
Fast and Efficient Lagrangian Relaxation-Based
Discrete Gate Sizing

Vinicius S. Livramento, Chrystian Guth, José Luís Güntzel
Computer Sciences Department - PPGCC

Federal University of Santa Catarina, Brazil
Email:{vini, csguth, guntzel}@inf.ufsc.br

Marcelo O. Johann
Informatics Institute - PGMICRO

Federal University of Rio Grande do Sul, Brazil
Email: johann@inf.ufrgs.br

Abstract—Discrete gate sizing has attracted a lot of attention
recently as the EDA industry faces the challenge of optimizing
large standard cell-based circuits. The discreteness of the prob-
lem, along with complex timing models, stringent constraints
and ever increasing circuit sizes make the problem very difficult
to tackle. Lagrangian Relaxation is an effective technique to
handle complex constrained optimization problems and therefore
has been used for gate sizing. In this paper, we propose an
improved Lagrangian Relaxation formulation for leakage power
minimization that accounts for maximum gate input slew and
maximum gate output capacitance in addition to the circuit
timing constraints. We also present a fast topological greedy
heuristic to solve the Lagrangian Relaxation Subproblem and
a complementary procedure to fix the few remaining slew and
capacitace violations. The experimental results, generated by
using the ISPD 2012 Discrete Gate Sizing Contest infrastructure,
show that our technique is able to optimize a circuit with up
to 959K gates within only 51 minutes. Comparing to the ISPD
Contest top three teams, our technique obtained on average
18.9%, 16.7% and 43.8% less leakage power, while being 38,
31 and 39 times faster.

I. INTRODUCTION AND RELATED WORK

In the well established standard cell approach, a circuit is
physically implemented as an assembly of cells selected from a
library. The library contains many implementation options for
each gate (function), varying from slow and low power to fast
and power-hungry versions. Discrete gate sizing corresponds
to the problem of selecting, for each gate in the circuit, a
combination of gate width (w) and threshold voltage (Vt)
available in the library such that the design goals are met.
As leakage power becomes comparable to dynamic power in
recent technologies, a common design objective is to minimize
leakage while satisfying the timing requirements. The discrete
nature of the gate sizing problem applied to standard cell-
based circuits together with stringent design constraints and
large design sizes, make it very difficult to tackle. It has been
recognized by both industry and academia as an important
and challenging problem, for which current EDA tools and
methods should be improved.

Different optimization techniques are found in the literature
within the gate sizing scope. TILOS [1] is a well-known
method that uses a sensitivity-based greedy heuristic to iter-
atively size the transistors in the circuit in order to minimize
area subject to timing constraints. Coudert proposed a variation

978-3-9815370-0-0/DATE13/ c©2013 EDAA

of the greedy method based on randomization [2]. Nguyen et.
al. presented a linear programming approach based on a slack
allocation method [3]. Tennakoon and Sechen presented an
optimization method based on convex delay models [4]. A
discrete approach based on snapping the continuous solutions
to the sizes available in the library was proposed in [5].
Hu et al. [6] proposed a continuous solution approach that
narrows the searching space in which a dynamic programming
procedure is used to find a discrete size available in the library.

Recently, several works employed Lagrangian Relaxation
(LR) to solve the gate sizing problem. Basically, LR incorpo-
rates hard constraints of the original problem into the objective
function by multiplying them by Lagrange multipliers (LMs),
leading to two problems: Lagrangian Relaxation Subproblem
(LRS) and Lagrangian Dual Problem (LDP). A milestone on
LR-based gate sizing is [7], which main contribution was the
simplification of the LRS by using the so-called Karush-Kuhn-
Tucker (KKT) conditions. Chen [7] solved the LRS by using
a greedy heuristic and the LDP by the subgradient method.
A number of other works on LR-based gate sizing have also
simplified the LRS by applying the KKT, e.g. [8], [9], [10],
[11] and [12]. Tennakoon [8] proposed a technique to estimate
the initial values to obtain a faster convergence for the LDP.
Rahman [10] proposed a continuous sizing algorithm along
with a branch-and-bound discretization procedure. Zhou [11]
improved the delay modeling proposed in [9] and used LR for
timing minimization. Huang [12] focused on some conver-
gence issues on the subgradient method to solve the LDP and
proposed a projection-based method. The main limitations of
the previously mentioned works are: 1) Continuous techniques
require the discretization of the continuous solutions to obtain
discrete sizes (or Vt) available in the library, in some cases
resulting in significant errors [6]. 2) When using simplified
delay models, according to [13], even high-order convex
formulations are not accurate enough to model the delay in
standard cell libraries, perhaps with the exception of [10]. 3)
Some techniques require long runtimes.

