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Abstract—Embedded systems consist of hardware and software
and are ubiquitous in safety-critical and mission-critical fields.
The increasing integration density of modern, digital circuits
causes an increasing vulnerability of embedded systems to
transient faults. Techniques to improve the fault tolerance are
often either implemented in hardware or in software.

In this paper, we focus on synthesis techniques to improve
the fault tolerance of embedded systems considering hardware
and software. A greedy algorithm is presented which iteratively
assesses the fault tolerance of a processor-based system and
decides which components of the system have to be hardened
choosing from a set of existing techniques. We evaluate the
algorithm in a simple case study using a Traffic Collision
Avoidance System (TCAS).

Index Terms—Fault tolerance, Formal methods, Synthesis,
Optimization

I. INTRODUCTION

Embedded systems consist of hardware and software. In
safety-critical and mission-critical fields, e.g., automotive
engineering and aerospace, the reliability of embedded systems
plays a crucial role. In this paper, we focus on assessing and
improving the fault tolerance of embedded systems against
transient faults. A transient fault temporarily modifies the
expected functioning of a system causing an unstable, undesired
situation [1]. For instance, incoming cosmic radiation may
temporarily increase the energetic level of a signal which
changes the system state. Although the functionality of the
system is only momentarily changed, failure symptoms may
be observed after a long period of time.

The vulnerability of embedded systems to transient faults
increases with the integration density of digital circuits [2].
Besides of shielding the system, various techniques to detect the
effects of transient faults and to improve the fault tolerance of a
system have been introduced [3]. We refer to these techniques as
fault tolerance techniques. For instance, common fault tolerance
techniques add redundancy to the system in order to produce
multiple copies of critical data [4]. A failure can then be
detected when two copies of the same data block do not agree
on their values. Moreover, when a third copy of the same data
block is available and two out of three copies agree on their
values, the failure can be corrected.

Fault tolerance techniques can be either implemented in
hardware or in software. Thus, we distinguish between hard-
ware techniques and software techniques. The characteristics
of hardware techniques and software techniques are diverging:
software techniques tend to reexecute critical computations
which causes mainly a time overhead at run time. Hardware
techniques tend to replicate components which increases the
circuit’s area but — since the components operate in parallel
— has only little effect on the system performance.

In practice, an engineer faces the problem to optimize the
fault tolerance by choosing system components and deciding
which hardware and software techniques to apply to the chosen
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components. Additionally, cost functions of the system, e.g.,
circuit area or performance, with conflicting goals have to
be optimized. This problem can be seen as a multi-objective
optimization problem.

We propose a greedy algorithm which iteratively assesses and
improves the fault tolerance of a given processor-based system.
The processor-based system consists of a set of hardware
components and is designed to execute a particular program.
We abstract from the exact implementation of the hardware
but assume that the hardware is fault tolerant except for the
considered hardware components. The hardware of a processor-
based system consists of a controller and a datapath. We
assume that the controller is fault tolerant and thus we focus
on applying fault tolerance techniques to harden the datapath.
Our algorithm decides which software instructions and which
hardware components have to be hardened choosing from a
set of existing fault tolerance techniques. The assessment of
the fault tolerance uses a model checker which analyzes the
machine code of the software implementation and the gate-
level representation of the hardware design. We evaluate the
algorithm in a simple case study using a Traffic Collision
Avoidance System (TCAS) [5] which is publicly available in
the Software-artifact Infrastructure Repository (SIR) [6].

II. PRELIMINARIES

We consider a specific class of embedded systems which we
call processor-based systems. A processor-based system con-
sists of a processor which executes the machine code of a pro-
gram. Focusing on the functional parts of the execution unit, a
processor-based system is built from a set C = {c1, c2, . . . , cn}
of hardware components. Each component c ∈ C is associated
with a type t(c) ∈ Ops, where Ops is the set of operations
supported by the processor-based system.

