A Novel Concurrent Cache-friendly Binary Decision
Diagram Construction For Multi-Core Platforms

Mahmoud Elbayoumi
ECE Dept., Virginia Tech
Blacksburg, VA 24061-0002
Email: mbayoumi@vt.edu

Abstract—Currently, BDD packages such as CUDD depend
on chained hash tables. Although they are efficient in terms of
memory usage, they exhibit poor cache performance due to dy-
namic allocation and indirections of data. Moreover, they are less
appealing for concurrent environments as they need thread-safe
garbage collectors. Furthermore, to take advantage of the benefits
from multi-core platforms, it is best to re-engineer the underlying
algorithms, such as whether traditional depth-first search (DFS)
construction, breadth-first search (BFS) construction, or a hybrid
BFS with DFS would be best. In this paper, we introduce a novel
BDD package friendly to multicore platforms that builds on a
number of heuristics. Firstly, we re-structure the Unique Table
(UT) using a concurrency-friendly Hopscotch hashing to improve
caching performance. Secondly, we re-engineer the BFS Queues
with hopscotch hashing. Thirdly, we propose a novel technique
to utilize BFS Queues to simultaneously work as a Computed
Table (CT). Finally, we propose a novel incremental Mark-Sweep
Garbage Collector (GC). We report results for both BFS and
hybrid BFS-DFS construction methods. With these techniques,
even with a single-threaded BDD, we were able to achieve a
speedup of up to 8x compared to a conventional single-threaded
CUDD package. When two-threads are launched, another 1.5x
speedup is obtained.

I. INTRODUCTION

Since its introduction in 1986 [1], efficient constructions
of Reduced Ordered Binary Decision Diagrams (ROBDD)
have penetrated many areas of computer aided VLSI design,
including fault simulation, circuit synthesis, ATPG [2], circuit
verification, just to name a few. Three major approaches have
been proposed to construct ROBDDs: depth-first search (DES),
breadth-first search (BFS) and hybrid BFS-DFS [3]. Although
DFS has a low associated memory overheads and large po-
tential to be optimized (i.e., by using Computed Tables (CT)),
it has poor memory locality. Meanwhile, BFS construction
approaches preserve memory locality and have potential to be
parallelized; however, it has associated overheads in storing
temporary nodes (stored in queues).

Nowadays, computing has seen a tremendous shift toward
parallel computing. This shift is mainly because of three
reasons [4]. First, operating frequency has hit a wall. Secondly,
Instruction Level Parallelism (ILP) has reached its limit.
Thirdly, the degradation due to memory access time outweighs
any improvement in processor operating frequency. As a
result, researchers are forced to look for alternatives to these
traditional approaches for increasing performance. Increasing
the number of processors (cores) on a die to improve the

978-3-9815370-0-0/DATE13/(©2013 EDAA

Michael S. Hsiao
ECE Dept., Virginia Tech
Blacksburg, VA 24061-0002
Email: hsiao@vt.edu

Mustafa ElNainay
CSE Dept., Alexandria University
Alexandria, Egypt 21544
Email: ymustafa@alex.edu.eg

performance has served well [5]. As we have new multi-
core architectures, we need to investigate and develop new
algorithms to handle BDDs on these architectures to efficiently
utilize these new low-cost off-shelf devices [6].

Recently, concurrent hashing techniques (e.g., Hopscotch
hashing [7]) have been proposed to guarantee constant lookup
and deletion times in the hash table. In addition, it shows a
superior performance on traditional hashing techniques; i.e.,
chained hashing, linear hashing and Cuckoo hashing [8], even
when the hash table is 90% full. It depends mainly on keeping
those nodes, hashed to the same bucket, in a restricted nearby
space of the memory. In doing so, it has benefits of low access
time of the main memory cache, and guarantee constant worst-
case lookup time. This can play a critical role in improving the
performance in the access of BDD nodes, which are typically
stored and indexed via Hash tables. Thus, in a sense, while
construction algorithms for BDDs are extremely difficult to
parallelize, we exploit concurrency in hashing algorithms, with
tremendous payoffs as will be shown in the results.

