
978-3-9815370-0-0/DATE13/©2013 EDAA

Modeling and Analysis of Fault-tolerant Distributed

Memories for Networks-on-Chip

Abbas BanaiyanMofrad and Nikil Dutt

Center for Embedded Computer Systems

University of California, Irvine, CA, USA

{abanaiya, dutt}@uci.edu

Gustavo Girão

Federal University of Rio Grande do Sul

Institute of Informatics, Porto Alegre, Brazil

ggbsilva@inf.ufrgs.br

Abstract— Advances in technology scaling increasingly make

Network-on-Chips (NoCs) more susceptible to failures that cause

various reliability challenges. With increasing area occupied by

different on-chip memories, strategies for maintaining fault-

tolerance of distributed on-chip memories become a major design

challenge. We propose a system-level design methodology for

scalable fault-tolerance of distributed on-chip memories in NoCs.

We introduce a novel reliability clustering model for fault-

tolerance analysis and shared redundancy management of on-

chip memory blocks. We perform extensive design space

exploration applying the proposed reliability clustering on a

block-redundancy fault-tolerant scheme to evaluate the tradeoffs

between reliability, performance, and overheads. Evaluations on

a 64-core chip multiprocessor (CMP) with an 8x8 mesh NoC

show that distinct strategies of our case study may yield up to

20% improvements in performance gains and 25% improvement

in energy savings across different benchmarks, and uncover

interesting design configurations.

I. INTRODUCTION

Technology scaling has an increasing impact on the
resilience of CMOS circuits [1], resulting in a host of reliability
challenges such as manufacturing defects, wear-out, and
parametric variations [2]. For example, effects such as process
variation (PV) and negative bias temperature instability (NBTI)
are increasingly threatening the reliability and lifetime of
emerging NoC-based multi/many-core processors [6]. Beside
process variation, variation in voltage and temperature and
manufacturing defects coupled with voltage/frequency scaling
make systems more vulnerable to both permanent and transient
faults [3]. By increasing the number, amount, and hierarchy of
on-chip memory blocks in multicore processors, reliability of
the memory architecture becomes more challenging in the
design of such systems [4]. To overcome such reliability
challenges, we need to develop new approaches that integrate
reliability strategies at multiple levels of the design hierarchy,
and which take into account power, performance, cost, as well
as user requirements.

Many research efforts have already investigated fault-
tolerant schemes for NoC architectures [5][6], with a primary
focus on fault-aware routing, reliable communication, and
fault-tolerant routers. However, research on coupling memory
and NoC reliability is still in its infancy [3]. Indeed, there are
few works studying the reliability of on-chip memories at the
network level [7]. On the other hand, while fault
modeling [21], fault-tolerance analysis [19], and reliability
modeling and analysis [18][20] of NoCs has been studied

extensively, reliability modeling and analysis of memory sub-
system in NoCs has not received much attention.

There is a large body of previous work on fault-tolerant
design of on-chip cache memories, mostly proposed for single
core processors [8][9]. However, they face severe limitations
when they are applied to emerging NoC-based multi-
core/many-core architectures with distributed on-chip
memories where the number of access points (cores) and
memory banks are numerous, access latencies are not unified,
interconnect backbone affects the reliability, and both memory
and redundancy are shared among all cores. Unfortunately,
existing efforts have not addressed the need for a system-level
framework that explicitly models distributed memories,
analyzes redundancy organization, and which supports
exploration of reliable distributed on-chip memories for
emerging multi/many-core architectures. Our paper addresses
these drawbacks through the following main contributions:

 We propose a system-level design methodology for scalable

fault-tolerance of distributed on-chip memory blocks in NoC

architectures.

 We introduce a novel reliability clustering model for

efficient fault-tolerance analysis and shared redundancy

management of on-chip memory blocks. Each cluster

represents a group of cores that have access to shared

redundancy resources for protection of their memory blocks.

 We perform extensive design space exploration applying the

proposed reliability clustering on a block-redundancy fault-

tolerant scheme to evaluate the tradeoffs between reliability,

performance, and overheads.

We believe that our proposed design methodology will
engender NoC architectures capable of efficiently responding
to the multiple challenges of increasing fault rates, variation in
fault behaviors, local interconnects, non-uniform memory
access latency, limited shared redundancy, and susceptibility to
transient variations.

