
CATALYST: Planning Layer Directives for
Effective Design Closure

Yaoguang Wei1, Zhuo Li2, Cliff Sze2
Shiyan Hu3, Charles J. Alpert2, Sachin S. Sapatnekar1

1Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455
2IBM Austin Research Lab, Austin, TX, 75758

3Department of Electrical and Computer Engineering, Michigan Technological University, Houghton, MI, 49931
Email: weiyg@umn.edu; {lizhuo,csze}@us.ibm.com; shiyan@mtu.edu; alpert@us.ibm.com; sachin@umn.edu

Abstract—For the last several technology generations, VLSI designs in
new technology nodes have had to confront the challenges associated with
reduced scaling in wire delays. The solution from industrial back-end-of-line
process has been to add more and more thick metal layers to the wiring
stacks. However, existing physical synthesis tools are usually not effective in
handling these new thick layers for design closure. To fully leverage these
degrees of freedom, it is essential for the design flow to provide better
communication among the timer, the router, and different optimization
engines. This work proposes a new algorithm, CATALYST, to perform
congestion- and timing-aware layer directive assignment. Our flow balances
routing resources among metal stacks so that designs benefit from the
availability of thick metal layers by achieving improved timing and buffer
usage reduction while maintaining routability. Experiments demonstrate the
effectiveness of the proposed algorithm.

I. INTRODUCTION

Physical synthesis is a critical component of modern design method-
ologies, enabling timing closure at the physical design stage. Technology
scaling brings new challenges and opportunities to physical synthesis.
Wire resistance per unit length increases quadratically with technology
scaling and results in significant increases in wire delay. However,
recent work [1], [2] shows that the availability of thicker wires in
higher metal layers could potentially relieve this problem. At 65 nm
technology, there are four 1× layers, three 2× layers and two 4×
layers (Fig. 3). On a 2× layer, the single-width wires are 2× thicker
and 2× wider than those on 1× layer, and therefore the per-unit wire
resistance is reduced by roughly 4× (the per-unit capacitance is roughly
similar across all layers, which is ensured by design rules including
wire spacing and process specifications such as inter-layer dielectric
thickness), greatly compensating for technology scaling effects. On
the 2× [4×] layer, signals can roughly go 1.7× [2.5×] faster, with
2× [4.4×] reduction in buffer resources. Therefore, the difference in
wire delays in different layers provides another dimension to timing
optimization, beyond gate/wire sizing and buffering. Assigning timing-
critical nets to thick layers can reduce area/power and improve timing
closure by reducing delays and the buffer count. As illustrated in Fig. 1,
the slack for a two-pin net A on a 4× layers is improved from -10 ps
to 10 ps as compared to the corresponding route on the 1× layer, and
the number of buffers is reduced from 7 to 1. Moreover, by using thick
layers wisely, it could be shown that a 31% reduction on buffer area
averaged over several industrial circuits can be achieved (Sec. VI-B).
On the other hand, there are limited resources on thicker layers, and
if too many nets are assigned to thicker layers, the design may not be
routable or have large post-routing timing degradation.

Fig. 1. Assigning the same net to thicker layers improves timing and buffering.

This extra dimension affects the traditionally predicted trend for
interconnect synthesis and buffering, and presents a new problem to the

978-3-9815370-0-0/DATE13/ c©2013 EDAA

physical synthesis: how to use these thick metal layers wisely. This
problem is pervasive in all steps of the design flow, from the early stages
to the late stages and relates to the classical tradeoff between flexibility
and accuracy: as one progresses deeper into the design flow, timing
estimation becomes more accurate but the level of flexibility in changing
layer assignments diminishes.

Existing works on layer assignment have focused only on late stages
of design, mainly during the routing and buffering stages. Most of
the previous related works are from the global and detailed routing
literature, but do not address the problem of early planning for layer
assignment. Conventional routers perform layer assignment purely for
routing congestion minimization and many works focus on how to
perform layer assignment with via minimization [3]–[8]. In these works,
the timing benefit of thick layers is not leveraged at all. Subsequent work
on timing-driven layer assignment [9]–[12] has used timing information
to drive layer assignment. While it is certainly necessary to consider
layer assignment during routing, the timing gain in these works is limited
since routing is performed after all optimizations are completed, or at
least after a majority of buffers are placed. Recent papers [13]–[15]
focus on how to obey the given layer assignment constraints from the
prior synthesis stage in the routing algorithm, but do not discuss the
process of generating these constraints.

The work in [1] performs layer assignment during the optimization
stage and is combined with buffering. It presents two algorithms to
perform simultaneous layer assignment and buffer insertion on a single
net given the Steiner topology, and shows significant timing benefits
and buffer area savings. However, it has two major limitations. First,
it is not aware of the routing congestion. The approach attempts to
control the number of nets promoted to thick layers, but its guess and
trial approach could still easily cause over-promotion (assigning too
many nets to thick layers) in the design, which causes the design to be
unroutable [2]. Second, it does not explicitly minimize the buffer usage:
it may underuse the thicker layers if the timing can be closed by buffer
insertion on thinner layers, with excessive buffers inserted.

Placement

Global buffering

Routing

Timing

optimization

Post-routing 

optimization

(a) Current flow.

CATALYST

Placement

Global buffering

Routing

Timing

optimization

Post-routing 

optimization

(b) Proposed flow.