The contributions of the paper are as follows: first, we
propose to use Hopscotch hashing as a Unique Table (UT)
and Queues. Our results show that by utilizing this hashing
technique alone on a single core, we were able to achieve a
speedup up to 8x compared with CUDD [9]. Moreover, we
achieve another 1.5x on average with two threads on a 2-core
multiprocessor. Note that the proposed Hopscotch hashing is
concurrency-friendly, leading to the speedup with additional
threads. Second, we propose to utilize Hopscotch hashing to
be used in both queue and the computed table. This would be,
as far as we know, the first introduction of a hybrid BFS-DFS
approach to the construction of computed tables in Binary
Decision Diagrams. We can speed up runs that utilize very
small queue sizes, such that the running times are comparable
to those that use very large queue size. In other words, we
can trade memory consumption with running time. Finally, we
propose a novel incremental Mark-Sweep Garbage collector
(GC) to further enhance the performance. We implemented
the multi-threaded BDD construction using both BFS and a
hybrid BFS-DFS and report their results.

The rest of the paper is organized as follows: In the next
section, we introduce the some of concepts in Hopscotch
hashing technique. In the Third section, we describe the
detailed Components of our framework, and we will present

our DFS-BFS hybrid approach, including the computed table,
and incremental Mark-Sweep Garbage Collector. In the forth
section, we present our experimental results. Finally, we
conclude the work in the fifth section.

II. HOPSCOTCH HASHING

Hopscotch hashing is a recently proposed hashing technique
[7]. It is based on multi-phase probing displacement tech-
niques. Hopscotch hashing preserves and utilizes data locality,
hence it has been shown to outperform all other well-known
hashing techniques, including chaining, cuckoo hashing, and
linear probing. Moreover, it also guarantees a fixed worst
case fetching time. We leave the details of Hopscotch hashing
implementation and concurrency to [7].

The unique table (UT) is implemented as a hash table using
the Hopscotch hashing technique. To preserve data locality, it
is represented by an array of buckets. The initial size of the
UT is selected to be a power of two, in order to improve the
performance of UT resizing operation.

Our package is a pointer-free package; that is, the pointers
of the BDD nodes are not the physical memory addresses of
the node. We take this approach for mainly two reasons. First
of all, it is to provide a platform-independent implementation.
Secondly, Hopscotch hashing usually swaps nodes between
entries. So, physical-address pointers will add more overhead
due to the need to update pointers in each swap.

When a new node is inserted into the UT, it searches for
other nodes within the bucket first, and assigns a new local
pointer to the new node. When UT is not able to insert a new
node within its bucket neighborhood, resize() is called.

In order to save time and avoid memory explosion, we
propose an incremental resizing technique for our UT. As
depicted in Fig. 1, resize() Method consists of three phases.
The first and third phases are done by the Master thread,
while the second thread is processed by both Master and
Slaves threads. When resize() is called, the first thread call
is considered as the Master thread, and any other thread
executed by the Master is called a Slaves thread. In the
first phase (see Fig. 1, lines 2-7), the Master will allocate
a continuous memory block with the size identical to the size
of the original UT. Note that any other Slave thread that
enters while Master thread is executing the first phase, will
be blocked while trying to acquire the lock (line 1 of Fig. 1).

In the second phase, all Master and Slave threads are
cooperating in table rehashing. Each thread will take a segment
and rehash it until all segments are rehashed (lines 8-12 of Fig.
1). Note that each pointer of any node will not change due to
UT resizing. This is because that the UT stores the hash string
instead of the hash values. In addition, by restricting the size
of UT to be a multiple of two, any node will be rehashed to
the same location or will be shifted by the old size of the table.
In the third phase (lines 14-20 in Fig. 1), all Slave threads
will sleep until the Master finishes.

III. PACKAGE FRAMEWORK

The overall package Framework is illustrated in Fig. 2. It
consists mainly of 1) Manager, 2) Workers, 3) UT, and

resize()

acquire master lock.

if this is the master thread then
acquire lock on all segments.
allocates new space, updates necessary parameters vari-
ables

6: end if

7: release master lock.

8

9

A

: while there is a segment doesn’t rehashed yet do
. for all i such that i € current segment do

10: rehash node at location i.

11: end for

12: end while

13: acquire master lock.

