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Abstract—Many-core architectures use large numbers of small
temperature sensors to detect thermal gradients and guide ther-
mal management schemes. In this paper a technique to identify
thermal sensors which are operating outside a required accuracy
is described. Unlike previous on-chip temperature estimation
approaches, our algorithms are optimized to run on-line while
thermal management decisions are being made. The accuracy of
a sensor is determined by comparing its readings to expected
values from a probability distribution function determined from
surrounding sensors. Experiments show that a sensor operating
outside a desired accuracy can be identified with a detection
rate of over 90% and an average false alarm rate of < 6%,
with a confidence level of 90%. The run time of our method
is shown to be around 3x lower than a recently-published
temperature estimation method, enhancing its suitability for run-
time implementation.

I. INTRODUCTION

On-chip sensors are widely used in many-core processors
to closely monitor system temperature, performance, and sup-
ply power fluctuation, among other environmental conditions.
Light-weight thermal sensors are commonly used in micro-
processors due to their low hardware cost. However, large
variations in process parameters and power supply voltage are
common in processors and can significantly affect the behavior
of these light-weight sensors. Inaccurate measurements are
defined as sensor readings which are outside a temperature
range under a predetermined confidence level. The main cause
of inaccurate measurements is thermal sensor miscalibration.
Measurements from miscalibrated thermal sensors may cause
unnecessary performance penalties by negatively impacting
dynamic voltage and frequency scaling (DVFS) and other ther-
mal management, leading to long-time reliability degradation
[1]. The accuracy of on-chip sensor measurement therefore
is a major concern for many-core systems. In this paper, the
identification of miscalibrated thermal sensors at run-time is
targeted.

For our first contribution, we propose a model for the fast
determination of expected temperature readings of a specific
thermal sensor based on process parameters. For our second
contribution, we introduce a method for the effective and effi-
cient run-time detection of inaccurate thermal measurements.
This method considers temperature correlations between mul-
tiple sensors based on their distance, their sampled values,
and their expected values. We determine an uncertainty model
for a sensor by not only using readings from the sensor
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but also using readings from adjacent sensors. A probability
distribution function (pdf) estimate for a specific sensor is
determined from the pdfs of its neighbors and the distances
between the neighbors and the target sensor using linear
opinion pooling [2]. The pdf estimate is then used to evaluate
sensor measurements to determine the level of sensor accuracy.

II. BACKGROUND

Several methods for constructing temperature profiles from
a limited number of on-chip thermal sensors have been in-
troduced. In Liu [3], the Kriging method is used to construct
temperature profiles. Although this approach was shown to be
effective in terms of on-chip temperature estimation accuracy,
it has a high complexity of O(N3) for N sensors. In Sharifi
et al. [1], results from power traces are filtered to estimate
temperatures at on-chip locations. The filtering part alone has
a complexity of O(N3) for N sensors. In Cochran et al.
[4], spectral techniques were proposed for temperature profile
estimation. This method was shown to be more effective in
constructing temperature profiles from on-chip thermal sensors
than the Kriging method but it also has high complexity. Both
approaches attempt to estimate unknown values (e.g., temper-
ature) at locations without sensors from known ones reported
by sensors in different locations. The method explained in this
paper is fundamentally different from these approaches. All
measurement values reported by sensors are initially assumed
to be unreliable. The measurement values are later tested to
see if they are within the acceptable range. Additionally, our
approach is designed to be performed at run-time, so execution
time performance is important.

III. THERMAL SENSOR MEASUREMENT PROBABILITY
DISTRIBUTION MODEL

For each reading from a thermal sensor, a certain amount
of measurement uncertainty exists. In this paper, we consider
using ring oscillator-based thermal sensors for temperature
monitoring. The measurement uncertainty of both calibrated
and uncalibrated ring oscillator-based thermal sensors can be
represented with a pdf [5] determined from a multi-variable
model. The frequency of a ring oscillator (f ) is determined
by the propagation delay of each inverter, which consists of
the transition time from high voltage to low voltage t

PHL
and

the transition time from low voltage to high voltage t
PLH

, as
shown in (1). N is the total number of inverters in the ring
oscillator.
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The transition time t
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In this equation, µn is the electron mobility for NMOS,
Cox is the capacitance per unit gate area, (W/L)n is the width
and length ratio for the NMOS inverter, C is the effective load
capacitance, VDD is the supply voltage and Vt is the threshold
voltage. Parameters W , L and Cox are subject to process
variation and VDD fluctuates at run-time. Assuming these
parameters to be Gaussian random variables [5], we performed
a Monte Carlo simulation with randomized parameter values.
The values of the parameters in (2) are evaluated for 45nm
technology. We optimistically assume 1% standard deviations
for W , L, Cox and V