Fig. 2. Current and proposed physical synthesis flows.
We propose a novel algorithm, CATALYST: Congestion And Timing

Aware LaYer aSsignmenT, to perform layer assignment to maximize the
timing benefits with congestion control at early stages. CATALYST alters
a traditional physical synthesis flow [16], [17], depicted in Fig. 2(a), and
is inserted just before global buffering, as shown in Fig. 2(b). We believe
it is a catalyst to enable faster and better design closure if thicker metal
layers are wisely used earlier. Unlike [1], our algorithm tries to assign



a large number of nets to thick layers with the goal to minimize the
buffer usage. Moreover, since our method has a global routing engine
embedded inside, it has good control of the congestion when performing
layer assignment.

Our work has several significant contributions. It presents
• a novel problem formulation for layer assignment at early stages;
• techniques to control congestion during layer assignment;
• techniques to maximize the timing benefits of layer assignment

guided by a delay model (to be discussed in Sec. II-C);
• techniques to minimize buffer usage by assigning as many nets as

possible to thick metal layers while controlling congestion.
Our algorithm has been tested on several industrial designs across

65 nm, 45 nm, and 32 nm technologies. Compared with another aggres-
sive layer assignment algorithm, CATALYST can achieve similar timing
improvements (improving the worst slack by 0.8 ns on average) but
avoid high congestion. Moreover, CATALYST has been embedded and
tested in an industrial physical synthesis flow (Fig. 2(b)). Experimental
results demonstrate that CATALYST can save the buffer area by 10%
on average and up to 18%, while maintaining the similar congestion,
timing, and runtime. These savings also improve the design power and
cost and help achieve effective design closure.

II. PRELIMINARIES

In this section, we discuss the routing and timing models used in
CATALYST, the notations used and the problem formulation.

A. Layer Directives and Notations
An important concept involved in this work is that of the layer

directive (simply, directive): a directive is a constraint on a net which
specifies the valid layers the net can be routed on, and is typically given
by a pair of layer names. For example, a net n with directive [M5,M9]
means that net n can only be routed between layer M5 and M9. Here,
Mi denotes the ith metal layer.

CATALYST differs from the traditional layer assignment step in global
routing [3]–[8], which assigns the wires to different layers as a last step
to complete the routing of a net. In contrast, CATALYST generates layer
directive constraints for timing-critical nets, and these directives are
propagated throughout the physical synthesis flow. We will use the term
layer directive assignment (LDA), or simply directive assignment, to
refer to our layer assignment process.

Fig. 3. A pictorial view of the 65 nm technology.
We now elaborate on the way layer directives are provided for a

65 nm technology. As illustrated in Fig. 3, this technology consists of
three planes, where a plane refers to the layers with same thickness.
Correspondingly, three layer directives can be derived: [M1,M9] as D1,
[M5,M9] as D2 and [M8,M9] as D3. From the example, we can see
that for j th directive Dj , the bottom layer will be the bottom layer in
j th plane, and the top layer will be always the top metal layer. Note that
D1 imposes no constraint, and is not used in practice.

It is useful to assign the most timing-critical nets to D3, so that these
nets can obtain best delay gains from the thickest layers. If assigning a
timing-critical net n to D3 results in congestion bottlenecks, we could
give it greater flexibility by assigning it to D2, allowing n to be routed
between M5 and M9. In such a case, we use the parasitics in 2× plane
when computing the wire delay and gate delay associated with net n,
since industrial routers tend to route nets in the lowest allowable metal

layers, which is consistent with the objective of via minimization. If
there are no resources in the lowest layers, a wire may be routed in a
higher layer, and the timing computation based on the parasitics of the
2× plane1 is guaranteed to be pessimistic.

We further introduce some notations. Let M be the number of planes
in a design. Correspondingly, there will be M layer directives Dj ,
1 ≤ j ≤ M . For simplicity, we overload the notation to also use
directive Dj to denote the set of layers specified by Dj . We refer to D1

as the bottom directive, and DM the top directive. The promotion of a
net will refer to the case where we assign a net from Dj to a directive
with a higher index (corresponding to higher metal layers); similarly,
the demotion of a net will refer to the opposite. Since the parasitics of
the lowest metal layer in a directive will be used to evaluate the delay
of the nets in that directive, promoting (demoting) a net will improve
(worsen) its estimated delay.

B. Global Routing with Layer Directives
In global routing, the chip is usually tessellated into grids (also

called g-cells), and the global routing graph (GRG), Gr = (Vr, Er), is
constructed. Each node in Vr represents a g-cell in the layout, and an
edge (called a g-edge) in Er denotes the boundary between two adjacent
g-cells. In the presence of multiple layers, the 2D GRG becomes a
3D GRG, with a 2D GRG representing each layer, and the z-direction
g-edges representing vias that connect the 2D GRG’s.

Most of traditional global routers adopt a three-stage routing scheme:
plane projection, 2D routing and layer assignment. However, routing with
layer directives is quite different. Several methods have been proposed
to address layer directives in global routing [13]–[15]. We use the
progressive projection method in [15] due to the flexibility it affords.
In this method, the nets are first partitioned to several sets according
to their directives. Let Pk be the set of nets with directive Dk, where
1 ≤ k ≤M . A set of routing subproblems Ik are constructed with a set
of nets Pk and a set of layers in Dk. Next, the subproblems are solved
one by one. Since the nets in higher directive have stronger limitations
(with fewer available layers), subproblem Ik with larger k will be solved
first. In solving Ik, the 2D GRG is constructed in the following way:
the capacity is aggregated by only using the layers in Dk, and the
routing solution from the previous subproblem Ik+1 (if available) will
be treated as existing wires in the 2D GRG. In summary, the whole
routing process will have M passes: in each pass, 2D-routing and then
layer assignment will be performed on the 2D GRG constructed using
the method discussed, and finally an accumulated 3D solution will be
output.

