
Bridging the Gap between Dual Propagation and
CNF-based QBF Solving

Alexandra Goultiaeva
Department of Computer Science

University of Toronto
Canada

Martina Seidl, Armin Biere
Institute for Formal Models and Verification,

Johannes Kepler University
Linz, Austria

Abstract—Conjunctive Normal Form (CNF) representation as
used by most modern Quantified Boolean Formula (QBF) solvers
is simple and powerful when reasoning about conflicts, but is not
efficient at dealing with solutions. To overcome this inefficiency
a number of specialized non-CNF solvers were created. These
solvers were shown to have great advantages. Unfortunately,
non-CNF solvers cannot benefit from sophisticated CNF-based
techniques developed over the years.

This paper demonstrates how the power of non-CNF structure
can be harvested without the need for specialized solvers; in
fact, it is easily incorporated into most existing CNF-based QBF
solvers using a pre-existing mechanism of cube learning. We
demonstrate this using a state-of-the-art QBF solver DepQBF,
and experimentally show the effectiveness of our approach.

I. INTRODUCTION

Quantified Boolean Formula satisfiability checking (QBF)
is the canonical PSPACE-complete problem. QBF provides a
powerful framework for encoding many important verification
and reasoning problems like model checking or scheduling [2].
QBF extends propositional logic with existential and universal
quantifiers, which allow a more compact representation for
problems with adversarial knowledge, incomplete information,
or nondeterministic behavior, especially when the proposi-
tional form becomes too large to be handled efficiently [11].

Most state-of-the-art QBF solvers adopt techniques of
propositional satisfiability checking (SAT), and have inher-
ited Conjunctive Normal Form (CNF) representation. CNF
encoding, simple but powerful, is widely used in SAT. CNF
allows efficient reasoning over conflicts, but conversion to
CNF involves a loss of structural information needed to
efficiently reason over solutions. A SAT solver only needs
a single solution, so in SAT the benefits of CNF seem to
far outweigh the losses. However, a QBF solver encounters
many solutions for different values of universal variables. The
inability to efficiently reason over solutions has been identified
as a major obstacle to efficient QBF solving [1].

Several approaches have been developed to take advantage
of representations other than CNF [5], [13]. Some of them
used the extra structure of non-CNF encodings to efficiently
reason over solutions [8], [9], [14]. The core technique in these
different approaches, though named differently, is actually the
same. In this paper we will refer to it as “dual propagation”.

Dual propagation allows reasoning over conflicts and solu-
tions to be done equally efficiently. It has been shown to yield
great performance gains, often exponentially speeding up the
search. However, it is not yet common in QBF solving. One
reason is that there are too few non-CNF benchmarks currently
available. Another reason is that, until now, dual propagation
was only employed in specialized non-CNF solvers, which had
to sacrifice all specialized techniques, tools, and data structures
that were developed over the years of working with CNF.

While the first reason is inherent (efficient QBF reasoning
requires more information than available in CNF), we will
show that a specialized non-CNF solver is not needed. The
mechanism for cube learning, which is already present in most
modern QBF solvers, can, if initialized correctly, perform dual
propagation exactly as done in non-CNF solvers. The resulting
solver combines the best of both worlds: the efficiency of mod-
ern CNF-based reasoning, and the power of dual propagation.
Our experiments confirm that dual propagation does indeed
make a huge impact on performance; also, the resulting solver
outperforms the previous non-CNF approaches, demonstrating
the benefit of well-engineered CNF-based data structures.

While the idea of dual propagation is not new, this is, to our
knowledge, the first time it is recognized that the mechanisms
already present in most existing modern QBF solvers are
sufficient for dual propagation, and that specialized solvers are
not required. We define requirements on the input which retain
soundness and are weaker than in previous work. We show that
most state-of-the-art CNF-based preprocessing techniques can
be soundly applied out-of-the-box. Unfortunately, such prepro-
cessing seems to reduce the impact of dual propagation. An
interesting avenue for future work is to extend preprocessing
techniques to be not only sound, but also duality preserving.