The processor-based system may have redundant components,
i.e., for a hardware component c ∈ C there are one or more
alternative instances alt(c) = {c(1), c(2), . . . , c(k)} which im-
plement the same functionality in form of different circuits. The
individual alternatives differ in two measures: (1) the fault tol-
erance and (2) the costs. The fault tolerance ftHW(c(j)) ∈ [0, 1]
measures the ability of the instance to function correctly while
affected by transient faults and is given as a real value in the
interval [0, 1]. A high value indicates that the instance is less
vulnerable to transient faults, whereas a low value indicates
that transient faults more likely affect the correct functioning
of the component. The costs are defined in form of one or
more cost functions costHW(c(j)) ∈ R. We use superscripts,
e.g., costtimeHW or costspaceHW , to distinguish between different
cost functions. Each cost function measures the complexity
of instances by quantifying a specific characteristic of the
corresponding circuits. For instance, a cost function costspaceHW
may count the number of gates of a circuit.

A program defines a control-flow graph over instructions with
a fixed set of input registers and a fixed set of output registers.
We focus on transformational programs and assume that the
program is initially fixed, i.e., each processor-based system



is designed to execute a specific transformational program
which is stored in the system memory. A transformational
program computes a final result at the end of a terminating
computation. Each transformational program consists of a set of
instructions. We deal only with a subset Inst of all instruction of
the program. An instruction i ∈ Inst has at most two operands
and produces one result. Thus, instructions which manipulate
the control-flow of the program, e.g., branching instructions,
are not included in Inst. Moreover, we exclude instructions
with side-effects from Inst. Otherwise, adding redundancy, e.g.,
by duplicating instructions, may change the behavior of the
program. Each instruction i ∈ Inst has a type t(i) ∈ Ops and
can be executed by any instance of a hardware component
with the same type. For instance, an instruction of a multiplier
type can be executed by any multiplier of a processor-based
system. A binding defines which instruction is executed on
which instance of a hardware component, i.e., the binding is a
complete function mapping from Inst to

⋃
c∈C alt(c). Lastly, we

associate each transformational program with a fault tolerance
ftSW which quantifies the ability of the program to function
correctly.

This paper focuses on assessing and improving the fault
tolerance of a processor-based system considering the hardware
components C of the system and the executed program P.
We restrict our perspective to single errors assuming that
only one transient fault affects the system at a time [2]. We
use costspace(P,Φ) and costtime(P,Φ) to describe the costs
of the system. If the parameter Φ is not explicitly stated,
i.e., costspace(P) and costtime(P), a non-deterministic binding
is used. The exact definitions of the costs depend on the
application. However, we assume that an upper bound on
the time costs b̂time and the space costs b̂space is given which
the system must not exceed. The fault tolerance optimization
problem is then stated as follows: find a binding Φ and a
program P′ functionally equivalent to P such that the fault
tolerance ft(P′,Φ) of the system becomes maximal without
exceeding the given cost bounds, i.e., costtime(P′,Φ) ≤ b̂time
and costspace(P′,Φ) ≤ b̂space.

III. FAULT TOLERANCE OPTIMIZATION

In this section, we present the greedy algorithm which
iteratively assesses and improves the fault tolerance of a
processor-based system.

We assess the fault tolerance of a processor-based system
in two steps: firstly, we compute the fault tolerance of each
individual instruction i ∈ Inst. Recall that the instructions do
not manipulate the control-flow of the program and are free
from side-effects. We say that an instruction is robust if the
values of the output registers of the program do not diverge
from their correct values when an instruction is affected by a
transient fault. Otherwise, we say that the instruction is non-
robust. Secondly, for all non-robust instructions we consider
the fault tolerance of the hardware instance on which the
instruction is executed.

The fault tolerance of the software is computed by utilizing
a combination of Satisfiability (SAT)-based equivalence check-
ing [7] and hardware robustness checking [8]. The program
is instrumented with additional fault injection logic which
models the possible effects of transient faults. The instrumented
program is then formalized as a logic formula. The logic
formula is satisfiable if and only if (iff) a transient fault affects
an instruction and causes the value of at least one output
register to diverge from its correct value. In particular, the
logic formula expresses the semantics of the program twice:
firstly, the semantics of the program is encoded without any
changes. Secondly, the semantics of the instrumented program
is encoded. The fault injection logic is used to enable and
disable the semantic effects of individual instructions, i.e., the
result of an instruction is replaced by an open variable.