The traditional goals of global routing are to minimize the wirelength,
congestion and via count. Congestion can be evaluated by different
metrics such as overflow. The overflow of a g-edge is defined as the
excess routing demand over the capacity on the g-edge. Recently, a new
metric, the average congestion of g-edges (ACE), has been proposed
in [18] and shown to be more effective than conventional overflow-based
metrics. Here, congestion of a g-edge is defined as the ratio of the
routing demand to its capacity. Roughly, the ACE metric computes
the average congestion of the top x% congested g-edges, denoted as
ACE(x). A derived metric, peak weighted congestion (PWC), was
adopted in DAC 2012 contest [19], given by (ACE(0.5) +ACE(1) +
ACE(2) +ACE(5))/4.

C. Timing Metrics and Model
In this paper, we use the following timing metrics: the worst slack

(WSLK), the figure of merit (FOM) which is sum of the gap in slack
to a target (star) for all timing endpoints with slack below star , and
the number of timing endpoints with negative slack, nneg . Here, we set
star to 0 ps, so that FOM is effectively the total negative slack.

As pointed out in [16], for appropriate tradeoffs between runtime and
optimization accuracy, timing models with different levels of accuracy
are used at different stages in a typical physical synthesis flow (Fig. 2(a)).

1The parasitics of lowest layer and highest layer specified by the layer directive
may be used as a [min,max] range in timing analysis to get more information
if necessary.



Before placement, an optimistic zero-wire-load model is typically used
during logic synthesis. Subsequent to placement, one could switch to
a traditional RICE model [20]. However, such a timing analysis will
result in huge numbers of critical paths because buffering has not yet
been performed, and it becomes impossible to distinguish real critical
paths from paths that simply lack buffers. Long wires without buffers
will have quadratic delays and make the timing appear much worse
than it potentially will be after timing optimization. Hence, to avoid this
problem, a linear delay model [21]–[23] can be used for wires, where
the interconnect delay is estimated to be linear with the wirelength
assuming optimal buffering. It allows a reasonable estimate of post-
placement timing, and allows the buffering to be deferred until layer
assignment has been performed.

In this work, CATALYST is performed before buffering (Fig 2(b)),
and therefore, we use a linear delay model similar to that used in [23]2.

D. Layer Directive Assignment
The LDA problem can be stated as follows: given a design, assign

directives to nets with the goal of satisfying the timing and congestion
constraints, and minimizing the number of buffers required.

To evaluate the effects of assigned layer directives on routing
congestion, a global router with ability to obey the layer directives,
such as [13]–[15], can be used to evaluate the congestion. We should try
to keep the congestion with newly generated directives similar to that
without any directives. Precisely, the congestion constraint to the LDA
problem can be gLDA ≤ βgorg , where gLDA and gorg are calculated
by a congestion metric of the routing solution with and without assigned
directives, respectively, and β is a user-defined parameter.

III. OVERVIEW OF CATALYST
In this section, we discuss how we solve LDA problem and overview

the CATALYST algorithm. We solve the LDA problem by decomposing
it into two subproblems:
Subproblem 1: Timing-driven directive assignment.
Subproblem 2: Congestion- and timing-aware directive assignment.
The goal of the Subproblem 1 is to generate initial layer directive
assignment solution to meet the timing constraints, while minimizing
the number of nets with directive assigned. Subproblem 2 has two goals.
First, it tries to keep the initial directive assignment from the solution of
Subproblem 1 within the allowable congestion range. Second, it tries to
assign as many nets as possible to higher directives to further improve
timing and reduce potential buffer usage.

To solve Subproblem 1, we propose a simple but effective timing-
driven directive assignment heuristic by promoting the timing-critical
nets to higher directives one by one with incremental timing updates. To
solve Subproblem 2, our tool embeds a global routing engine inside to
control the congestion. First it will examine the directives obtained from
the first step, and relax the constraints/directives if they cause congestion.
Next, it will try to perform directive assignment on the rest of nets to
further improve timing and reduce potential buffer usage. It then calls
the timer to update the timing at the end to capture the effects of the
nets touched during this step. Simply speaking, the first step focuses on
timing improvement, and the second step focuses on congestion control
and buffer usage improvement.

The CATALYST algorithm is an iterative process. After every solution
of Subproblem 2, we rerun timing analysis based on the new directive
assignments, which change the timing, and then start a new iteration.
The iterations continue until the stopping criterion is satisfied: either
WSLK or FOM becomes worse, or the improvement on both of them
is smaller than a threshold θ, or the user-defined maximal number of
iterations nitr is reached.

IV. TIMING-DRIVEN DIRECTIVE ASSIGNMENT

Subproblem 1 can be formulated as follows. Given a circuit, to
compute a directive assignment solution to maximize the timing
improvement and to minimize the total cost. Depending on the purpose,

2Our enhanced implementation also considers the effects of vias on the wire
delay.

one can model this cost as congestion, to avoid unroutable regions, or a
directive cost by assigning a higher cost to a higher directive to minimize
the usage of higher layers. Our work uses a directive cost.