II. QBF AT A GLANCE

In this paper, we only consider QBF in closed prenex form.
A QBF has the structure Q.ψ, where Q is a quantifier prefix,
and ψ is a propositional formula called the matrix. Q consists
of quantifier blocks, which group together all consecutive
variables with the same quantifier. The quantifier level of a
variable x is one plus the number of preceding quantifier
blocks. A literal is a variable or its negation. A clause is
a disjunction of literals, a cube is a conjunction of literals.
A formula is in CNF if it is a conjunction of clauses; it is in978-3-9815370-0-0/DATE13/ c©2013 EDAA



Disjunctive Normal Form (DNF) if it is a disjunction of cubes.
A QBF is in CNF if its matrix is in CNF (similarly for DNF).

Any formula can be converted to CNF (or, dually, to DNF)
in poly-time using Tseitin transformation, by introducing
auxiliary variables for subformulas [12].

Example 1. Consider a QBF γ = ∃z∀xy.(x ∧ y) ∨ (x ∧ z).
It will be our running example. It can be transformed to CNF
as ∃z∀xy∃ab.{a, b}, {¬a, x}, {¬a, y}, {¬b, z}, {¬b, x}.

Let var(P ) be the set of variables occurring in P , whether
P is a clause, (sub)formula or (a part of) a quantifier prefix.
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Fig. 1: Decision tree for γ

Decision trees are complete
binary trees where each level is
associated with a variable (or-
dered by prefix). Each path rep-
resents a (partial) assignment,
the empty path represents ∅. In
our example (see Fig. 1), a left
branch at level 2 associated with x adds ¬x to the assignment,
while a right branch adds x. So, each leaf corresponds to a
complete assignment π, and is labeled with the value of the
formula under π. Nodes associated with existential variables
act as OR-nodes, while universal nodes act as AND-nodes. A
QBF is true iff its root is labeled with >.

A QBF model M is a subtree of the decision tree such that:
each node in M is >; for each universal (existential) node in
M , both (one of) the children are in M ; and the root of the
tree is in M . Obviously, only a true QBF can have a model.
A false QBF has at least one Q-countermodel, defined dually:
each node is ⊥, existential has both children and universal has
one. Fig. 1 highlights one of possible Q-countermodels for γ.
We will refer to Q-(counter)models simply as (counter)models.

The most common approach used to evaluate QBF is
QDPLL [2]. The algorithm repeatedly performs variable as-
signment, propagation, and forall reduction until it detects a
conflict or a solution. Then, the solver performs analysis (using
Q-resolution for clauses, or its dual term resolution for cubes)
to learn a stronger clause or cube, then backtracks and repeats.

Conflicts are detected by finding a falsified clause. However,
detecting a solution is difficult in CNF. The solver often is
unable to detect a solution until it assigns all the variables. In
that case, to obtain the starting cube for the learning procedure,
it gathers a subset of variables which satisfy all the clauses.
The resulting cube is usually very large and weak.

Example 2. QDPLL might solve the CNF of γ as follows.
Initially no propagation is possible, and one by one the
variables z, y, x, a are set >. A solution is found, and the
cube (z ∧ y ∧ x) is learnt. The solver backtracks and adds
a new implication ¬x while y remains assigned. This leads
to the implications ¬a, b, resulting in a conflict when {¬b, x}
becomes falsified. Then the clause {x} is learnt, which, after
universal reduction, becomes an empty clause.

III. RELATED WORK AND DUAL PROPAGATION

Consider a formula ∀aQ.a ∨ φ. It is obvious that only ⊥
setting of a should be considered. However, no CNF encoding

over original variables can support this, since unit propagation
could never set a universal variable in CNF.