Two state-of-the-art works on discrete gate sizing are [13]
and [14]. Ozdal [13] uses LR along with dynamic program-
ming to simultaneously optimize leakage power and timing,

This work was partially supported by the Brazilian Council for Scientific
and Technological Development (CNPq) through INCT-Namitec and CTINFO
projects, and PNM (133999/2010-6) and PQ (313724/2009-1) grants

whereas Rahman [14] presents a sensitivity-based technique
for Vt selection. Both works report significantly better results
than those obtained with commercial EDA tools for industrial-
size circuits. Since discrete gate sizing is NP-hard [15],
efficient heuristics must be used to find good solutions within
reasonable runtime. However, so far there is no consensus
about a definitive solution and hence, there is still room
for reasearch. This motivated Intel researchers to organize
the ISPD 2012 Discrete Gate Sizing Contest [16], which
included an up-to-date infrastructure to serve as reference for
the forthcoming research in this topic.

In this paper we present a new integrated discrete gate
sizing technique for leakage power minimization under timing
constraints, relying on contemporary standard cell libraries.
Comparing to other recent works, our method provides better
results for realistic industrial-size circuits in only a fraction of
their runtime. Our main contributions are:
• A Lagrangian Relaxation formulation that incorporates

into the objective function maximum gate input slew and
maximum gate output capacitance constraints in addition
to the usual timing constraints. While conforming with
contemporary cell library restrictions, this avoids over-
loading circuit gates and possibly contributes to eliminate
the negative slacks.

• A fast topological greedy heuristic for solving the pro-
posed LR formulation relying only on local information
to guide the algorithm’s decisions. We claim that a
local selection of each gate implementation is enough
to optimize the LRS, since the gate delay depends only
on its quite narrow neighborhood and the circuit arrival
times (which have global dependency) are eliminated
from LRS by using the KKT conditions. We also propose
a complementary LR-based heuristic to treat the few
violations resulted from the greedy optimization.

• The adoption of the modified subgradient method from
[8] together with the power weighting factor scheduling
from [17] in a technique that tackles the problem directly
in the discrete space.

• Rigorous experimental validation using the infrastructure
provided by the ISPD Contest demonstrated that our
technique is able to provide significant leakage power
reduction when compared to the Contest top three teams,
while being more than 30 times faster.

II. PROBLEM FORMULATION

A circuit can be modeled as a directed acyclic graph (DAG)
G(V,E), where V is the set of nodes and E is the set of edges.
Each vi ∈ V represents either a combinational gate (vi ∈ X),
a primary input (vi ∈ PI) or a primary output (vi ∈ PO), and
thus V = X ∪PI ∪PO. In addition e j,i ∈ E represents a wire
connection between v j and vi. Each gate vi ∈ X has a width
wi ∈ Wi, where Wi is a set of discrete widths, and a threshold
voltage ui ∈Ui, where Ui is a set of discrete threshold voltages.
A particular combination of wi and ui is referred to as an
implementation option of vi. Therefore, for each gate vi ∈ X
there is a total of |Wi|x|Ui| implementation options.

The sizing problem to minimize leakage power for standard
cell-based circuits can be stated as follows: given a circuit, find
an implementation (wi,ui) for each vi ∈ X such that the total
leakage power is minimized and the circuit timing constraints
are satisfied. Hence, the constrained optimization problem,
usually known as primal problem (PP), is expressed by (1).

Primal Problem (PP): Minimize ∑
vi∈X

αpi(wi,ui)

Subject to : a j ≤ Ao, ∀v j ∈ f anin(vi), ∀vi ∈ PO

a j +D ji(wi,ui)≤ ai, ∀v j ∈ f anin(vi), ∀vi ∈ X

D ji(wi,ui)≤ ai, ∀v j ∈ f anin(vi), ∀vi ∈ PI

w ∈Wi and u ∈Ui, ∀vi ∈ X (1)

In the previous formulation pi(wi,ui) refers to the leakage
power of a given gate implementation vi and α is the global
power weighting factor. D ji(wi,ui) corresponds to the delay of
timing arc j→ i of a given implementation of gate vi and ai
corresponds to the arrival time at its output. Finally, Ao is the
required arrival time constraint of a given circuit. It is worth
noting that separate fall/rise delays are ommited in (1) due to
space limitation.