14: if this is the master thread then

15: release all segments lock

16: notify all sleeping threads

17: else

18: sleep

19: end if

20: release master lock.

Fig. 1. resize() method.

Worker # 1 Worker #2 Worker # N

Insert Req

Apply

Repeats Synchronize

Sl oL i e it i i s i
Reduce Reduce Reduce
1]))
Manager
-l ut
Allocates
—,l Queues |

Fig. 2. Manager will allocate UT and Queues, insert BDD requests, then
creates N — worker threads. Worker threads will execute apply() method
concurrently. Manager will synchronize between worker threads until all
threads finish executing apply(); Then, worker threads execute reduce()
method. These operations repeat until all circuit gates are constructed.

Queues.

A. Manager

As depicted in Fig. 3, manager is responsible for allocation
and initiation of all necessary components to build a BDD
from a netlist circuit (lines 2-4). It schedules BDD request into
queues (Line 6). In addition, it synchronizes between workers
(lines 8 & 9).

B. Worker Threads

Worker threads are responsible of performing BDD basic
construction operations as depicted in Fig. 4. Fig. 2 de-
picts how M anager synchronizes among workers. manager
waits until all workers finish the apply() method (line 4 in
Fig. 4), then it allows workers to begin in reduce() method
(lines 6 in Fig. 4).

1: Read circuit netlist.
2: Initialize and allocate UT, Queues, and other internal
variables.
Create worker threads.
for all circuit levels do
insert available BDD request for this level.
while there is a scheduled request in this level do
wait until workers finish executing apply() method.
wait until workers finish executing reduce()
method.
9: end while
10: end for

A

Fig. 3. Manager main method.

loop
while there is a scheduled request in this level do
apply().
wait until all other workers finish apply() method.
reduce().
wait until all other workers finish reduce() method.
end while
end loop

A A ol e

Fig. 4. Worker main method.

Request hash table

Level N

(1111
Level N -1 D]

Fig. 5. Queues Structure: Queues consist of one large hash table (im-
plemented with Hopscotch hashing), and array of N lists, where N is

number of levels. Each list contains the pointers of the request in hash table
corresponding to certain level.

Level 1

C. Queues and Computed Tables

While worker threads construct BDDs, apply() and
reduce() methods require to access temporary request often.
In order to have an efficient memory access, we propose to
implement Queues as a hash Table and an array of lists as
depicted in Fig. 5. Array of lists is used to keep track of every
request on each level.

Hash table utilization in implementing Queues have another
motivation. We can utilize the hash table as a CT. Dated
requests remains in the hash Table as long as a new request
needed to be stored in the same location. Accordingly, if a
request (R = {F,G, H}) is previously evaluated and still in
the hash table, Its forwarded pointer is fetch.

D. Garbage Collectors

Garbage Collector (GC) is based on a lock-free Mark-and-
Sweep approach. We use two bits to represent a mark. Any

node can be marked as 1) a permanent node, 2) an updated
node, or 3) a dated node. Permanent nodes has its unique
mark. We use two other marks to represent updated and dated
marks. Before a level is constructed, mark is set and all nodes
represent gates in circuit are marked as Permanent. All new
nodes inserted will be marked with the Updated Mark. Any
node that has a Dated Mark may be overwritten with a new
nodes if it is needed to be inserted in the same location of the
old node.

IV. EXPERIMENTAL RESULTS

The proposed package is implemented in C++ and is tested
with a BDDtest. BD Dtest creates a Manager, which in
sequence creates Workers and allocates UT, Queues, and
other necessary data. BDDtest also create BDDs for every
gate in the circuit. For sequential circuits (Table II), BD Dtest
Builds the transition relation of the circuit (which takes a
longer time for construction). The transition relation for the
circuit is the conjunction of all transition relations for each
state element s;, i.e., (/\y; 5; ® d;). The experiments were run
on Core 2 machine with 4 GB of RAM and Ubuntu as the
Operating system. CUDD 2.4.2 [9] is used as comparison.
We report results on a number of circuits from ISCASSS,
ISCASS89, and ITC99 to test our proposed BDD construction.
The results are reported in Tables I & II. Table I reports the
results for combination circuits. Table II reports the results of
creating the transition relation for sequential circuits.