To avoid this kind of problem, IQTest [14] used two repre-
sentations of the same formula, one in CNF and one in DNF.
Propagation in the first part would set existential variables,
and propagation in the second would set universals. The solver
CirQit2 [8] used a circuit representation of the input formula.
It used two channels to reason on the formula and its negation
at the same time, propagating solutions on one and conflicts
on the other. The non-CNF solver GhostQ [9] introduced
auxiliary universal variables, called ghost literals, to allow the
universal player to reason by propagation just as the existential
does. In reality these three approaches implement the same
technique. The auxiliary variables in the DNF form of IQTest,
the dual channel in CirQit, and the ghost literals in GhostQ all
play exactly the same role: pruning solutions by propagation.

We note that the core of the algorithm of IQTest is modeled
after QDPLL. The DNF processing mechanism is dual to
clause learning, and mimics cube learning of QDPLL. The
only drawback of QDPLL is that it starts with an empty
cube database. As we show below, any standard cube learning
mechanism can be seeded with appropriate cubes to act as
IQTest’s DNF engine. Thus, most existing QDPLL solvers can
be easily adjusted to take advantage of non-CNF information.

IV. DUAL PROPAGATION IN SEARCH-BASED SOLVERS

To make up for loss of structural information upon conver-
sion to CNF, a CNF-based solver would need extra information
to be fed through a different channel. We propose seeding the
cube database with a dual representation of a QBF ψ, obtained
by negating the CNF-encoded ¬ψ. This allows the modern
solver to behave similarly to IQTest while retaining its own
benefits. Note that the cubes contain additional information:
QDPLL solver would be unable to learn these cubes from
the CNF, because they contain additional universal variables.
These auxiliary variables allow the cubes to be much smaller,
propagation can now detect solutions earlier and the learned
cubes are much more useful in the learning process.

Our solver will take as input two CNF formulas, one
containing information about conflicts, and the second one
about solutions. We will call this pair a Dual CNF (DCNF).

Before we formally define DCNF, we need a notion of com-
patibility for quantifier prefixes. We call two quantifier prefixes
Q1 and Q2 mergeable if (1) any x ∈ var(Q1) ∩ var(Q2) is
on the same quantifier level in Q1 and Q2, but its quantifier
is opposite; and (2) any x ∈ var(Q1)∪ var(Q2)− var(Q1)∩
var(Q2) is existential. If two prefixes are mergeable, it is
easy to show that the merged quantifier Q = merge(Q1, Q2),
defined below, is well defined and unique:
• var(Q) = var(Q1) ∪ var(Q2);
• For any variable x ∈ var(Qi) with i ∈ {1, 2}, x has the

same quantifier level in Q and in Qi; its quantifier is the
same if i = 1 and opposite if i = 2.

Let (¬Q) denote the quantifier prefix that is identical to Q
except all the quantifiers are flipped. Assume Q1 and Q2 is
a mergeable pair of quantifiers, and let Q = merge(Q1, Q2).



Then Q1.φ ≡ Q.φ and Q2.φ ≡ (¬Q).φ for any formula φ,
since Q is simply Q1 (¬Q2) with additional variables inserted.

Definition 3. A DCNF representation of a QBF Q.φ is a pair
of CNF formulas Q1.φ1 and Q2.φ2 such that:
• Q1 and Q2 are mergeable
• Q1.φ1 ≡ Q.φ
• If Q.φ is false, then for Q′ = merge(Q1, Q2), at least

one counter-model of Q′.φ1 is also a model of (¬Q′).φ2.

To get a DCNF for a non-CNF formula Q.φ, we separately
convert Q.φ and ¬(Q.φ) to CNF using existing transformation
tools. From the resulting DCNF (Q1.φ1, Q2.φ2), we use
merge(Q1, Q2).φ1 as the input formula, and add the negations
of clauses of φ2 as cubes into the cube database.