In contemporary standard cell libraries, the delay and output
slew of a given implementation of gate vi are obtained by
mapping vi’s output capacitance and input slew to a bi-
dimensional lookup table containing previously characterized
values. In addition, cell libraries limit both the maximum slew
for internal pins of the circuit and the maximum capacitance
that can be driven by a given gate implementation option.
Such limitations are captured by the following additional
constraints:

out_slewi ≤ max_slew, ∀vi ∈ (X ∪PI)

out_capi ≤ max_capi(wi,ui), ∀vi ∈ (X ∪PI) (2)

III. LAGRANGIAN RELAXATION

Lagrangian Relaxation is a well-known technique to handle
problems with hard constraints and conflicting objectives.
For this reason LR has been recently used for gate sizing
to optimize power/area subject to timing constraints. The
commonly used LR-based sizing formulation for power/area
minimization comprises to remove the timing constraints of
the problem (presented in (1)) and to incorporate them into
the objective function, multiplying by a Lagrange multipliers
vector (λ). By doing so, each arrival time constraint has a
non-negative weight referred to as Lagrange multiplier [7].

As one of the contributions of this paper, we propose to re-
lax max slew and max cap constraints imposed by standard cell
libraries, shown in (2), in addition to the timing constraints.
The LMs vectors ~γ and ~β are associated with the max slew
and max cap constraints, respectively. Although the work in
[18] has relaxed additional constraints such as crosstalk, to
the best of our knowledge this is the first work to incorporate
max slew and max cap constraints within the LR-based sizing
formulation. Let ~a be the vector of arrival times ∀vi ∈V . Let

~w be the vector of widths ∀vi ∈ X and ~u be the vector of
threshold voltages ∀vi ∈ X . The resulting objective function
Lλ,γ,β(~w,~u,~a), called Lagrangian function, is shown in (3).

Lλ,γ,β(~w,~u,~a) : ∑
vi∈X

αpi(wi,ui) + ∑
v j∈ f anin(vi),vi∈PO

λ jpo(a j−Ao)

+ ∑
vi∈X

(∑
v j∈ f anin(vi)

λ ji(a j +D ji(wi,ui)−ai))

+ ∑
v j∈ f anin(vi),vi∈PI

λ jpi(D ji(wi,ui)−ai)

+ ∑
vi∈(X∪PI)

γi(out_slewi−max_slew)

+ ∑
vi∈(X∪PI)

βi(out_capi−max_capi(wi,ui)) (3)

The Lagrangian Relaxation Subproblem (LRS), shown in
(4), has to minimize Lλ,γ,β(~w,~u,~a) for a set of multipliers ~λ,
~γ and ~β while satisfying the discrete constraints on width and
threshold voltage.

LRS1 : Minimize Lλ,γ,β(~w,~u,~a)

Sub ject to : wi ∈Wi and ui ∈Ui,∀vi ∈V (4)

Let the function Q(~λ,~γ,~β) be the optimal value of LRS1, the
Lagrangian Dual Problem (LDP), shown in (5), has to update
the LMs vectors to maximize the function Q(~λ,~γ,~β).

LDP : Maximize Q(~λ,~γ,~β)

Sub ject to : λ≥ 0, γ≥ 0, β≥ 0 (5)

To simplify LRS1, we use the Karush-Kuhn-Tucker condi-
tions (KKT), as proposed in [7]. The KKT conditions imply
that at the optimal solution (~w,~u,~a)∗, the PP must satisfy
the following conditions:

∂Lλ,γ,β(~w,~u,~a)
∗

∂ai
= 0,∀vi ∈ (X ∪PI). By

considering such optimality conditions, Lagrange multipliers
(λ) associated with each arrival time constraints must satisfy:

∑
v j∈ f anin(vi)

λ ji = ∑
vk∈ f anout(vi)