DD
. The results of the Monte Carlo

experiment indicate that the resultant pdf of the measured
temperature matches a Gaussian distribution with more than a
99% correlation coefficient (also noted by Zhang et al. [5]).
The standard deviation of this Gaussian distribution changes
as the true temperature changes. As a result, the standard
deviation of measured sensor output temperature, Tmeasured,
can be estimated as follows. For simplicity, as in [5], the t

PLH

and tPHL are considered the same in the following analysis.
The measured temperature is given by (3).

Tmeasured = F (W,L,Cox, VDD) =
a

2NtPHL

+ b (3)

In this equation, W , L, Cox and V
DD

are variables whose
uncertainties lead to the variation of the measured temperature.
Taylor expansion is performed around the nominal value of
these variables (which leads to T0), as shown in (4) (we use
T in (4) and (5) instead of Tmeasured for simplicity). The
variance of the measurement can be determined by (5).
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The standard deviation was calculated using (5) over the
T true temperature range of 50-100◦C (323-373K), which is
the common processor working temperature range. Results
from Monte Carlo simulation with 100,000 samples for each
temperature showed that the standard deviation of the mea-
sured temperature decreases as the true temperature increases.
This trend is almost linear within the temperature range (50-
100◦C) that is of interest. A linear curve fits the standard
deviation trend with more than a 95% correlation coefficient. A
simplified thermal sensor measurement probability distribution
function is summarized in (6) and (7).

Tmeasured ∼ N
(
T true, σ(T true)

)
(6)

σ
(
T true

)
= cT true + d (7)

In this model, the measured temperature is a Gaussian dis-
tribution with the expectation as the true temperature and the
standard deviation as a linear function of the true temperature.
The value for the two parameters c and d in (7) can be
estimated via curve-fitting, given the expectations and standard
deviations for W , L, Cox and V

DD
. This simplified model for

Tmeasured and σT in (6) and (7) significantly reduces the total
number of multiplications and additions versus the previous
approach in [5]. The pdf of a thermal sensor measurement is
denoted as p(Tmeasured).

Algorithm 1 Inaccurate Measurement Detection
Input: The reported temperature T reported

i , 1 ≤ i ≤ N and
coordinates of each of the N sensors.
Output: For each sensor, is its measurement inaccurate or not?
Initilization: Set all reported temperature to be NOT inaccurate.

1: for each sensor i such that 1 ≤ i ≤ N do
2: for each adjacent sensor k, 1 ≤ k ≤ N and k ̸= i do
3: if T reported

k is NOT inaccurate then
4: Calculate the probability distribution of sensor i’s mea-

surement pi,k(T
measured
i ) based on sensor k’s reported

temperature (T reported
k ) and the distance between sensor

i and k (See Section IV-A).
5: end if
6: end for
7: Combine probability distributions pi,k (T

measured
i ) calcu-

lated from adjacent sensors using linear opinion pooling to
get an aggregated distribution of sensor i’s measurement
pi(T

measured
i )(See Section IV-B).

8: Test sensor i’s reported temperature, T reported
i , against its ag-

gregated distribution pi(T
measured
i ), to see if it is inaccurate

or not (See Section IV-C).
9: end for

IV. A METHOD FOR DETECTION OF INACCURATE
TEMPERATURE MEASUREMENTS

We first describe pdf generation for a specific target sensor
in which the thermal sensor’s pdf is estimated from adjacent
sensors’ measured temperatures (not pdf) and their distance
from the target sensor. In Section IV-C, we describe how
the pdf can then be used to determine whether a temperature
reading is accurate or inaccurate for the target sensor.

Each thermal sensor i reports a measurement (at one sample
point), which is denoted as T reported

i (this is a fixed value,
not a random variable). We would like to know if this
measurement is inaccurate based on adjacent sensors’ mea-
surements. Our method estimates the probability distribution
of each thermal sensor’s (sensor i) measurement, which is
denoted as pi(T

measured
i ). Tmeasured

i is a random variable.
This probability distribution is calculated based on adjacent
sensors’ reported temperatures. Then, the reported temperature
(T reported

i ) for sensor i is tested against its estimated probabil-
ity distribution (pi(Tmeasured

i )) to find out if it is inaccurate.
If a sensor is determined to be inaccurate, it is excluded
from subsequent accuracy calculations for its neighbors. Our
method for pdf generation for N sensors is summarized in
Algorithm 1.