In this subproblem, the circuit can be modeled by a directed acyclic
graph (DAG) [24], Gm = (Vm, Em). The nodes in Vm are the logic
gates in the circuit and the primary inputs and outputs of the circuit.
Each node in the DAG has a delay, corresponding to the gate delay.
Each edge in Em denotes the interconnect from one node to the other.
Each edge has a wire delay under a given layer directive. Here, each
edge will have M choices, each with different delay values, and also
different associated costs. As shown in [12], even a simplified form
of this problem, where only a single routing tree topology of a net is
considered, is NP-complete.

In this paper, we propose a simple yet efficient heuristic. The main
idea is to use as few higher directives as possible by only promoting
the currently most timing-critical nets. We will explain our algorithm
assuming we have just started the kth iteration of CATALYST, and there
are some nets with directives from last iteration. A demotion stage
is first performed to check if a net can be demoted from its original
directive to lower directive if no timing violations are created. This
helps create a small set of layer directives for the congestion-aware
directive assignment step. Note that in the first iteration of CATALYST,
all the nets are in D1 and no demotion is required. Next, the timing-
driven promotion stage starts. This stage assigns timing-critical nets to
higher directives gradually, by looping through each directive from D2

to DM . In each step with target directive Dj , we will first put all the
timing-critical nets to a list A, and then sort them by their slacks3 in
an increasing order. Then we loop through each net ni in list A, and
promote ni to Dj if its current directive D(ni) is lower than Dj (note
that ni may have already been assigned to a higher directive from a
previous CATALYST iteration). If ni is promoted, then the timing graph
is updated with incremental static timing analysis. Since the timing of
other nets may change due to the promotion of ni, the subsequent nets
in A may be skipped in later processing if they become non-critical.
This heuristic promotes only “necessary nets” to higher directives to
avoid potential congestion problems.

V. CONGESTION- AND TIMING-AWARE DIRECTIVE ASSIGNMENT

There are two major goals of Subproblem 2: first, to maintain the
initial directive assignment to the extent permitted by congestion, while
demoting some of the directives that may cause congestion problems,
and second, to assign as many nets as possible to higher directives/layers
in order to reduce buffer usage without degrading congestion. This is
different from the method for Subproblem 1 which tries to promote
as few nets as possible to higher layers. Besides promoting timing-
critical nets, this step also promotes non-timing-critical nets for potential
buffer savings. The positive slack of a net under linear delay model is
obtained assuming optimal buffering with the current directive, and if it
is promoted to higher directives, fewer buffers will be required to keep
the positive slack.

Subproblem 2 can be formulated as follows. Given a circuit, a
congestion constraint and a group of nets with initial directives, try
to maintain as many of the initial directives as possible, and further
promote as many nets as possible to higher directives to maximize the
sum of scores of the promoted nets. Here, the score of a net is used
to quantify the benefits in timing improvement and buffer savings by
promoting it to a higher layer. In this work, as a first attempt, we simply
use the following score function for net ni:

w(ni) = exp(−s(ni)/Tc), (1)

where s(ni) is the worst slack of all the sinks of ni, and Tc is the clock
period used for normalization.

A. Algorithm
In this section, we will introduce the algorithm for Subproblem 2. For

later reference, we refer to our algorithm as CADA (Congestion and

3The slack of a net is the worst slack of all the sinks of the net.



timing Aware Directive Assignment). The key of CADA is to control
congestion, which is achieved by performing 2D directive-aware routing
and directive assignment. In this work, a 2D-routing engine adapted from
MaizeRouter [6] is used but the maze routing in MaizeRouter is replaced
by extreme edge shifting (refer to [6] for details about this technique)
to improve the speed; however, it should be pointed out our flow can
work with any other 2D routing engine. To deal with directives in 2D
routing, we use the progressive projection method in [15] as discussed in
Sec. II-B. In the LDA problem formulation, the constraint on congestion
requires gLDA ≤ βgorg . To consider this directly inside CADA, it is
necessary to invoke global routers before and after LDA. However, this
may be inefficient. Instead, for simplicity, we use a conservative method
to control congestion: a net can be promoted to directive Dj only if
routing a net in this directive causes zero overflow. Otherwise, the net
will stay in lowest directive D1. Note that in the solution of Subproblem
1, this strategy is not used since the congestion of a net at that step
cannot be efficiently obtained.

The basic flow of CADA is shown in Fig. 4. CADA has three stages:
initial directive adjustment, greedy directive assignment and directive
assignment refinement. First, the initial directive assignment from the
timing-driven directive assignment step (Sec. IV) is re-evaluated in terms
of congestion. At the allowable congestion level, we will try to maintain
as many initial directives as possible, and demote the nets to lower
directives if the initial assignment causes congestion. The purpose of the
second stage is to assign/promote as many nets as possible to the higher
directives to further improve timing and reduce potential buffer usage.
The goal of the third stage is to verify the effects of directive assignment
on congestion and to fine-tune the layer directives by performing a trial
routing process with the directive assignment.