We use a Satisfiability Modulo Theories (SMT) solver to
check for the satisfiability of the logic formula. The solver
searches for satisfying assignments where the semantic effect
of exactly one instruction is disabled. A satisfying assignment
corresponds to a witness which shows that the open variable
affects an output register. If the formula is unsatisfiable, then no
replacement for the open variable propagates to the program’s
output registers.

Suppose that instructions Inst = T ∪ S are partitioned
into robust instructions T and non-robust instructions S,
respectively. The fault tolerance ftSW of a program P is then
quantified as

ftSW(P) =
|T |
|Inst|

=
|Inst \ S|
|Inst|

. (1)

Robust instructions are not vulnerable to transient faults
regardless on which instance of a hardware component the
instructions are executed. For each non-robust instruction,
we additionally consider the hardware instance on which the
instruction is executed. Suppose Φ is a binding which maps
instructions to hardware instances with the same type. The
function

r(i,Φ) =
{

ftHW(Φ(i)) if i ∈ S
1 otherwise, (2)

computes the fault tolerance of a given instruction i ∈ S ⊆ Inst
considering Φ.

The fault tolerance of the processor-based system for the
given binding Φ

ft(P,Φ) =

∑
i∈Inst

r(i,Φ)

|Inst|
(3)

is the sum of the fault tolerances of all instructions normalized
by the number of instructions.

Fig. 1 shows a flow diagram of the greedy algorithm. The
input of the algorithm is a program P, the set C of hardware
components, an upper bound b̂space on the space costs, an
upper bound b̂time on the time costs, and additional parameters
λ1, λ2, . . . , λq which are used to configure heuristics. Depend-
ing on the heuristic in use, the meaning of the parameters
λk changes. In each iteration, the algorithm produces a new
program P′l which is functionally equivalent to P and a binding
Φl such that the system fault tolerance has been improved
without exceeding the given bounds. Since all instructions are
free from side-effects, the conducted code transformation which
adds redundancy to the program is by construction guaranteed
to produce a functionally equivalent program.

1) Heuristic Software Hardening: In the first step, the
algorithm applies software fault tolerance techniques to the
program P. Existing software fault tolerance techniques in-
clude [9], [10], [11], [12], [13] which instrument the machine
code of the program to either detect or correct transient faults.
Our greedy algorithm uses a heuristic approach to decide
which technique is applied to which instruction. The heuristic
produces k differently hardened programs P′1,P

′
2, . . . ,P

′
k when

applied to P. Each program P′l is functionally equivalent to
P. If a cost function of a hardened program P′l exceeds the
corresponding cost bound, the program is rejected. For instance,
suppose costtime(P′l) ≥ b̂time then P′l is rejected. If none of the
hardened programs remains, then the algorithm terminates early
with the results of the previous iteration. Early termination is
not shown in Fig. 1.

2) Assessing the Software Fault Tolerance: In the sec-
ond step, we use bounded model checking to compute the
fault tolerance for each of the programs produced in the
first step. Recursive functions and loops are unrolled when
needed [7]. We extended a SAT-based software model checker,



Heuristic
SW Hardening Assessing ftSW Compute Φ

Selectionft = 1.0

P, K̂P , K̂L

Cλ1, . . . , λq

P′1, . . . ,P
′
k (P′1,S ′1), . . . , (P′k,S ′k)

(P′1,Φ1), . . . , (P′k,Φk)

P′l, Φl

yes

P′ := P′l, Φ := Φl

no

P := P′l

1 2 3

4

5

Fig. 1. Flow diagram of the Greedy Algorithm

called FAuST [14], which operates on Low Level Virtual
Machine (LLVM) [15], i.e., a RISC-like intermediate represen-
tation. The model checker computes the set Sl of non-robust
instructions for each program Pl.