II. EXEMPLAR NOC ARCHITECTURE

To illustrate our approach, we experiment on an exemplar
tiled NoC-based CMP, where each tile comprises a processor
core, private L1 data and instruction caches, a shared L2 cache
bank, and network router/switch. Tiles are interconnected as a
2-D mesh via a network-on-chip infrastructure. Figure 1 shows
our baseline 64-core CMP with an 8x8 mesh NoC. Based on
our cache organization, the L2 bank is a portion of the larger
distributed shared last-level cache (LLC). The baseline design

assumes a Non-Uniform Cache Architecture (NUCA) [10] for
LLC. A directory-based protocol is implemented in order to
maintain cache coherence.

Fig. 1. Baseline architecture.

III. SYSTEM-LEVEL FAULT-TOLERANCE MODELING

A methodology for fault-tolerance of distributed memory
systems for scalable NoC platforms faces several inter-related
challenges, requirements, and features: communication must be
localized to reduce interconnect overheads; fault-tolerance
schemes need to be topology-aware, and must organize and
distribute redundancy based on criticality of communication
paths; redundancy needs to be managed as a shared resource
across the platform; and fault-tolerance should be addressed at
higher design abstraction levels to gain more leverage over its
effects on performance, cost, power, etc.

To meet these needs, we develop analytical models and a
system-level methodology for fault-tolerant design of
distributed on-chip cache memories for a tiled NoC-based
CMP. This paper focuses on shared L2 banks that need to be
protected. However, our approach can be applied to any form
of on-chip memory architecture in NoCs that need reliability.
To estimate design parameters we develop analytical models
include a Reliability model, Access latency model, and Area
overhead model. Using these models, we can analyze the trade-
offs between yield, performance, and energy/area overheads of
a fault-tolerant design of on-chip memory subsystem. Due to
lack of space, we describe details of these models in our
technical report [23]. Next, we present a novel reliability
clustering concept for scalable, modular, and efficient design
and implementation of fault-tolerant schemes applied to protect
the memory blocks.

A. Reliability Clustering

To model fault-tolerance and organize redundancy we
divide the whole NoC into clusters comprised of multiple
groups of tiles. Each cluster is a subsection of the base NoC
with the same topology but in a smaller group of tiles. The
clustering is used to partition redundancy sharing among the
tiles inside the cluster. In each cluster, some specific tiles (e.g.,
center tiles) contain the redundancy used for fault-tolerance of
all tiles inside the cluster; these are labeled as redundancy
nodes. These redundancy nodes can be used flexibly to
accommodate different fault-tolerance schemes and varying
forms of redundancy, such as redundant rows/columns/blocks;
exploiting sections of available clear/faulty blocks as
redundancy; and ECC codes. Furthermore, we leverage the
available interconnect backbone to support implementation of a
variety of modular, scalable, and efficient fault-tolerance
schemes. For instance, in our exemplar tiled NoC architecture,

we modify the direct router connected to the redundancy nodes
to support our selected fault-tolerant scheme.

Because such clustering organization is independent of a
particular topological structure, various physical topologies can
serve as fixed-silicon but dynamically reprogrammable reliable
multicore clusters on top of NoC platforms. Meanwhile, the
inherent reconfigurability allows customizing clusters
according to not only the clustered and varying fault rates but
also to application communication patterns and resilience
needs. Therefore, clusters can be defined statically or
dynamically during runtime. For the sake of simplicity, here
we consider static clustering.

Our mesh-based NoC is composed of N nodes, C clusters,
with each cluster containing a dxd mesh of tiles (d = cluster
dimension size). The size and number of clusters can affect the
yield, overhead, and network latency. The cluster dimension
size (d) would determine the upper bound on latency of fault-
tolerant LLC accesses. Depending on the shape and size of
each cluster, number of clusters, amount of redundancy, and
distribution of redundancy among clusters, we can explore
different design strategies which meet various design
constraints.

IV. EVALUATION

To illustrate the flexibility and utility of our exploration
methodology, we outline a sample design space exploration
study using the exemplar NoC platform.

A. Experimental Setup

We use SoCIN, a cycle-accurate SystemC model of a
Mesh-based NoC [11] that uses Wormhole switching with a 4-
phit buffer size and an XY routing to avoid deadlocks. SoCIN
router contains input buffers, the arbiter, the crossbar, and the
links as depicted in Fig. 1. Each router is connected to a 1MB
L2 cache bank. All L2 cache banks share the same address
space of 64 MB LLC. Additionally, for each router, there is a
module generating data and instruction requests based on
memory traces obtained from a Simics [12] simulation using
64 sparcV8 as cores. A workload of parallel programs with
very distinct behaviors is created using benchmarks from
SPLASH2 [13], PARSEC [14], and a parallel version of
MiBench [15] suites. With these memory traces as input to our
framework, we are able to extract performance and energy
results. The performance results are the total number of cycles
to execute all 64 parallel tasks (for each application) and the
energy results are obtained from Cacti 6.5 [16] for the memory
subsystem and from Orion 2.0 [17] for the network-on-chip.
Table I summarizes the experimental setup of our architecture.