DAA

For each directive Dj in DL

Progressive projection on Dj 

2D-routing

Prepare directive list 

DL={D1, D2, …, Dm-1, Dm, Dm-1, …, D2}

Dj==D1?
NoYes

General layer 

assignment

Directive 

assignment 

refinement

Greedy 

directive 

assignment
DAA

Plane projection

2D-routing

Initial 

directive 

adjustment Directive assignment adjustment (DAA)

Progressive projection

2D-routing

Fig. 4. Basic flow of congestion- and timing-aware directive assignment.
As stated earlier, at the first stage, only the nets with initial directives

from the timing-driven directive assignment step are processed. With
the progressive projection method, the nets with top directive DM will
be routed first. After 2D-routing, we will first sort these nets by their
scores as defined in Eq. (1), and will process the nets one by one.
We first attempt to assign a net to its associated directive, and then
we check the congestion. If no congestion violation is found, this net
will be marked to be assigned to that directive; otherwise, an attempt
to assign it to lower directives will be made until a directive without
causing congestion is found, or the lowest directive D1 is reached. This
procedure to find the best directive with an initial target directive is
called Directive Assignment Adjustment (DAA), and will be discussed
in more details in Sec. V-B2. After the nets with DM are all routed,
we repeat a similar process for nets with directive DM−1. This process
iterates until all the nets with directives are processed. Since the nets

with initial directives are the most timing-critical nets, and their number
is typically relatively small as compared to the total number of nets,
the wiring resources consumed by these nets are locked down after this
step, which means that their routing paths will be kept in the 3D GRG
and not be changed in later stages.

The second stage works on the nets without initial directives, with
the goal to maximizing the sum of timing scores of nets promoted
to directives higher than D1. First, all of the layers are projected to
a 2D GRG and 2D-routing is performed. Next, we perform directive
assignment. Here we use a greedy method. First, all the nets without
directives are sorted by their timing scores in a decreasing order, and
then each net is tried to be promoted to higher directives. For each net,
directives are tried one by one from DM to D1. This trial repeats until
a directive without causing congestion is found, or the lowest directive
D1 is reached. This process is done by calling DAA procedure on each
net with DM as the initial target directive. The intuition is that we first
assume all the nets can be greedily assigned to highest directive DM

and then call the DAA procedure to find the best directive for each net.
The third stage fine-tunes the layer directives obtained from the second

stage. After the second stage, a large number of nets could have been
promoted to directives higher than D1. Note that at the second stage,
when performing 2D routing on these nets, no directives are assumed and
the routing resources from all the layers can be used to route them. In
the third stage, these nets are constrained by their directives, and then the
previous unconstrained 2D routing results become inaccurate. Therefore,
we must reroute some nets, and we do so using the progressive projection
method. As suggested by [15], we should route the nets in the order:
DM→DM−1· · ·→D1. However, we find this order is not appropriate
for the purposes of directive refinement. This can be illustrated by the
following example, which shows the impact of net ordering. Consider a
net A that has a small timing score and is left with directive D1. It sits
on top of a routing blockage and the only possible route for this net
is to route on layers in D3 passing a g-edge e with only one available
track. Another net B, which was not assigned with a layer directive
from the timing driven directive assignment step but has a higher score,
may have two possible routes to choose: one passing through the same
g-edge e using D3, and another taking a path in layer directive D2

without creating overflow. When B is processed during greedy directive
assignment step, the information of net A is not seen since it has a
higher score, and B is assigned to D3. In this scenario, if we route the
nets in D3 including B first, B will take the pass through e in D3. Then
later when net A in D1 is routed, an overflow is created. In contrast, if
we route A in D1 first, A will take resource on g-edge e, and then B
would be re-assigned to D2 and no overflow is created.

Therefore, we proceed in the order D1→D2· · · →DM−1→DM→
DM−1· · ·→D2. We explain this using an example with three directives.
We will first route the nets in D1 and then perform general layer
assignment (to be discussed in Section V-B1) without promotion and
demotion. Next, we will route the nets in D2 with the solution from
previous step treated as existing wires. Then we will perform DAA for
nets in D2 to adjust the existing directive D2, i.e., demote a net to
D1 if congestion occurs. Since the existing wires from the first routing
subproblem are seen, the directive adjustment will be more realistic
than that in the D3→D2→D1 flow. After demotion for nets in D2

finishes, we start the same process for nets in D3, with all the previous
routing solutions treated as existing wires. After pass D3, we need to
rip-up-reroute all the nets in D2 and call DAA for them again including
some nets just demoted from D3, with existing wires from the nets in
D1 and D3. Since our purpose is to generate layer directives and not
to perform routing, we do not need another pass D1 to reroute the nets.

B. Two procedures used

In this section, we will discuss two procedures used in our algorithm.
1) General layer assignment: In the third stage, general layer

assignment will be performed for the nets in D1 without layer directives.
Our goal is to minimize the number of vias and keep the overflow for
the 3D GRG the same as that for the 2D GRG. Several layer assignment
algorithms have been proposed in the literature [3], [5], [25]. For ease of



implementation, we use a greedy layer assignment algorithm, but note
that any of the existing layer assignment can be used in our framework.

We first sort all the nets by the total wirelength in the nonincreasing
order, and then perform layer assignment for each net in the order. The
reason for this ordering is that generally, the nets with larger wirelength
will take more routing resources, which implies less flexibility in layer
assignment, and then should be processed earlier. For each net ni, we
will loop through each segment s on the routing path of ni. For each
segment s, we will first try to find a layer which can hold it without
overflow. If such a layer cannot be found, we cut the segment and find
the best layer for each edge on the segment. The best layer here is the
lowest layer on which there is no overflow, or on which congestion is
smallest among all the layers if all the layers have overflows. Here, we
will try to assign these nets to lower layers first, since no layer directives
will be assigned to them and assignment to higher layers is a wasteful
use of resources there. Moreover, trying to use lower layers tends to
help reduce the via count.

