRay
node

FlexRay
node

Fig. 2. Implementation of BG and SystemC nodes

and that the IVN is indeed affected with a startup failure.
The containment of the branch with the failing node after this
detection was validated in simulation as part of our third step.
We successfully validated that in all cases, the IVN starts up
after this containment. In the fourth and last step, we cancel
the containment after the network has started up successfully
without the failing node. We discovered that, in case of the
RLCN and the DCN, the IVN is no longer affected by the
failing node. However, the containment of a node affected
by the BI failure cannot be released because the IVN cannot
properly function with the BI present.

Example behavior of the implemented solution for an RLCN
is depicted in Fig. 3. The CNs on the three branches of the
IVN each try to become the leading CN by issuing a CAS. The
RLCN takes the lead by transmitting the frame header. After
the transmission of the frame trailer it resets (refer to P2 of
Fig. 1). The RLCN node tries to take the lead for the second
time, which is detected by our CBG as an RLCN error after the
time “tAllowCAS.” The containment functionality in this CBG
blocks the branch with the RLCN, causing the failing node to
become silent and allowing another node, CN 2, to take the
lead and initialize the FlexRay IVN. Afterwards, CN 1 joins
in in the second TDMA cycle, because both nodes started with
a CAS. The network is started up later and the containment
of the branch with the RLCN can be released. An example of
a DCN scenario is depicted in Fig. 4. The DCN overwrites
the frame from the CN 3 with a CAS. The collision between

CAS Frame Header Frame TrailerLegend: RLCN Error

RLCN 
detector

CN 3
(RLCN)

CN 2

CN 1

time(t)

tAllowCAS

1st cycle 2nd cycle

Reset

Fig. 3. Simulation of an RLCN failure scenario with containment

CAS Frame Header Frame TrailerLegend: Noise

DCN 
detector

CN 3

CN 2
(DCN)

CN 1

time(t)

9th cycle

BUS

DCN Error

1st cycle

Fig. 4. Simulation of a DCN failure scenario with containment



the CAS and the frame header of CN 3 generates noise on
the IVN, which is detected by our CBG. The containment
functionality in our CBG sets the DCN to fail-silent and the
network subsequently synchronizes with no problems in the
ninth cycle. An example of a BI scenario is shown in Fig. 5.
The startup process has been finished and CN 1 and CN 2 are
sending frames as expected. The BI then sends noise in the
slot boundary between the valid frames from CN 1 and CN 2.
This is detected immediately by our CBG, causing the branch
with the BI to be contained.

B. Silicon area cost

The silicon area costs for our CBG and LBG implementa-
tions are shown in Table I. These results have been obtained
by synthesizing the VHDL RTL design files of our complete
CBG and LBG, and comparing it with the original FlexRay
switch. We used a commercially-available synthesis tool and
an automotive-qualified cell library. All numbers have been
normalized using a total CBG area set to 10,000 units for
confidentiality reasons. The other logic entry in Table I refers
to the baseline logic of the switch [15]. The difference between
the area cost of our LBG with respect to our CBG is caused by
the differences detailed in Section V-D. The area increase for
the DCN detector in an LBG is caused by its ability to provide
more error information in that case. Overall, we observe that
the area cost of our CBG is approx. 32% larger than our
FlexRay switch and the area of our LBG is approx. 75% of
our switch.

VII. CONCLUSION

There are a few, rare but erroneous, situations in which a
failure can prevent the FlexRay IVN from starting up. Our fail-
ure analysis showed that the startup process is not completely
fault-tolerant. We reviewed and analyzed the RLCN, DCN and
BI fault scenarios described in literature. The RLCN, the DCN,
and the BI scenarios can prevent a FlexRay network from
starting up under very specific conditions. We developed both
central and local bus guardian implementations that generate

CAS Frame Header Frame TrailerLegend: Noise

BI 
detector

BI

CN 2

CN 1

time(t)BI Error

slot 1 slot 2 slot 3

Fig. 5. Simulation of a BI failure scenario

TABLE I
RELATIVE AREA COST OF THE DETECTORS AND THEIR SUPPORT LOGIC

Module CBG LBG
RLCN detector 233 233
DCN detector 187 196
BI detector 43 43
Branch identification logic 1,974 0
Additional SPI registers 2 2
Other logic 7,560 7,104
Total 10,000 7,579

fault information based on the observed behavior of all nodes
of the IVN. These BGs use three different detectors to observe
the FlexRay IVN and to identify the occurrence of these three
failures. We have described the integration of these detectors
into an existing FlexRay switch design. Our implementations
extend this design to a CBG and an LBG. We subsequently
verified their functionality through mixed-level simulations.