Example 4. In our example, ¬γ can be represented in CNF as
∀z∃xyde.{¬d}, {¬e}, {d,¬x,¬y}, {e,¬z,¬x}. Then, Q1 =
{∃z∀xy∃ab} and Q2 = {∀z∃xyde}, and the merged prefix Q′

is {∃z∀xyde∃ab}. Unit propagation can simplify the formula
to ∀z∃xy.{¬x,¬y}, {¬z,¬x}. This simplification still satisfies
all our desired properties. In that case, Q′ = {∃z∀xy∃ab}.

With the seeded database, as soon as z is selected as
decision, the formula gets solved by propagation. Cubes set
¬x, which leads to ¬a,¬b, which falsifies the clause {a, b}.
A clause {x} is learnt, which is universally reduced to {}.

We now sketch a proof that given a proper DCNF, a QDPLL
solver must produce a correct answer. Soundness of the
(stronger) approach mentioned above follows as a corollary.

Proof: A QDPLL solver only returns ⊥ after deriving an
empty clause from Q′.φ1. Then Q′.φ1 is ⊥, and so is Q.φ.

Suppose that Q.φ is ⊥. Then there is some counter-model
m of Q′.φ1 which is also a model of (¬Q′).φ2. So, the
cube database is consistent. When a cube is created based
on a variable assignment, the assignment must satisfy all the
clauses, and thus might not appear in m. So, these cubes will
not violate consistency, and Q-resolution would never derive
an empty cube. Then the solver would never return >.

A. Implementation and Experiments

We have equipped a CNF-based solver DepQBF [10] with
dual propagation, yielding Dual DepQBF. Dual DepQBF takes
two CNF files as input, and adds the negations of the second
CNF’s clauses as cubes. These “original” cubes are exempt
from deletion, just like original clauses. The merged prefix is
computed on the fly, and conflicting variables are renamed.
This allows the solver to be used with any converter which
does not change the levels or names of original input variables.

The changes broke a few common assumptions: now a
variable might occur in the cubes but not the clauses, and
the last quantifier is no longer necessarily existential. As a
quick work-around for some technical problems encountered,
we have turned off pure literal detection, and switched to trivial
dependency scheme. These changes do not seem to degrade
performance on this dataset. In the experiments below, the
original version of DepQBF has both pure literals and the
standard dependency scheme; the dual version has neither.
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Fig. 3: Comparison of cubes and clauses learnt after negating
the problem. DepQBF (left) and Dual DepQBF (right)

Fig. 2 shows the comparison of Dual DepQBF with state-
of-the-art CNF and non-CNF solvers. We used nonprenex non-
CNF benchmark set from QBFEval’10 [6]. Non-CNF solvers
were given the formulas in qpro format. We obtained CNF
and DCNF using Plaisted-Greenbaum transformation [12].

We evaluated the following solvers: Qube, a state-of-
the-art DPLL-based CNF solver (version 7.2) [7]; quantor,
an expansion-based CNF solver [3]; and non-CNF solvers
GhostQ [9] and CirQit [8]. The experiments were obtained
on a cluster with Intel Core 2 Duo Quad Q9550 2.8-GHz
processors, 8-GB main memory, running Ubuntu Linux. We
used the timeout of 900 seconds and memory limit of 7-GB.

For CNF solvers, we separately report solving time on
positive and negative polarities of problems (suffixing the
names with “+” and “-” respectively). Dual DepQBF took
both representations. The entry “Dual DepQBF+” used the
positive versions as the problem and negative CNF as the cube
database, and vice versa for “Dual DepQBF-”.

Fig. 2 clearly shows that dual propagation is effective:
note the substantial gap between the solvers that use dual
propagation and those that do not. Also, the effectiveness of
fast CNF-based reasoning is reflected by the fact that Dual
DepQBF is more efficient than the current structural solvers.

The effect of Dual Propagation is visualized in Fig. 3. For
the same problem, we compare the number of cubes learned
while solving the problem to the number of clauses learned
while solving its negation. If the problem was not solved, we
take the number of cubes/clauses learnt within the timeout.