TABLE I
THE TRUE AND MEASURED TEMPERATURES OF SENSORS 1 AND 2

Sensor True Temp. Measured Temperature

1 T true
1 Tmeasured

1 = T true
1 +∆T1

2 T true
2 Tmeasured

2 = T true
1 +∆T +∆T2

A. Inclusion of Spatial Correlation in the Distribution Model

As an example, we calculate the probability of sensor 1’s
measurement p1,2(T

measured
1 ) based on sensor 2’s measure-

ment. The difference between the measured and the true
temperature (∆T1 and ∆T2 for sensor 1 and 2 in Table I)
therefore can be modeled as a Gaussian distribution with zero
mean and the same standard deviation in (7).

Assuming that the difference between the true temperature
at sensor 1 and sensor 2 is ∆T1,2 (which we consider to be a
random variable since it is unknown), the difference between
the measured temperature at sensor 1 and sensor 2, denoted
as D1,2, is shown in (8).

Tmeasured
2 − Tmeasured

1 = D1,2 = (∆T2 −∆T1)−∆T1,2

(8)
p1,2(T

measured
1 )=p1,2(T

measured
2 −D1,2)≈p1,2(T

reported
2 −D1,2) (9)

The probability distribution of the measurement at sensor 1
p1,2(T

measured
1 ) thus could be calculated using (9). Although

Tmeasured
2 is a random variable, as explained in Section

III, here we replace it with the reported temperature from
sensor 2 (T reported

2 ) to provide an estimation, as shown in
(9). In order to calculate the probability distribution of D1,2,
we consider (∆T2 − ∆T1) and ∆T1,2 to be independent,
thus it can be calculated as the convolution of these two
parts. This is a reasonable assumption since the first part
(∆T2 − ∆T1), represents the subtraction of the uncertainty
of sensor 2 and sensor 1, while ∆T1,2 represents the true
temperature difference between these two sensors. These two
variables are not physically related.

Monte Carlo simulation shows that the probability dis-
tribution of (∆T2 − ∆T1) is a Gaussian distribution with
the standard deviation almost linearly decreasing as the true
temperature increases through 50-100◦C, similar to the one
shown in (6) and (7). Since the true temperature is unknown,
we use the average of the reported temperatures at sensor 1 and
2 (T reported

1 and T repored
2 ) to calculate the pdf of (∆T2−∆T1)

in (8).

B. Bounding the True Temperature Difference

Assuming that the maximum true temperature difference is
Tdiff , it is possible to assume that within the bounds (±Tdiff ),
the probability of the temperature difference is uniform. Thus,
the probability distribution of the true temperature difference
between sensor 1 and sensor 2 (∆T1,2) can be modeled as a
uniform distribution shown in (10).

p(∆T1,2) =


1

2Tdiff
, −Tdiff <∆T1,2<Tdiff

0, ∆T1,2>Tdiff or ∆T1,2<−Tdiff

(10)

Our estimation of the maximum true temperature difference
between sensor 1 and 2 (Tdiff ) is based on (11) [6].

Tdiff (r) = Tdiff−max ×
(
1− e−

2r
K

)
(11)

In this equation, r is the distance between two thermal
sensors. Tdiff−max is the difference between the maximum and
minimum temperature values when the heat source (which is
located at either sensor 1 or sensor 2s position) allows Tdiff

to reach its local maximum power density. K is the thickness
of the processor package.

C. Combining Distributions from Adjacent Sensors

To combine the pdfs from surrounding sensors together (e.g.
for sensor 1) we use the linear opinion pooling method [2]:

p
1

(
Tmeasured
1

)
=

8∑
k=2

ωkp1,k

(
Tmeasured
1

)
(12)

Linear pooling allows for the weighted combination of
multiple pdfs forming an aggregated pdf. We choose to have
the weight assigned to each probability distribution from
adjacent sensors decrease exponentially as the distance (de-
noted as dis(1, i)) between them increases, as shown in (13).
The parameter h in this equation is a constant. Our weight
determination supports the general intuition that the closer two
sensors are, the higher the correlation of temperatures.

ωi =
h

e2×dis(1,i)/K
here,

8∑
i=2

ωi = 1 (13)

In the last step, the reported temperature from sensor 1,
T reported
1 , is compared against the aggregated probability

distribution of sensor 1’s measurement p1(T
measured
1 ). It is

considered to be inaccurate when it falls into a region with
temperatures that happen with very low probability (either
the reported temperature is too high or too low). We use the
following two equations to test the reported temperature. In
these two equations, γ is the confidence level.