2) Directive assignment adjustment (DAA): This procedure is an
important procedure in our algorithm, and is used in all the three stages
to adjust the given directive of a net. The inputs are a net nk and its
initial target directive Dj , and the output is the adjusted directive Dk.
Given a net nk with Dj , DAA will first attempt to assign the net to the
layers specified by Dj using the general layer assignment procedure,
with two differences. First, this method uses a constrained layer range,
rather than allowing assignment to any layer. Second, the purpose of
this attempt is just to quickly check whether this assignment will cause
overflow, and therefore, this attempt assignment will stop at once if
overflow is found on a g-edge, instead of continuing to complete the
assignment of the whole net. If the attempt of assigning nk to Dj finally
succeeds without overflow, the routing resources consumed by the net
will be added to 3D GRG, and directive Dj will be returned. Otherwise,
Dj−1 will be tried with the same procedure. This process repeats until
nk can be assigned to a directive Dk without overflow, or the directive
D1 is reached.

VI. EXPERIMENTAL RESULTS

CATALYST has been implemented using C++ and TCL in an industrial
physical synthesis tool. This section presents the experimental analysis
on a set of high-performance industrial designs described in Table I.
The first four letters of the circuit name represents its technology node.
The circuits with “top” in the names are top-level designs (designs at
the first level hierarchy where a majority of gates are buffers), while
the rest of circuits are random-logic macros. All the experiments run
on 64-bit Linux servers with 32 CPUs (Xeon R© X7560 2.27GHz). The
parameters used in the stopping criterion of CATALYST are: θ = 10%
and nitr = 2.

TABLE I
INFORMATION FOR BENCHMARK CIRCUITS. THE COLUMN “THICK LAYERS”

LISTS THICK LAYER DISTRIBUTION.

Circuits #gates #nets Thick layers

cu32top1 329,082 467,889 [M6, M7]: 2X; [M8, M9]: 4X;
[M10, M11]: 16X

cu32rlm2 1,392,744 1,505,994 [M6, M7]: 2X; [M8, M9]: 4X;
cu32rlm3 892,452 935,582 [M6, M7]: 2X; [M8, M9]: 4X;
cu45top1 45,655 76,062 [M6, M8]: 2X; [M9, M10]: 10X
cu45rlm2 2,464,339 2,555,753 [M6, M8]: 2X; [M9, M10]: 10X
cu45rlm3 1,282,736 1,405,029 [M6, M8]: 2X;
cu65rlm1 895,334 916,865 [M5, M7]: 2X; [M8, M9]: 4X

We first demonstrate the immediate impact on timing and congestion
of CATALYST by comparing different LDA algorithms in Section VI-A,
and then present the impact of CATALYST in the physical synthesis flow
in Section VI-B. A full-blown industrial global router using a different
routing algorithm than that used in CATALYST, is used to evaluate the
congestion using the PWC metric. Note that in all of our experiments,
some routing resources are reserved for the power grid and for clock
routing. In addition, all timing numbers are generated using an industrial
static timing analyzer.

A. The immediate impact of CATALYST

We compare three cases here, just before the global buffering phase:
first, the traditional flow with no LDA (baseline); second, the results of
CATALYST (denoted as “CATA”); and third, the results of an alternative
LDA method (simpLDA). For the third set of results, since no public
tools to generate layer directives are available, we create a simple layer
directive assignment algorithm, simpLDA, which promotes nets only
based on their worst slacks. We first sort all the nets based on their
worst slacks in increasing order, and then promote the first nM nets to
the top directive DM , the next nM−1 nets to the directive DM−1, and
so on. For a fair comparison, we ensure the number of nets promoted
to each directive is the same for simpLDA and CATALYST. In this
set of experiments, given the same placements, we run simpLDA and
CATALYST and then evaluate the timing and congestion. Since this is
done before global buffering, the linear delay model is used in computing
all the timing metrics in this set of results.

Table II presents the comparison of timing and congestion results
among the three cases, which shows the state just prior to global buffering.
The row “Average” lists the average on differences from baseline (for
WSLK and FOM), or the ratios to baseline (for nneg and PWC), or real
values (for rnet and rwl) over all the circuits. The congestion entries
shown as “N/A” (“not available”) correspond to cases where global
routing cannot finish after running 6 hours due to high congestion and
is terminated manually. On average, CATALYST improves the worst
slack by 0.84 ns, improves FOM by 6370.8 ns, and reduces the number
of negative endpoints by 77%, while maintaining similar congestion to
the baseline. On the other hand, although simpLDA improves the timing
more than CATALYST, it degrades the congestion significantly. Fig. 5
shows the congestion plots for baseline, CATALYST and simpLDA on
cu45top1. From the pictures, we can see that even after promoting 46%
nets to higher directives, the congestion of CATALYST is still similar
to that of baseline, while that of simpLDA is much worse. The analysis
demonstrates the effectiveness of CATALYST in improving timing and
controlling congestion. Though simpLDA promotes the same number
of nets as CATALYST, the congestion is quite different, which shows
that assigning which nets to higher directives/layers is important, and
improper choices can choke the router.

(a) Baseline. (b) CATALYST. (c) simpLDA.

Fig. 5. Congestion plots for cu45top1.