λik, ∀vi ∈ (X ∪PI) (6)

Applying the KKT optimality conditions to (4) as pro-
posed in [7], replacing ∑

v j∈ f anin(vi)
λ ji by µi, ∀vi ∈ (X ∪ PI)

and ignoring the fixed term λ jpoAo the Lagrangian function
Lλ,γ,β(~w,~u,~a) is reduced to:

Lµ,γ,β(~w,~u) : ∑
vi∈X

αpi(wi,ui) + ∑
vi∈(X∪PI)

µiD ji(wi,ui)

+ ∑
vi∈(X∪PI)

γi(out_slewi−max_slew)

+ ∑
vi∈(X∪PI)

βi(out_capi−max_capi(wi,ui)) (7)

Finally, note that Lµ,γ,β(~w,~u), shown in (7), no longer
depends on the arrival times. Let Ωλ = {λ≥ 0, λ satisfies the
KKT optimality conditions}. For any λ ∈Ωλ, solving LRS1 is
equivalent to solving:

LRS2 : Minimize Lµ,γ,β(~w,~u)

Sub ject to : wi ∈Wi and ui ∈Ui,∀vi ∈V (8)

The proposed formulation corresponds to minimizing
Lµ,γ,β(~w,~u) in which the variables are the gate widths and the
threshold voltages ∀vi ∈ X .

IV. DISCRETE GATE SIZING

In this section, we propose a technique for discrete gate
sizing which comprises a topological greedy heuristic to solve
the formulation presented in LRS2 and a complementary
procedure to fix the few capacitance and slew violations. In
addition, the technique also combines for the first time the
scheduling of power weighting factor conceived by [17] and
the modified subgradient method (to solve the LDP) proposed
in [8], assuming only discrete implementation options.

The top-level function of our technique is described in
Algorithm 1, in which the main loop (lines 7-18) is executed
for a fixed number of iterations. It performs Static Timing
Analysis (STA) to update the arrival times, schedules the
power weighting factor according to the current critical path,
invokes the procedure to solve LRS2 and updates all LMs.
Unlike the commonly used subgradient method to update the
timing LMs, which relies on a unique step size ρk value for
the whole circuit, the method in [8] is sensitive to local delay
information, shown in Eq. (9). To update the max cap LMs
(line 15), we used the step size that is scaled by the max cap
allowed for the current implementation of vi, as shown in (10).

ρk =
λ ji
ai
, ∀v j ∈ f anin(vi),∀vi ∈ (X ∪PI) (9)

θk =
βi

max_cap(wi,ui)
,∀vi ∈ PO (10)

The distribution of~λ to satisfy KKT (line 17) is perfomed
similarly to [8]. Such distribution traverses the circuit in re-
verse topological order and visits every vi to distribute the sum
of its output LMs proportionally to each input LM. Basically,
the λs at the primary outputs correlate with the circuit timing
constraint (Ao). On the other hand, the λs at the gates represent
their relative criticality and thus are used to distribute the
primary outputs’ λs along the paths, while satisfying the KKT
conditions. We have observed through experimental results
(Section V) that by controlling only the max cap constraints
within Algorithms 2 and 3 is also sufficient to control the max
slew constraints. Therefore, the LMs (γ) related to max slew
constraints are not used in our Algorithms.

In LRS2 (8), the global delay information (arrival times)
was eliminated as a result of applying the KKT conditions.
Therefore, the goal becomes to minimize the weighted sum
of delays and leakage power for each gate. However, these
individual delays are not completely independent since the
delay of a gate is affected by the implementation option of
its neighboring cells (i.e. input slew and output load). A few
recent works [13] [9] employ dynamic programming to take
most of those dependencies into consideration. They spend a

lot of effort in trying to select the best global set of choices
but do not take advantage of the fact that the dependencies are
most very localized, affecting the delay of immediate fanins
and generally fading away at three levels of fanout. Dynamic
programming also requires the circuit graph to be decomposed
into trees, what introduces errors at arbitrary positions and
makes it suboptimal. In our experiments, we found that a
greedy selection that takes into account the effects on the
immediate neighbors of each gate is much more efficient for
solving the LRS2 formulation. Obviously, the choice of faster
or slower gate implementation is guided by the criticality of
its path, being such information already incorporated in the
LMs (λ).