For the sake of this study, faulty LLC banks are modeled
randomly since SRAM cell faults occur as random events due
to the major contribution of the random dopant fluctuation to
the process variation [8]. Based on the results of a recent work
[1], the predicted probability of failure for SRAM cells can be
up to 2.6e-4. Here, since our case study is a block-redundancy
fault-tolerant scheme and the analysis is at system level, we
model failures at the block level. Based on that, the probability
of block failure would be up to 7e-2. To enable a fair analysis
during our evaluation, we consider 8 fault rates ranging from
1e-3 to 7e-2. To determine the amount of redundancy based on
our reliability model, to keep the reliability more than 99%, the
redundancy (R) should be more than 2%. On the other hand, to

Input
Buffer

Crossbar

L

N

S

E

W

L

N

S

E

W

Arbiter

L2 $ bank

L1 $

Core Router

D
ir

ec
to

ry

keep effective yield more than 95%, we should keep the
redundancy less than 5%. Thus we consider redundancy for
any value ranging from 2% to 5%.

TABLE I. EXPERIMENTAL SETUP

Processor Cores 64 SPARC V8

L1 Inst./Data Cache 2 Banks, 32KB each, 4-Way, 32B block, 2 cycle

L2 Cache (shared LLC) 64 Banks, 1MB each, 8-Way, 64B block, 10 cycle

Memory Latency 250 cycles

Interconnect

NoC of 2D mesh (8x8 for 64 banks) 32-byte links

(2 flits per memory access), 1-cycle link latency, 2-

cycle router, XY routing, 4 phit buffer size

Integrated Technology 45 nm

B. Design Space Exploration Studies

We evaluate the impact of system-level reliability
clustering on performance, energy, and area overhead of the
system using simulation runs of the experimental platform
described earlier. For different system configurations we
change one design parameter such as fault rate or amount of
redundancy and study its effect on different design metrics of
the memory subsystem. We consider the design space at two
levels: cluster-level and system-level.

1) Cluster-level (Intra-cluster): Here, we study the effect
of redundancy distribution (number and location of redundancy
nodes) on system design metrics. In this set of results, we
consider the whole NoC as one cluster, fix either the amount of
redundancy or fault rate, and change the redundancy
distribution. In these experiments we explore the redundancy
organization by changing either the number of nodes that
contain redundancy (redundancy nodes) or their location.
Redundancy node distribution can be studied in two directions,
ranging from central nodes to all outward nodes or ranging
from corner nodes to all inward nodes. Redundant elements are
spread equally among all nodes which contain redundancy.
Proposed distributions are selected based on a regular and
scalable pattern which is independent of the size of the cluster.
Figure 2.a presents some possible distributions for our base
architecture with four redundancy nodes. Here, for each
redundancy distribution we have other variations of the
distribution by spreading the nodes from the center (Option 1)
towards the corners (Option 4). Note that the label N.X means
that the configuration has N nodes with redundancy and X
representing the distribution option. Higher values of X
represent redundancy nodes that are closer to the corners.

Fig. 2. Possible configuration patterns in a) cluster-level, b) system-level,

with four redundancy nodes per cluster.

2) System level (Inter-cluster): Here, we investigate the
effect of node clustering and shared redundancy management

among clusters on system design metrics. In this set of results,
we change the number and size of clusters while fixing the
total redundancy in the system. We select the size and number
of clusters based on a regular and scalable pattern. Redundancy
is spread equally among all clusters and all redundancy nodes
inside each cluster. Here, we put the redundancy nodes in the
center of each cluster. The intuition behind this approach is to
guarantee that the redundancy nodes are always surrounded by
a certain number of cores. This has the goal of not only
minimizing the average distance between the cores and the
redundancy nodes but also minimizing the variance in the
average distance for each case. Figure 2.b presents some
possible clustering and distribution of redundancy for our base
architecture with four central redundancy nodes per cluster.
Here we illustrate sample distributions for 1, 2, 4, 8, and 16
clusters with 4, 8, 16, 32, and redundancy nodes, respectively.

