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Abstract—The need for detailed simulation of integrated
circuits has received significant attention since the early stages of
design automation. Given the increasing device integration, these
simulations have extreme memory footprints, especially within
unified memory hierarchies. This paper overcomes the infeasible
memory demands of modern circuit simulators. Structural parti-
tioning of the netlist and temporal partitioning of the input signals
allow distributed execution with minimal memory requirements.
The proposed framework is validated with simulations of a
circuit with more than 106 MOSFET devices. In comparison
to a commercial tool, we observe minimal error and even ×2.35
speedup for moderate netlist sizes. The proposed framework is
proven highly reusable across a variety of execution platforms.

I. INTRODUCTION

Computer-aided simulation of circuit activity is a key issue
in the verification of a wide range of electric and electronic
systems [1]. Especially in the case of integrated circuits (ICs),
a definitive piece of work is the Simulation Program with
Integrated Circuit Emphasis (SPICE) [2]. This software has
long been considered as the standard for detailed IC simula-
tion. SPICE has also triggered a wide variety of research. A
significant portion of that research aims at the acceleration of
SPICE simulations, as a result of increasing device inventories.

Device variability also creates demand for computationally
viable SPICE simulations. Deep sub-micron devices are re-
ported to exhibit variability during system lifetime, with both a
stochastic and a workload-dependent component [3]. Transient
simulations of representative workloads are required to account
for time- and workload-dependent variability [4]. Hence, the
memory requirements of transient SPICE simulations are in-
creasing with device inventories and extended workloads.

State-of-the-art (SotA) SPICE optimizations exhibit a clear
trend towards parallel execution across various units of execu-
tion (UEs). This is not surprising, if we consider the increas-
ing number of cores found in modern large-scale processing
systems [5]. The concepts of node or branch tearing are
very appealing when parallelizing SPICE. They involve the
partitioning of the initial netlist to smaller subcircuits. Each
subcircuit can be solved independently and contribute to the
solution of the initial netlist. Many papers look into optimizing
node tearing or parallelize intensive execution stages. Other

SCC infrastructure provided by Intel Labs Braunschweig, Germany in the
context of the EU FP7-INFSO-IST-248789 TRAMS Project.

978-3-9815370-0-0/DATE13/ c©2013 EDAA

papers, deal with parallel mapping of SPICE on specific
hardware. However, in all these cases, the demand for main
memory is made concurrently to the executing platform, which
may prove incapable of fulfilling this requirement.

In this paper, we differentiate from the state-of-the-art by
enabling massive SPICE simulations that overcome memory
capacity issues. Simulation threads with minimal memory
requirements are distributed across available UEs. We propose
the temporal partitioning of the netlist’s primary input signals,
in what will be referred as workload tearing. When combined
with node tearing, this concept enables the execution of small
and independent SPICE instances across the available UEs.
These instances take maximal advantage of the infrastructure
capabilities with minimal communication overhead. A hyper-
visor has been designed for the dispatching of these SPICE
instances and the reconciliation of simulation results. The
proposed framework imposes minimum hardware constraints
on the executing platform and is highly reusable. It has been
seamlessly integrated in an experimental cloud chip, a set of
virtual machines and a regular multicore server. Its accuracy
and performance are evaluated against the commercial tool
HSPICE, which supports multi-threaded execution.

In the next Section, we summarize the SotA on SPICE
optimizations. In Section III we elaborate on the proposed
structural and temporal partitioning. We also present the hy-
pervisor, which maintains high level control of our framework.
Section IV presents the inspected multi-core platforms, the
netlist benchmark that was used and simulation results. Finally,
conclusions are summarized in Section V.

II. RELATED WORK

Optimizations of SPICE performance can be split into two
major categories. Some optimizations target SPICE execution
on a single UE. Other solutions deal with the distribution of
a SPICE execution across various UEs. Naturally, the former
category attracted significant amount of research, even from
the initial development stages of the SPICE software [6]. The
ideas of Node [7] and Branch Tearing [8] were introduced
to physically partition the initial simulation problem to inde-
pendent subproblems. Decomposition based on the unknown
variables of the problem’s differential and algebraic equations
was introduced in the Waveform Relaxation method [9].

As the multi-core trend materialized, research focused on
SPICE parallelization. The data-level parallelism of tearing



or decomposition methods has been heavily exploited. The
authors of [10] are mimicking a transmission line, to emulate
the signal propagation delay between nodes of different circuit
partitions. An alternative to node tearing is also proposed in
[11], aiming at a reduced number of connections between
partitions. Finally, [12] proposes alternative partitioning cri-
teria. The design automation industry is following the trend
of mulitcore SPICE simulations providing a range of related
products [13]. Many SPICE acceleration attempts are using
specific hardware to exploit inherent data-level parallelism.
Field Programmable Gate Arrays (FPGAs) have been used to
parallelize the tasks performed by the SPICE simulator [14].
Graphics Processing Units (GPUs) have also been used for the
acceleration of transistor model evaluation [15].