In Tables I & II, for each circuit, we first report the execution
time taken by CUDD, followed by our package with BR-1
(Basic Run with 1 thread). We define Basic Run as a run
that does not include UT resizing, CT utilization, BFS-DFS
hybrid approach, nor GC. In other words, BR-1 is a BFS
without UT resizing and CT is not utilized. BR-1 is followed
by BR-2 (Basic run with 2 threads). Note that starting from
column three, 2 threads are used. The fourth column (Resizing)
reports BR-2 with 6 resizing operations. The fifth column (BR-
CT) reports the BR with computed table. The sixth column
(HBR) reports the DFS-BFS hybrid approach with Queue size
ranging from 1 to 40% (percentage depends on the circuit).
The seventh column (HBR-CT) reports the time for DFS-BFS
hybrid approach with CT (we use the same configuration as
in column six). Finally, the eighth column (GC) reports the
time of BR-2 with Garbage collection.

According to Tables I & II, our base approach (with BR-1)
achieved a speedup ranging from 2x to 8x compared with
CUDD. When we use two threads (BR-2), we achieved an-
other 1.5 speedup on average. For example, consider circuit
bl12rst_1_3_new_s, the original CUDD took 714 seconds to
construct the transition relation for this circuit, and our BR-
1 took only 88 seconds. This is a speedup of 8.11x. BR-2
reduces the time further to 64 seconds. In a few cases, having
two threads allowed us to achieve nearly 2x speedup, such as
s298_1_2 new_s, where the execution time was reduced from
1585 seconds to 847 seconds. When resizing is performed
for 6 times, we still obtained speedups higher than BR-I.
Accordingly, we can conclude that, resizing has a little impact

TABLE I

EXPERIMENTAL RESULTS -

COMBINATIONAL CIRCUITS

Circuit | CUDD | BR-1 | BR-2 | Resizing | BR-CT HBR HBR-CT | GC
c432 0455 | 0411 | 0.277 0.386 0.246 0.510 0.300 0.381
cl1355 | 33.206 | 7.929 | 5.030 6.803 4.888 114.722 20.737 5.785
c1908 11.542 | 1.622 | 1.037 1.292 1.001 4.980 1.963 1.759
c5315 16.364 | 2911 | 2.430 2.593 2.144 28.612 12.952 4.234
TABLE I
EXPERIMENTAL RESULTS - TRANSITION RELATION CONSTRUCTION OF SEQUENTIAL CIRCUITS
Circuit CUDD BR-1 BR-2 Resizing | BR-CT HBR HBR-CT GC
$298_1_2_new_s 2822.054 | 1585.420 | 847.820 | 950.152 | 838.595 | 10159.394 | 1012.426 | 1044.907
$298_2_3_new_s 2202.240 | 646.007 | 437.670 | 525.209 | 365.114 875.34 529.580 660.738
s298_2_4 new_s* | 2760.862 | 395.538 | 228.635 | 274.362 | 270.047 581.647 278.203 353.009
s400_1_2_new_s* 1071.225 | 369.387 | 275.662 | 281.214 | 270.169 | 1498.289 380.773 342.889
s444_1_2 new_s* | 2430.267 | 335.730 | 183.316 | 247.400 | 167.586 786.226 266.734 268.723
bl2rst_1_2 new_s* | 214.134 49.568 30.872 31.180 29.972 401.723 150.084 69.135
b12rst_1_3_new_s* | 714.319 88.180 64.116 76.936 64.051 268.620 67.382 100.389
bl2rst_1_4_new_s* | 734.405 120.394 84.605 88.836 70.514 338.461 105.426 155.959
b12rst_1_5_new_s* | 680.815 94.100 65.670 81.672 53.674 248.025 84.251 82.259
bl2rst_2_3_new_s* | 853.914 173.047 | 120.226 | 146.386 97.805 819.007 321.896 194.499
b12rst_2_4 _new_s* | 864.662 108.973 78.436 114.042 76.944 231.484 151.054 110.852
bl2rst_2_5_new_s* | 913.505 174.565 | 107.600 | 141.180 | 90.129 933.179 270.986 124.164