V. SAMPLE EXPLORATION RESULTS

We summarize the normalized performance/energy results
of the block-redundancy scheme using the proposed clustering
methodology, with respect to a baseline system without fault-
tolerance support (i.e., where access to a faulty memory
address results in an on off-chip memory access). Detailed
experimental results are in our technical report [23].

A. Cluster-level Results

Fig. 3.a shows the gains of performance – the normalized
execution time to the baseline – for each configuration shown
in Fig. 2.a with 3% of memory redundancy and also 3% of
block fault rate in the system. Note that 3% block fault rate
means that 3% of all memory blocks in the system are faulty.
This figure shows the susceptibility of performance gains
varying from one application to another. While the
performance improvements vary across most applications, as
expected, configurations with more redundancy nodes (e.g.,
configuration 16.2) present better results.

Fig. 3. Normalized performance improvement of different cluster-level

configurations across different a) benchmarks, b)amount of redundancy.

In another experiment we evaluate the effect of different
amounts of redundancy for cluster level while setting the block
fault rate to 3% (Fig. 3.b). Note that it is not sufficient to have
redundancy greater than the fault rate, since the faults may not
be evenly distributed, and other factors (e.g., routing and
contention) may affect performance. Indeed, Fig. 3.b shows an

Option 1 (RN = 4.1) Option 2 (RN = 4.2) Option 3 (RN = 4.3) Option 4 (RN = 4.4)

1–Cluster (RN = 4) 2–Cluster (RN = 8) 4–Cluster (RN = 16) 8–Cluster (RN = 32) 16–Cluster (RN = 64)

a)

b)

0

10

20

30

40

50

60

FFT LU Patricia Susan_c Susan_e Susan_s Swaptions

RN=4.1 RN=4.2 RN=16.1 RN=4.4 RN=8.1
RN=8.2 RN=8.3 RN=4.3 RN=16.2 RN=16.3

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

 Im
p

ro
ve

m
e

n
t

(%
)

0

10

20

30

40

50

60

70

0.1 1 2 3 4 5 6 7

Amount of redundancy (%)

RN=4.1 RN=4.2 RN=4.3 RN=4.4 RN=8.1 RN=8.2 RN=8.3
RN=16.1 RN=16.2 RN=16.3 RN=32.1 RN=32.2 RN=64

(a)

(b)

inversion from 4% of redundancy memory: configurations that
were inferior in the previous experiments start to present better
performance and those that were previously superior now
appear to become worse. This suggests that at some point when
the total of redundancy memory is higher than the amount of
faulty blocks in the system, it is better to have the redundancy
nodes in the corners. This could be due to the fact that as the
XY routing tends to concentrate the load in the center of the
NoC [22], these packets for redundancy memory requests
(which now occur less frequently) may generate less
contention if avoiding the middle of the NoC.

B. System-level Results

For the inter-cluster case we put the redundancy nodes in
the center of cluster and change the size and number of
clusters. Similar to Fig. 3.a, Fig. 4 presents the results at the
system-level in terms of performance gains when fixing the
redundancy memory at 3% and the block fault rate also at 3%.
In this case, for all configurations except 16-cluster, there is not
much variation from one application to another. This is a
configuration that spreads the redundancy data equally
throughout all the nodes and therefore is more susceptible to
different memory access rates. For lower memory accesses it
works well because there are few redundancy memories per
node across all nodes. For high memory accesses it may not
work well since it has a higher chance where the redundancy
nodes may be too far away.

Fig. 4. Normalized performance improvement of different system-level
configurations across different benchmarks.

In another set of experiments we run both cluster-level and
system-level configurations across all benchmarks when using
3% of memory redundancy and changing the block fault rate in
the system. We note that configurations using too many
redundancy nodes do not present good results. This may
suggest that the best distribution must not have a small amount
of redundant memory per node because this will spread the
redundant area too much, creating a higher average NoC
distance between the nodes.

Overall, by looking at the results on both sets of
experiments, we observe that good decisions on redundancy
organization or selecting proper cluster-level and system-level
configurations can lead up to 20% improvement in normalized
performance gains over the baseline. This is a relevant
differential since it incurs no increase in overhead and only
requires changing the redundancy organization.

C. Energy Results

We also studied the energy saving (normalized to baseline)
for both sets of experiments, as detailed in our technical
report [23]. Overall, depending on different configurations the
normalized energy savings can be improved up to 24% in the

cluster-level approach and 18% in the system-level approach
for different amounts of redundancy.