In view of the related work on SPICE acceleration, it
is evident that netlist partitioning has received significant
attention. Even though optimized, the partitioning of the circuit
is not enough to avoid the violation of the memory constraints
imposed by the executing hardware [11]. Other approaches
that propose the use of customized hardware to perform the
simulations (e.g. GPUs or FPGAs) reduce the versatility of
the parallel SPICE implementations. Our parallel framework
reduces the memory footprint of the simulation on each UE,
while remaining highly reusable across processing systems
usually found in academic or industry environments.

III. HYPERVISED SPICE SIMULATIONS

A. Simulation Framework

Assume a large netlist, its primitive input signals Vin (t)
and its primitive output signals Vout (t). Application of node
tearing on the target netlist creates N subcircuits, each one
with a number of devices equal to di, where i = 1, 2, ..., N .
Workload tearing is the temporal partitioning of the primitive
input set based on Equation 1, where rect (t) is the rectangular
pulse function [16] and T is the time step.

Vin (t) =

M∑
j=1

Vin (t) rect
(
t− j

T

2

)
(1)

Given the time step T , we create M “slices” of the large
netlist’s primitive inputs (addends of Equation 1). Node and
workload tearing create a two dimensional set of intermediate
simulations (see Figure 1). Each one is uniquely identified by
the pair (i, j) as the simulation of subcircuit i, for the time
slice j. Each set member is submitted to a SPICE instance,
which runs on a single UE. In order to calculate Vout (t),
we require N × M intermediate SPICE simulations. These
simulations require small amounts of memory due to reduced
device inventory (di) and input signal duration (T ). These
small memory portions are returned to the multi-processor
system after the respective SPICE instance is finished. This is
a major differentiator from SotA and commercial tools, which
require strictly increasing amounts of memory.

A directed, acyclic graph of dependencies between subcir-
cuits indicates the flow of results across intermediate simula-
tions. Signals that are required by an intermediate simulation
originate either from primitive inputs (a single time slice)
or from the results of a previously executed intermediate
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Fig. 1: The proposed hypervisor draws from a set of interme-
diate SPICE simulations to create the primitive outputs.

simulation. The hypervisor dispatches intermediate simulations
and reconciles their outputs based on the interdependency
graph. It remains dormant unless an intermediate simulation
is completed and another has to initiate. Depending on the
platform, the hypervisor initiates SPICE instances by invoking
either fork or ssh. Finally, a data miner creates Vout (t) by
combining its time slices in an overlap-save fashion.

B. Illustrative Example

Assume the netlist of Figure 2a. It can be partitioned into
three subcircuits, each one being uniquely identified by its i
value (dashed arrows show signal dependencies). The netlist
needs to be simulated over the extended workload Vin (t). With
workload tearing, we partition the input vector into three time
slices (see Figure 2b). In this simulation, we seek to calculate
the primitive output Vout (t), which will be assembled per
time slice as well. For each time slice, we notate V j

in (t) and
V j
out (t), where j = 1, 2, 3. In our example, the voltage signals

of each node a, b and c will also be created per time slice,
hence we can use the notations V j

a (t), V j
b (t) and V j

c (t).

The set of independent simulations includes the (i, j) pairs,
namely a simulation of the i subcircuit over time slice j. Given
three available UEs, the hypervisor completes the entire set, by
handling intermediate simulations with resolved dependencies
(Figure 2c). At the beginning of the execution only simulation
(1, 1) has resolved dependencies and can be executed. The
dashed arrows of Figure 2c indicate the flow of results between
intermediate simulations. For example, simulation (2, 1) can
only initiate when simulations (1, 1) and (3, 1) have forwarded
their results. Once simulation (2, 1) has been completed, we
get the first time slice of the primitive output, namely V 1

out (t).
Times slices V 2

out (t) and V 3
out (t) will come from simulations

(2, 2) and (2, 3) respectively (gray-shaded boxes in Figure 2c).

IV. EXPERIMENTAL VERIFICATION

A. Tested Platforms, Benchmark Netlist & Workloads

We have tested the proposed framework on three represen-
tative platforms (see Table I). The first platform is the Single-
Chip Cloud Computer (SCC) experimental processor, which is
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Fig. 2: Members of the (i, j) set are mapped to UEs as execution time progresses and results are forwarded accordingly.