Prob{Tmeasured
1 < T reported

1 } <
1− γ

2
(14)

Prob{Tmeasured
1 > T reported

1 } <
1− γ

2
(15)

The reported temperature T reported
1 is determined to be

inaccurate if it falls into one of the two tails of the pdf (e.g.
T reported
1 is in the region on the far left of the curve (Eq. (14),

or T reported
1 is on the far right (Eq. (15)).

V. EXPERIMENTS AND RESULTS

We simulate our inaccurate measurement detection method
using a 128-core system based on clusters of 90nm, 8-core
UltraSPARC T1 architectures which encompass 115mm2 each
[7]. After technology scaling to 45nm, the total area of the
128-core system is estimated to be 460mm2. We assume that
thermal sensors are located in the center of the function blocks
for the purpose of calculating distances. For the purposes of



Fig. 1. Detection rates and false alarm rates at different thermal sensors per
core count (4, 8, 12 and 16) with a confidence level (γ) of 90%. Inaccurate
measurements are at least ±10◦C off the true temperature

experimentation, the true temperatures are the values deter-
mined by HotSpot. Uncertainty is randomly added to values
for each sensor based on the thermal sensor measurement
probability distribution function described in Section III. An
accepted value for Tdiff−max (35◦C) [6] is used along with a
K value of 6 mm (scaled from the 180nm technology in [6]
to 45nm technology) in (11). The confidence level γ used in
the algorithm in Section IV is set to 90%, which has been
found to be optimal in our simulation. Only adjacent sensors
in the same core are considered for inaccurate measurement
detection (explained in Section IV) since these sensors are
spatially local and share the same VDD .

It is well-known that application execution can cause lo-
calized supply voltage fluctuations. If a thermal sensor is
subjected to this fluctuation, its temperature reading may
vary based on the expression shown in (2). The results for
the experiment are shown in Fig. 1. The x-axis in Fig. 1
is the fraction of inaccurate measurements within all the
measurements (for example, 1024 measurements from 1024
thermal sensors for 128 cores with 8 thermal sensors each).
The fraction of inaccurate measurements that can be detected
using our method is called the detection rate, as shown in
the top figure in Fig. 1. Those measurements that are falsely
identified as inaccurate (although they are not) are called false
alarms. The false alarm rate is the ratio of the total number of
false alarms to the total number of inaccurate measurements,
as shown in the bottom figure in Fig. 1. The results are
averaged over 200 temperature profiles generated using SESC
and HotSpot. Fig. 1 shows the detection rate and the false
alarm rate, as the inaccurate measurement percentage (fraction
of all measurements which are inaccurate) increases from 1%
to 25%. Fig. 1 shows that our method can detect more than
90% of inaccurate measurements for at least 12 sensors per
core when the inaccurate measurement percentage is less than
7%. The false alarm rate is less than 6%.

The computational cost is represented as the total number
of multiplications and additions involved in the calculation, as

TABLE II
COMPUTATIONAL COST COMPARISON

Multiplications and additions Estimated exec. time
using one core (ms)

Sensors Ours Spectral [4] Ours Spectral [4]
8 92, 000 260, 000 0.38 1.08
12 144, 000 415, 000 0.60 1.73
16 196, 000 578, 000 0.81 2.41

Complexity 13, 000(N -
1)+250

40×
(2M logM+M )
M = 361 when

N = 8

N/A N/A

shown in Table II. N is the number of thermal sensors per core.
For the spectral method, the computational cost is related to
the total number of samples M , which is linearly proportional
to N [4]. As seen in Table II, the computational cost of our
method increases linearly as the number of sensors per core
increases, while for the spectral method the relationship is
O(N logN). The computational cost of our method is around
1/3 that of the spectral method [3] while the accuracies of
the approaches are in the same range. Although not shown
in this table, the computation cost of using the Kriging [3]
and filtering methods [1] described in Section II for detecting
inaccurate measurements increases in O(N3), which is not
desirable for future many-core systems with many on-chip
thermal sensors.

VI. CONCLUSION

In this paper, an efficient run-time method of evaluating
the measurement uncertainty of on-chip thermal sensors is de-
scribed. This uncertainty can be calculated relative to a thermal
measurement probability distribution function. Linear opinion
pooling is used to generate a combined pdf for the target
sensor based on thermal measurements and distances between
sensors. Inaccurate measurements can be determined with
over 90% accuracy. The computational cost of our method
is significantly improved versus other techniques making the
approach’s use at run-time more feasible.
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