Our evaluation shows that our BGs are able to detect these
three failure scenarios. We validated that the network does
start up normally, when the branch with the identified faulty
node is contained using our BG functionality. Synthesis results
for our BGs show the required amount of silicon area for a
FlexRay CBG and a FlexRay LBG. The area cost of a CBG
was shown to be smaller than the area cost of two LBGs.
This difference may translate into a different component cost,
which the designer of a FlexRay IVN can take into account,
when trading off component cost against fault protection.

Our next step is to validate our detectors in a real FlexRay
IVN using an FPGA implementation of our BGs and to add
run-time fault protection functionality.

REFERENCES

[1] M. Rausch, FlexRay: Grundlagen, Funktionsweise, Anwendung. Hanser
Fachbuchverlag, 2007.

[2] FlexRay Consortium, FlexRay Protocol Specification, Version 3.0.1,
Oct. 2010. [Online]. Available: www.flexray.com

[3] ——, Electrical Physical Layer Specification, Version 3.0.1, Oct. 2010.
[Online]. Available: www.flexray.com

[4] W. Steiner, “Model-Checking Studies of the FlexRay Startup Algo-
rithm,” TU Wien, Institut für Technische Informatik, Research Report,
2005.

[5] FlexRay Consortium, Preliminary Central Bus Guardian Specification,
Version 2.0.9, Dec. 2005. [Online]. Available: www.flexray.com

[6] S. Cranen, “Model checking the FlexRay startup phase,” TU Eindhoven,
2012, Computer Science Report 12-01, Jan. 2012.

[7] ——, “Model checking the FlexRay startup phase,” in 17th International
Workshop on Formal Methods for Industrial Critical Systems (FMICS),
ser. Lecture notes in computer science (LNCS), M. Stoelinga and
R. Pinger, Eds., vol. 7437. Springer, August 2012, pp. 131–145.

[8] H. Kopetz, Real-time systems: design principles for distributed embed-
ded applications, ser. Real-time systems. New York: Springer, 2011.

[9] G. Buja, A. Zuccollo, and J. Pimentel, “Overcoming babbling-idiot
failures in the FlexCAN architecture: a simple bus-guardian,” in 10th
IEEE conference on Emerging Technologies and Factory Automation
(ETFA), vol. 2, sept. 2005.

[10] A. Hopkins, T. Smith, and J. Lala, “FTMP 8212;A highly reliable fault-
tolerant multiprocess for aircraft,” Proceedings of the IEEE, vol. 66,
no. 10, pp. 1221 – 1239, oct. 1978.

[11] C. Temple, “Avoiding the babbling-idiot failure in a time-triggered
communication system,” in 28th Annual Int. Symposium on Fault-
Tolerant Computing, 1998. Digest of Papers, june 1998.

[12] Preliminary Node-Local Guardian Specification, Version 2.0.9, FlexRay
Consortium, Dec. 2005. [Online]. Available: www.flexray.com

[13] M. Dehbashi, V. Lari, S. G. Miremadi, and M. Shokrollah-Shirazi, “Fault
Effects in FlexRay-Based Networks with Hybrid Topology,” in Proc.
International Conference on Availability, Reliability and Security, 2008.

[14] A. Kordes, B. Vermeulen, A. Deb, and M. Wahl, “Erhöhung der
Robustheit von hybriden FlexRay-Netzwerken durch Erkennung und
Eingrenzung von Laufzeitfehlern,” in 4th VDE GMM-Fachtagung AmE
”Automotive meets Electronics”, Dortmund, Germany, Feb. 2013.

[15] B. Vermeulen, J. Staschulat, M. Struck, and S. Lorenz, “Flexray Switch:
More Bandwidth and Better Robustness in Flexray Networks,” ATZelek-
tronik worldwide Edition, vol. 5, 2010.

[16] M. Baumeister, P. Fuhrmann, and F. Armbruster, Taking concept mod-
els from standardization to silicon, Hanser Automotive Electronics +
Systems, 2005.