Theoretically, we would expect these numbers to be similar.
After all, any clause in a problem is a cube of its negation.
However, this is not the case for the original DepQBF. Because
of the bias introduced by the formula representation, it learns
substantially more cubes than clauses. Note that the plot is
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Fig. 4: Truncated decision trees, (counter)models highlighted

logarithmic, so the gap is many orders of magnitude. For the
dual version the plot is as one would expect. Our approach
has removed the bias that weakened cube learning.

V. PREPROCESSING

Our approach allows both input formulas to be prepro-
cessed, as long as it is ensured that the properties of Def. 3
are retained. The nontrivial property is the third one. To show
that a technique preserves the third property, it suffices to show
that it never destroys models or countermodels of the formula.
We found that all the techniques employed by the preprocessor
bloqqer [4] preserve both models and countermodels. Blocked
clause elimination might change a value on a node of a deci-
sion tree from ⊥ to >. But, by properties of blocked clauses,
it can be shown that the node must have an existential ancestor
whose other child is >. This means that the changed node must
not be a part of any countermodel. Similar and dual arguments
can be used to show that pure and unit literal elimination
do not destroy any models or countermodels. Equivalence
replacement is simply propositional transformations followed
by blocked clause removal. Variable expansion can be seen
as simply setting both universal node’s children to ⊥ if at
least one is ⊥. Obviously, if the node changed value, it could
not have been a part of a model or a countermodel. So, all
the techniques employed in bloqqer can be used with dual
propagation. However, that is not true in general. For example,
it is unsound to apply blocked clause insertion.

Example 5. Fig 4a shows the decision tree for the DCNF
from Ex. 4. Each node is marked with two values, the left
for Q′.φ1 and the right for (¬Q′).φ2. The model for Q′.φ1,
which is also a countermodel for (¬Q′).φ2, is highlighted.
By blocked clause insertion and elimination, (¬Q′).φ2 can be
transformed into φ′2 = {x, y}, {x,¬y}, {¬x, y} The updated
decision tree is shown in Fig. 4b, which highlights the new
model for ¬Q′.φ′2. The pair is no longer a DCNF, and QDPLL
might produce the wrong result > by analyzing solution
{a, b, z, x, y}, getting the dual clause {¬z,¬x,¬y}; it can be
resolved with existing dual clauses to obtain an empty cube.

Unfortunately, out-of-the-box preprocessing seems to harm
the benefits of dual propagation. Dual DepQBF is only able to
solve two more formulas than DepQBF on the preprocessed
instances. We conjecture that separate preprocessing pushes
the formulas further apart, so that they no longer define the
exact dual problem. We compared the cube and clause sizes,

and found that the duality is once again broken: the transfor-
mations done by the preprocessor (especially the introduction
of new variables) limits the duality of the resulting formulas.

Lastly, we note that the combination of DepQBF and
bloqqer is able to solve 469 of out 478 formulas (471 with
Dual Propagation). Similar trend occurs on all other non-CNF
formulas available to us. While problems that are hard for
bloqqer do exist, their non-CNF versions are not available.

VI. CONCLUSIONS

We have shown that dual propagation does not require a
specialized solver, but can be combined with existing CNF-
based datastructures and techniques. We verified its effective-
ness, both at improving runtime and at removing the bias
which forced CNF-based solvers to learn excessively many
of cubes. We experimentally verified that the result noticeably
outperforms existing solvers, both CNF and non-CNF.

Our approach decouples the encoding of the problem from
dual propagation. We can use most existing CNF encoding
methods out of the box, whereas specialized solvers such as
IQTest are limited to a single built-in method. Our relaxed
constraints guarantee soundness while applying sophisticated
preprocessing techniques to the formulas, which has, to our
knowledge, never been applied with dual propagation.

An interesting direction for further research is to develop
duality-aware preprocessing tools, which would preserve du-
ality and perhaps yield stronger preprocessing techniques.
Another avenue to explore is the application to SAT, where
a dual CNF can be used to produce partial models.
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