3) Computation of Bindings: In the third step, the instruc-
tions are bound to hardware instances which execute them.
Non-robust instructions have to be executed on robust hardware
instances in order to maximize the fault tolerance of the
processor-based system. For each program P′l, a binding Φl is
computed which maximizes the system fault tolerance without
exceeding the given cost bounds.

The best binding is computed by formalizing and solving an
optimization problem. The optimization problem is expressed
as a logic formula with Pseudo-Boolean (PB) constraints and
solved by calling an SMT solver incrementally. The optimal
solution corresponds to a binding Φl which maximizes the
fault tolerance without exceeding the given cost bounds.

The logic formula becomes unsatisfiable if all possible
bindings exceed the given cost bounds. The corresponding
program is then rejected. Again, if none of the programs
remains, the algorithm terminates early with the results of
the previous iteration.

4) Selection of Program and Binding: In the fourth step, the
algorithm selects one of the pairs (P′l,Φl) with the highest fault
tolerance from the sequence (P′1,Φ1), . . . , (P′k,Φk) computed
in the third step, i.e., ft(P′l,Φl) ≥ ft(P′j ,Φj) for all 1 ≤ j ≤ k.

5) Checking for Termination: In the fifth step, the algorithm
terminates with the pair (P′l,Φl) if a fault tolerance of 100%
is achieved and otherwise proceeds in another iteration using
the program P′l as input.

IV. CASE STUDY

A. Experimental Setting
In this section, the proposed greedy algorithm is evaluated in

a case study. We consider a processor-based system consisting
of a simple CPU which executes the transformational program
TCAS [6]. TCAS is a publicly available program for collision
avoidance of airplanes. We use the Clang 3.1 compiler to
transform the program into LLVM-IR. We consider a fictional
CPU which provides hardware components to execute each
LLVM instruction type used in the program. The circuit of
each hardware component is combinational. Hence, the time
costs costtimeHW are constantly 1 for all predefined hardware
instances. The space costs costspaceHW , however, count the number
of gates in the circuit. For each hardware component, we
additionally provide robust circuits by utilizing Triple Modular
Redundancy (TMR). TCAS uses 7 different instruction types
which results in 14 hardware instances in total.

For the evaluation, we implemented one software fault
tolerance technique, called Error Detection by Duplicated

0 r0 := r1 + r2  
0 r0 := r1 + r2
1 r′0 := r1 + r2
2 c := r0 6= r′0
3 sig_error_if(c)

Fig. 2. Hardening an instruction using EDDI

Instruction (EDDI) [10]. EDDI is illustrated in Fig. 2: the left-
hand-side shows a single instruction which adds two registers
and stores the result in r0. On the right-hand-side, the same
instruction is shown (line 0) after EDDI has been applied.
EDDI duplicates the instruction using another register r′0 to
store the result (line 1). An additional comparison (line 2)
checks whether the values of the two registers r0 and r′0 are
equal and otherwise signals an error to the environment (line
3). We have extended the model checker FAuST: the special
function sig_error_if can now be used to check whether
a fault has been detected.

The space costs of the system are defined as the accumulated
number of gates of the hardware instances after binding:

costspace(P,Φ) =
∑
c∈H

costspaceHW (c), H =
⋃

i∈Inst

Φ(i)

The time costs of the system are measured by computing
the length of the longest path in the program. Since all
hardware instances are combinational circuits, the result of
each instruction is available after 1 time step:

costtime(P,Φ) = longestPath(P)

The greedy algorithm uses a heuristic to improve the fault
tolerance of the transformational program (first step in Fig. 1):
we create a priority list of the instruction types ranking them by
the space costs of their associated hardware instances. EDDI is
then systematically applied to all instructions of the instruction
type with the highest priority in the priority list. As a result
a new program P′ functionally equivalent to P is created and
the instruction type with highest priority is removed from the
priority list. If the created program P′ exceeds one of the cost
functions, the program is reject and the heuristic proceeds with
the next priority from the priority list. Eventually, either a
program is created which does not exceed any cost function
or the priority list becomes empty. Then, the greedy algorithm
proceeds with the second step. In the first case the input of
the second step is the newly created program P′ and in the
later case the input is the program P.