B. The impact of CATALYST in the flow

This section discusses the impact of CATALYST when embedded
in the physical synthesis flow. We compare three flows: baseline flow
(Fig. 2(a)) that integrates the directive assignment algorithms from [1]
in the global buffering stage, CATALYST flow (Fig. 2(b)) that adds
CATALYST to the baseline flow after placement stage, and an altered flow
that removes the two set of directive assignment algorithms, denoted
as “NoDA” flow. Note that the baseline flow is the state of the art,
corresponding to a relatively recent paper [1]. Prior to this, a NoDA-like
flow was widely used and possibly is still in use. The comparison with
NoDA highlights the impacts of directive assignment and reveals some
data not found in the previous papers including [1], such as the overall
impact of directive assignment through the design flow. Here simpLDA
is not tested in the whole flow since it has already been seen to provide
unacceptably high congestion. For runtime consideration, we stop the
flows after global routing, and then evaluate the timing and congestion
of the designs. At this stage, the accurate RICE model is used in timing
analysis.



TABLE II
COMPARISON AMONG BASELINE, SIMPLDA AND CATALYST (CATA IN SHORT). TIMING METRICS ARE COMPUTED WITH THE LINEAR DELAY MODEL. rnet IS

THE PERCENTAGE OF NETS PROMOTED TO THICK LAYERS, AND rwl IS THE PERCENTAGE OF THE ROUTED WIRELENGTH OF THESE NETS TO THE TOTAL
WIRELENGTH.

Circuit
WSLK (ns) FOM (ns) nneg PWC (%) rnet (%) rwl (%)

Base CATA simpLDA Base CATA simpLDA Base CATA simpLDA Base CATA simpLDA CATA CATA
cu32top1 -14.46 -11.56 -2.95 -44794.2 -16870.0 -2118.6 87739 36270 22339 96.83 94.97 127.56 30.52 52.39
cu32rlm2 -1.93 -1.76 -1.78 -8861.6 -1031.6 -617.4 17547 7414 4093 88.49 89.87 295.58 5.67 24.41
cu32rlm3 -1.51 -0.41 -0.37 -5125.0 -264.1 -183.1 19175 2763 1626 87.42 88.36 198.39 8.63 36.11
cu45top1 -2.41 -2.39 -2.17 -2513.0 -2074.1 -1985.5 3026 967 960 87.44 86.95 121.62 46.49 73.76
cu45rlm2 -1.48 -0.74 -0.30 -2464.1 -134.1 -38.0 10359 1055 398 87.13 87.51 N/A 12.01 30.20
cu45rlm3 -0.33 -0.05 -0.05 -583.6 -4.7 -4.7 7600 258 258 87.58 87.26 N/A 19.41 24.05
cu65rlm1 -1.00 -0.37 -0.37 -726.8 -94.4 -113.5 7521 1323 1368 89.92 89.85 661.32 17.34 43.92
Average 0 0.84 2.16 0 6370.8 8572.5 1 0.23 0.16 1 1.00 3.13 20.01 40.69

TABLE III
COMPARISON AMONG BASELINE, CATALYST (CATA IN SHORT) AND NODA PHYSICAL SYNTHESIS FLOWS.

Circuit
WSLK (ns) FOM (ns) nneg PWC (%) Buffer area (×106) CPU time (h)

Base CATA NoDA Base CATA NoDA Base CATA NoDA Base CATA NoDA Base CATA NoDA Base CATA NoDA
cu32top1 -2.94 -2.96 -9.90 -2488.75 -2564.09 -23497.00 21982 21251 73652 90.13 90.05 72.61 9.54 7.78 14.43 59.7 44.7 60.2
cu32rlm2 -0.16 -0.14 -0.52 -18.87 -7.93 -1333.68 783 442 7001 88.02 87.70 88.51 0.82 0.78 1.17 34.1 42.4 53.0
cu32rlm3 -0.04 -0.02 -0.78 -0.15 -0.03 -408.34 6 2 2004 87.53 87.66 93.37 1.03 0.93 1.58 17.3 19.2 22.0
cu45top1 -2.42 -2.42 -2.60 -2139.97 -2130.29 -3187.95 963 963 4720 80.70 81.07 73.73 2.46 2.09 2.91 10.6 11.9 10.2
cu45rlm2 -0.34 -0.38 -1.45 -23.03 -17.03 -5258.76 336 109 21037 87.39 86.78 87.13 4.00 3.55 4.67 63.8 67.1 76.7
cu45rlm3 -0.05 -0.05 -0.35 -12.01 -3.37 -512.86 521 163 6924 87.96 87.85 89.15 3.99 3.85 4.75 37.5 41.5 54.6
cu65rlm1 -0.24 -0.24 -0.75 -4.30 -4.21 -68.38 153 154 749 89.79 89.57 91.94 1.21 1.15 1.53 15.3 17.1 19.3
Average 0 0.00 -1.45 0 -5.69 -4225.70 1 0.64 61.71 1 1.00 0.98 1 0.90 1.32 1 1.07 1.24

Table III presents the comparison of timing, congestion, buffer area,
and CPU time at the end of the flow. The row “Average” lists the average
on differences from baseline (for WSLK and FOM) or the ratios to
baseline (for all other metrics) over all circuits. We first compare the
CATALYST flow with baseline. Though WSLK and FOM are quite
similar for two flows, the CATALYST flow reduces the nneg by 36% on
average, which indicates fewer further efforts are required to finally close
timing. Moreover, the CATALYST flow can reduce the buffer area by 10%
on average and up to 18%4. This indicates that the timing optimization
techniques later in the baseline flow, other than CATALYST, can also
achieve similar WSLK and FOM to the CATALYST flow, but with an
expense of inserting more buffers, and a series of other consequences
such as higher cost, larger power, etc. We also observe that the buffer
saving tends to be larger for the top-level designs than macros (17% vs.
7% on average), since in top level designs, a larger portion of nets are
very long nets, and without layer directive assignment, more buffers have
to be inserted to close the timing. Furthermore, the CATALYST flow
achieves similar congestion to baseline, which demonstrates again that
CATALYST has better control on the congestion. Finally, the runtime of
CATALYST flow is 7% more than baseline on average, and even for the
absolute values, the runtime of CATALYST flow is still acceptable in
practice. Note that for cu32top1, CATALYST runs 15 hours faster than
baseline. This indicates that for some designs, a better initial solution
obtained by CATALYST can speed up the later optimization stages
significantly.