Platform UE Information #UEs Hypervisor Invocation
SCC P54C @533MHz 48 @ MCPC∗ ssh

∼okeanos QEMU Virt. CPU
Version 1.0 @2.1GHz 4 @ 1 UE fork

Xeon X3470@2.93GHz 4 @ 1 UE fork
∗ MCPC: Management Console Personal Computer of the SCC

TABLE I: Details of the inspected multicore platforms

a 48-core “concept vehicle” created by Intel Labs as a platform
for many-core software research [17]. We have also tested our
framework on virtual machines (VMs) of the cloud service
∼okeanos [18]. Finally, an Intel R©Xeon R© server has been used
to complete the set of representative test cases. All experiments
have been performed using an open source SPICE version
called ngspice [19]. As reference for comparison, we use
the commercial tool HSPICE from Synopsis. We choose an
execution with four threads running on a similar 2.33GHz
Intel R©Xeon R© machine (flag -mt 4).

The benchmark that we have chosen is an array multiplier
composed of parallel multiplier cells (“X” boxes of Figure 3a)
[20]. We define as data block size the length of the multiplier’s
operands in bits (both operands are assumed of the same
length). We increase the device inventory of the netlist by
increasing the data block size, reaching beyond 106 devices
(see Figure 3b). The duration of all workloads is 800ns and
the time step T used for workload tearing is 20ns. The selected
benchmark allows easy node tearing into identical subcircuits.

B. Simulation Results

For the various sizes of the multiplier array, we apply the
same workload both to our framework and the reference tool.
The processing time that is exclusively dedicated to circuit
simulation can be seen in Figure 3c). For small device sizes,
the commercial baseline outperforms our framework. However,
beyond an array data block size of 32, HSPICE is unable to
deliver a result due to insufficient system memory. At the same
time, our proposed framework keeps producing results, even
for a netlist with more than 106 MOSFET devices. In Figure 3d
we can see the execution time occupied by the hypervisor’s
execution (dispatching SPICE instances, reconciling results).

We also assess the accuracy of our approach, by calculating
the root mean squared error (RMSE) across all output bits for
each multiplier size (see Figure 3e). Errors can be calculated
only as long as the reference execution (HSPICE -mt 4) does
not run out memory (up to a data block size of 32 bits).

Approach Max. Speedup Max. #Devices Inspected Platforms
[10]∗ N/A 6 2-Processor System
[11] 1 × 5.96 19,995 SGI Challenge (12 CPUs)
[12] 2 × 2.09 96 Intel 2.66GHz PC
[14] 3 × 11 27,995∗∗ Xilinx Virtex-6 LX760
[15] 4 × 3.07 7,682 NVIDIA GeForce

Our’s 5 × 2.35 3,670,016 SCC, Cloud VMs, Xeon
1 vs. single core execution, 2 vs. Fiduccia-Mattheyses partitioning, 3 vs. SPICE on
Intel i7-965, 4 vs. Intel Core 2 Quad Core, 5 vs. HSPICE -mt 4
∗ Only an example with three inverters is presented, ∗∗ Size of netlist matrix.

TABLE II: Comparison of the proposed transient SPICE
simulation framework with works from the SotA

In Figure 3f we present a transient output excerpt of our
proposed framework and of the reference tool. We can see
that the output signals are reproduced very accurately by our
simulation framework. Signal transitions and intermediate jitter
are the main causes of output error. Voltage droops can be
followed accurately by avoiding signal partitioning at time
instances where voltage transitions occur. Signal overshoots
can be realistically reproduced by appending the appropriate
capacitances to the output nodes of each subcircuit that occu-
pies an intermediate simulation.

Having presented experimental results, we can revisit the
comparison to the SotA with the three key metrics of Table II.
We can safely claim that the device inventories that we address
are very much increased in comparison to the SotA, whereas
the proposed framework is not limited to specific hardware.
Finally, we can identify a ×2.35 speedup in comparison to
the reference tool (normalized in cycles), for a data block size
of 32 bits (Figure 3c). In general, reduced speedup is to be
expected, since our primary goal is the viability of massive,
transient SPICE simulations from a memory point of view.

V. CONCLUSION

The technique proposed in this paper goes further than ex-
isting SPICE parallelization approaches by adding a partition-
ing of the workload on top of existing node tearing. Workload
and node partitioning create a set of small SPICE simulations,
each one having reduced memory requirements. Being inde-
pendent, these simulations can be data-partitioned across the
UEs of a multi-core platform. With our simulation framework,
the demand for main memory is not performed massively and
concurrently to the executing platform, as observed in the
SotA and even commercial tools. By scaling the initially large
SPICE simulation, we avoid hitting the memory constraints of
all inspected platforms. We successfully simulate netlists with
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Fig. 3: Performance and accuracy evaluation of the hyeprvised SPICE concept proposed in this paper

over 106 devices, while the commercial reference fails even
in smaller netlists, due to extreme memory requirements. We
have integrated our framework in three platforms, covering
the range of cloud service infrastructure, regular multi-core
systems and advanced chips with an increased number of
integrated processors. Thus, we substantiate the reusability of
our approach across computing systems, which are usually
found in academia or industry.
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