(*) only a portion of the circuit is tested, not the whole circuit.

on the performance, because we utilize all threads to perform
the resizing operation. When comparing the results under
columns HBR and HBR-CT, we observed that utilizing the
CT with a hybrid approach provides a large improvement in
the performance when DFS-BFS hybrid approach is exploited.
This is because many requests have been replicated during
DFS-BFS hybrid, and hence, CT becomes very vital. When
we use the DFS-BFS hybrid approach (column 6, HBR),
the performance is degraded compared to BR-2 in all cases.
Also, it degraded in most of cases compared to CUDD (i.e.,
$298_1_2_new_s), since no computed table is used (while
CT is used in CUDD). However, when we use DFS-BFS
hybrid approach with Computed Table (HBR-CT), the perfor-
mance is enhanced. For example, in circuit b12rst_2_5_new_s,
although the performance of HBR-CT is degraded by 2.52
compared with BR-2, we obtained 3.37x speed-up compared
with CUDD and 3.44x over the one with CT (column HBR).
Finally, garbage collection incurs some overhead, but can be
useful when memory usage is high, as in b12rst_1_2.

In all circuits, our results show that the BFS based construc-
tion of the BDDs, as opposed to hybrid BFS-DFS, achieves
superior performance on multi-core platforms. Of course, these
depend on the type of hashing algorithms used.

V. CONCLUSION

We introduced a novel cache-friendly Multi-threaded BDD
Package to construct and manipulate ROBDDs on a multicore
platform. As BDD algorithms are memory intensive, maintain-
ing locality of data is important to reduce cost of memory loads
and stores. Furthermore, our algorithm offers concurrency to
enhance performance on multi-core platforms. We propose the
usage of concurrent Hopscotch hashing technique for both the

Unique Table and the BFS Queues to improve the performance
of BDD construction. Hopscotch hashing not only improves
the locality of the manipulating data, but also provides a
way to cache recently performed BDD operation. Moreover,
it is concurrency friendly. Consequently, the time and space
usage can be traded off. With our approach, even with a
single-threaded implementation, we were able to achieve a
speedup of up to 8x compared to a conventional single-
threaded CUDD package. When two-threads are launched,
another 1.5 speedup is obtained. Future work includes other
concurrency-friendly hashing algorithms.

REFERENCES

[1] R. E. Bryant, Graph-based algorithms for Boolean function manipulation,
IEEE Trans. Comput., August 1986, volume : 35 : 8. pages 677-691.
D. Tille, S. Eggersgluss, R. Krenz-Baath, J. Schloeffel, R. Drechsler,
Improving CNF representations in SAT-based ATPG for industrial circuits
using BDDs, Test Symposium (ETS), 2010 15th IEEE European , vol.,
no., pp.176-181, 24-28 May 2010.

B. Yang, Y.-A. Chen , R.E. Bryant and D.R. O’Hallaron, Space- and time-
efficient BDD construction via working set control , Design Automation
Conference 1998. Proceedings of the ASP-DAC ’98. Asia and South
Pacific , vol., no., pp.423-432, 10-13 Feb 1998.

J. L. Hennessy, D. A. Patterson, Computer Architecture: A Quantitative
Approach, Morgan Kaufmann, 4th Edition, 2006.

J. Sanders, E. Kandrot, CUDA by Example: an Introduction to General
Purpose GPU Programming, Addison Wesley, 1st Edition, 2010.

S. Stergios and J. Jawahar. Novel applications of a compact binary de-
cision diagram library to important industrial problems. Fujitsu scientific
and technical journal, 46(1):111-119, 2010.

M. Herlihy, N. Shavit and M. Tzafrir, Hopscotch Hashing, Lecture Notes
in Computer Science, Springer Berlin / Heidelberg,p350-364,volume:
5218, 2008.

R. Pagh, F. F. Rodler, Cuckoo hashing, Journal of Algorithms,
Volume 51, Issue 2, May 2004, Pages 122-144, ISSN 0196-6774,
10.1016/j.jalgor.2003.12.002.

http://vlsi.colorado.edu/ fabio/CUDD/ (last visited April 16, 2012).

(2]

3

—_

(4]
(31
(6]

(71

(8]

[9]