Next we further compare NoDA flow with the other two. The timing,
buffer area and runtime of NoDA flow are significantly worse than those
of the other two flows. Compared with the CATALYST flow, NoDA
requires 47% more buffers (or CATALYST flow could save 31% than
NoDA) on average.

The analyses above clearly show the impact of CATALYST: it can
improve the timing and greatly reduce the buffer area. Since buffers
could account for more than 20% of the gates in a modern design [17],
the reduction of buffer usage can significantly decrease the design power
and cost, and improve the design closure.

REFERENCES

[1] Z. Li et al., “Fast interconnect synthesis with layer assignment,” in Proc.
ISPD, 2008, pp. 71–77.

[2] C. Alpert et al., “What makes a design difficult to route,” in Proc. ISPD,
2010, pp. 7–12.

4There are some buffers that are fixed in the designs and cannot be changed.

[3] Y. Xu et al., “FastRoute 4.0: Global router with efficient via minimization,”
in Proc. ASPDAC, 2009, pp. 576–581.

[4] Y.-J. Chang et al., “NTHU-Route 2.0: A fast and stable global router,” in
Proc. ICCAD, 2008, pp. 338–343.

[5] M. Cho et al., “BoxRouter 2.0: Architecture and implementation of a hybrid
and robust global router,” in Proc. ICCAD, 2007, pp. 503–508.

[6] M. D. Moffitt, “MaizeRouter: Engineering an effective global router,” IEEE
Trans. on CAD, vol. 27, no. 11, pp. 2017–2026, 2008.

[7] J. A. Roy and I. L. Markov, “High-performance routing at the nanometer
scale,” in Proc. ICCAD, 2007, pp. 496–502.

[8] H.-Y. Chen et al., “High-performance global routing with fast overflow
reduction,” in Proc. ASPDAC, 2009, pp. 582–587.

[9] P. Saxena and C. L. Liu, “Optimization of the maximum delay of global
interconnects during layer assignment,” IEEE Trans. on CAD, vol. 20, no. 4,
pp. 503–515, 2001.

[10] Y. Jia et al., “Timing driven layer assignment considering via resistance
and coupling capacitance,” in Proc. ICCCAS, 2007, pp. 1172–1176.

[11] S. Hu et al., “A polynomial time approximation scheme for timing
constrained minimum cost layer assignment,” in Proc. ICCAD, 2008, pp.
112–115.

[12] ——, “A fully polynomial-time approximation scheme for timing-
constrained minimum cost layer assignment,” IEEE Trans. on CAS II,
vol. 56, no. 7, pp. 580–584, 2009.

[13] Y. Chang et al., “GLADE: a modern global router considering layer
directives,” in Proc. ICCAD, 2010, pp. 319–323.

[14] T. Lee et al., “An enhanced global router with consideration of general
layer directives,” in Proc. ISPD, 2011, pp. 53–60.

[15] M. D. Moffitt and C. N. Sze, “Wire synthesizable global routing for timing
closure,” in Proc. ASPDAC, 2011, pp. 545–550.

[16] L. Trevillyan et al., “An integrated environment for technology closure of
deep-submicron IC designs,” IEEE Design & Test of Computers, vol. 21,
no. 1, pp. 14–22, 2004.

[17] C. J. Alpert et al., “Techniques for fast physical synthesis,” Proceedings of
the IEEE, vol. 95, no. 3, pp. 573–599, 2007.

[18] Y. Wei et al., “GLARE: global and local wiring aware routability evaluation,”
in Proc. DAC, 2012, pp. 768–773.

[19] N. Viswanathan et al., “The DAC 2012 routability-driven placement contest
and benchmark suite,” in Proc. DAC, 2012, pp. 774–782.

[20] C. L. Ratzlaff and L. T. Pillage, “RICE: rapid interconnect circuit evaluation
using AWE,” IEEE Trans. on CAD, vol. 13, no. 6, pp. 763–776, 1994.

[21] J. Cong and D. Z. Pan, “Interconnect delay estimation models for synthesis
and design planning,” in Proc. ASPDAC. IEEE, 1999, pp. 97–100.

[22] C. J. Alpert et al., “Accurate estimation of global buffer delay within a
floorplan,” IEEE Trans. on CAD, vol. 25, no. 6, pp. 1140–1145, 2006.

[23] D. Papa et al., “RUMBLE: an incremental timing-driven physical-synthesis
optimization algorithm,” IEEE Trans. on CAD, vol. 27, no. 12, pp. 2156–
2168, 2008.

[24] S. S. Sapatnekar, Timing. Boston, MA: Kluwer Academic Publishers,
2004.

[25] T. H. Lee and T. C. Wang, “Congestion-constrained layer assignment for
via minimization in global routing,” IEEE Trans. on CAD, vol. 27, no. 9,
pp. 1643–1656, 2008.