VI. CONCLUSION

In this paper, we proposed a system-level design
methodology for scalable fault-tolerance of distributed on-chip
memories in NoCs. We introduced a new concept of reliability
clustering for efficient redundancy management and fault-
tolerant design of memory blocks. Experimental results on an
exemplar 64-core CMP with an 8x8 mesh NoC show that
distinct design strategies or reliability clustering configurations
of a block-redundancy scheme may yield up to 20%
improvement in normalized performance gain and up to 24%
in normalized energy gain, uncovering many interesting design
configurations. Future work will explore implementation and
architecture definition to support the proposed reliability
clustering approach.

ACKNOWLEDGMENT

This work was partially supported by NSF Variability
Expedition Grant Number CCF-1029783. Also, this work was
partially supported by CNPq Brazillian agency.

REFERENCES

[1] S. R. Nassif, et al., “A resilience roadmap,” in Proc. DATE, 2010.
[2] S. Borkar, “Designing reliable systems from unreliable components: The

challenges of transistor variability and degradation,” IEEE Micro, 2005.
[3] R. Marculescu, et al., “Outstanding Research Problems in NoC Design:

System, Microarchitecture, and Circuit Perspectives” IEEE TCAD,2009.
[4] N. Aymerich, et al., “New reliability mechanisms in memory design for

sub-22nm technologies,” in Proc. IOLTS, 2011.
[5] D. Park, et al., “Exploring Fault-Tolerant Network-on-Chip

Architectures,” in Proc. DSN, 2006.
[6] X. Fu, et al., “Architecting reliable multi-core network-on-chip for small

scale processing technology,” in Proc. DSN, 2010.
[7] F. Angiolini, et al., “Reliability Support for On-Chip Memories Using

Networks-on-Chip,” in Proc. ICCD, 2006.
[8] A. Agarwal, et al., “A process-tolerant cache architecture for improved

yield in nanoscale technologies,” IEEE TVLSI, 2005.
[9] S. Ozdemir, D. Sinha, G. Memik, J. Adams, and H. Zhou, “Yield-aware

cache architectures,” in Proc. MICRO, 2006.
[10] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform cache

structure for wire-delay dominated on-chip caches,” in ASPLOS, 2002.
[11] C.A. Zeferino and A.A. Susin, “SoCIN: A Parametric and Scalable

Network-on-Chip,” in Proc. SBCCI, 2003.
[12] P.S. Magnusson, et al., “Simics: A Full System Simulation Platform,”

IEEE Computer, vol. 35, no. 2, pp. 50-58, 2002.
[13] S.C. Woo, et al., “The SPLASH-2 Programs: Characterization and

Methodological Considerations,” in Proc. ISCA, 1995.
[14] C. Bienia, et al,“The PARSEC benchmark suite: characterization and

architectural implications,” in Proc. PACT, 2008.
[15] S.M.Z. Iqbal, Y. Liang, H. Grahn, “ParMiBench: An Open Source

Benchmark for Embedded Multiprocessor Systems,”in Proc CAL, 2010.
[16] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, Cacti 6.5, In HP

Laboratories, Technical Report, 2009.
[17] A.B. Kahng, et al., ORION 2.0: a fast and accurate NoC power and area

model for early-stage design space exploration,” in Proc. DATE, 2009.
[18] J. Kim, et al., “Design and analysis of an NoC architecture from

performance, reliability and energy perspective,” in Proc. ANCS, 2005.
[19] T. Lehtonen, P. Liljeberg and J. Plosila, “Fault Tolerance Analysis of

NoC Architectures", in Proc. ISCAS, May 2007.
[20] A. Dalirsani, et al., “An Analytical Model for Reliability Evaluation of

NoC Architectures,” in Proc. IOLTS, 2007.
[21] K. Aisopos, O. Chen, and L.-S. Peh, “Enabling System-Level Modeling

of Variation-Induced Faults in Networks-on-Chips,” in DAC, 2011.
[22] M. Dehyadgari, et al., “Evaluation of Pseudo Adaptive XY Routing

Using an Object Oriented Model for NOC,” in Proc. ICM, 2005.
[23] A. BanaiyanMofrad et al., “Analyzing and Exploring Fault-tolerant

Distributed Memories for NoCs,” UCI CECS TR 12-15, 2012.

0

5

10

15

20

25

30

FFT LU Patricia Susan_c Susan_e Susan_s Swaptions

1-Cluster 2-Cluster 4-Cluster 8-Cluster 16-Cluster

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

 Im
p

ro
ve

m
e

n
t

(%
)