EXP b̂space b̂time costspace costtime ft |Inst| t It

SW 1559 ∞ 1559 487 100% 74 20.51s 1
HW ∞ 247 4746 247 100% 0 15.91s 1

1 4000 247+50 3999 253 100% 1 23.44s 1
2 3500 247+50 3482 259 100% 2 32.76s 2
3 3000 247+50 2998 259 100% 2 34.99s 2
4 2500 247+50 2440 283 100% 6 202.80s 4
5 2000 247+50 1983 295 100% 10 90.58s 6
6 1800 247+50 1747 295 98% 13 82.13s 7
7 1800 247+100 1792 313 100% 15 86.64s 7
8 1600 247+50 1590 295 92% 13 22.98s 6
9 1600 247+100 1587 319 94% 21 24.59s 8
10 1600 247+150 1582 385 96% 41 24.21s 9
11 1600 247+200 1588 415 100% 50 31.02s 10 costtime

costspace

247 307 367 427 487

1559

2326

3093

3860

4746 HW

SW

Fig. 3. Experimental results for TCAS

B. Experimental Results
All experiments are conducted on a Linux machine with

an Intel Core i7 CPU (2.4GHz, 8GB RAM). The SMT
solver Z3 [16] (version 3.2) was used to check for satisfying
assignments of logic formulae. In all experiments, the memory
consumption was less than 150MB.

Fig. 3 lists the experimental results. The table on the left side
shows 13 experiments. Additionally, the solution space has been
visualized on the right side. The table is built as follows: the
first column identifies the experiment by an unique id. For the
first two experiments HW and SW we allow for unlimited space
and time costs, respectively, which is denoted by the symbol
∞. The second and third column list the cost constraints. The
next two columns list the computed costs of the final result
produced by the greedy algorithm for the processor-based
system. The sixth column shows the computed fault tolerance
and the number of instructions hardened by using EDDI. Our
greedy algorithm creates a program with 100% fault tolerance if
the cost constraints are not too tight. The last two columns list
the required run time in seconds and the number of iterations.

The experiments SW and HW present two special cases. In the
SW experiment, the fault tolerance was improved using software
fault tolerance techniques exclusively, i.e., EDDI was applied
to all instructions. The instructions are bound to the hardware
instances with the lowest costs and lowest fault tolerances. In
the HW experiment, the fault tolerance was improved using
hardware fault tolerance techniques exclusively, i.e., EDDI was
not applied but the instructions are bound to the hardware
instances with the highest fault tolerances. The fault tolerance
of the system is in both cases 100%.

In the remaining experiments 1 to 11, we systematically
evaluated the greedy algorithm using different cost constraints.
For the space costs 4000, 3500, 3000, 2000, 1800 and 1600
were chosen as upper bounds. The longest path of TCAS
counts 247 instructions. Thus, for the time costs, 247, 247+50,
247+100, 247+150, 247+200 were selected as upper bounds.
If the algorithm terminated with a fault tolerance less than
100%, we run another experiment and incremented the time
costs by 50. For example, our algorithm could not find a
solution for the time cost constraint 247 + 50 and thus we
relaxed the time cost constraint in Experiment 7.

Fig. 3 on the right side shows a scatter plot of the time costs
and the space costs of the experiments. On the horizontal and
vertical axis the time and space costs are plotted, respectively.
A cross marks a solution which has a fault tolerance of 100%.
A triangle marks a solution with a fault tolerance lower than
100%. The fault tolerance is only lower than 100% if one of
the cost constraints is too tight.

Our algorithm effectively determines solutions with balanced
costs within short run times. In contrast, exclusively hardening
in software or hardware leads to high costs. Exclusively

hardening in software requires 97% additional run time costs
and hardening in hardware requires 204% additional space
costs, respectively. In Experiment 7, our algorithm computes
a solution with 100% fault tolerance considering only 14%
additional space costs and only 26% additional time costs.
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