Algorithm 2 shows our proposed topologic greedy heuristic.
Even though a greedy heuristic was proposed in [7] to solve
the LRS, it was applied for continuous sizing in which
each gate optimal width was chosen by considering all other
gates fixed. Differently, our heuristic operates in topological
order, by choosing a gate’s implementation only when all
of its predecessors’ implementation have been chosen. As
another feature, our algorithm captures within the gate cost any
possible capacitance violations, resulting from an alternative
implementation, on the gate itself and on its fanins. We also
include in the gate cost the impact of its output slew on
the delay of a fanout node. This is relevant since a slow
implementation option may greatly increase the fanout delay.
Although we consider separate rise and fall delays, they are
ommited in the algorithms due to space limitation. After all
gates implementations have been chosen in a given iteration,
the possibly remaining capacitance and slew violations are
tightly controlled (or eliminated, in later iterations) by Al-
gorithm 3.

The complementary LR-based procedure to fix capacitance
and slew violations traverses the circuit graph in reverse
topological order trying to increase the width of gates that
violate max cap. Priority is given to gate widths that fix current
violation with the lowest cost. By including in the gate cost
its delay and power it is possible to fix violations and also to
tradeoff between power and delay based on its λ and α. The
inclusion of a max cap violation in the cost (line 7) accounts
for the cases when a gate violation cannot be fixed in the
current iteration.

V. EXPERIMENTAL RESULTS

The proposed algorithms were implemented in C++ and
compiled with g++ 4.4.5. To provide the timing information
needed in Algorithm 1 (line 8), we used a built-in STA tool that
complies with realistic standard cell libraries. To validate our
discrete gate sizing technique, we relied on the infrastructure
provided by the ISPD 2012 Discrete Gate Sizing Contest [16].
It comprises a circuit benchmark suite, a realistic standard
cell library and scripts to check the final timing results by
using Synopsys PrimeTime [19], and to check max slew and
max cap violations. The ISPD Contest library contains 11
different combinational gates each one in 3 different Vt and
10 different widths, totalizing 30 implementation options per

Algorithm 1 Discrete Gate Sizing
1: function DISCRETE_SIZING(circuit graph V , cell library L)
2: Assign all vi ∈V to minimum leakage implementation
3: iteration← 0
4: ~λ← initial vector ∈ Ωλ

5: ~β← initial positive vector
6: α← initial positive value
7: repeat
8: Static Timing Analysis to update timing information

9: α← α∗ Ao
max(a j)

,∀v j ∈ f anin(vi),∀vi ∈ PO

10: V ′← Call SOLVE_LRS(V, L, α)
11: for all vi ∈ (V ∪PI∪PO) do . Update Lagrange multipliers
12: λ jpo← λ jpo ∗ (

a j
Ao

), ∀v j ∈ f anin(vi),∀vi ∈ PO

13: λ ji← λ ji ∗ (
a j+D ji(wi ,ui)

ai
), ∀v j ∈ f anin(vi), ∀vi ∈ X

14: λ jpi← λ jpi ∗ (
D ji(wi ,ui)

ai
), ∀v j ∈ f anin(vi),∀vi ∈ PI

15: βi← βi ∗ (
out_capi

max_capi(wi ,ui)
),∀vi ∈ (X ∪PI)

16: end for
17: Distribute ~λ to satisty KKT conditions, as shown in (6)
18: iteration← iteration+1
19: until iteration = itmax
20: return Best V ′ without violations over all iterations
21: end function

Algorithm 2 Forward Topological Greedy Heuristic
1: function SOLVE_LRS(circuit graph V , library L, power weighting factor α)
2: for all vi ∈ X in topological order do
3: bestCost← ∞

4: for all wi ∈Wi and ui ∈Ui do
5: for all v j ∈ f anin(vi) do
6: update out_cap j w.r.t. current wi,ui
7: cost← ∑

vg∈ f anin(v j)
Dg j(w j ,u j)∗λg j

8: cost← cost +β j ∗ (outCap j−max_cap j)
9: end for

10: cost← cost +αpi(wi,ui)+ ∑
v j∈ f anin(vi)

D ji(wi,ui)∗λ ji

11: cost← cost +βi ∗ (out_capi−max_capi)
12: for all vk ∈ f anout(vi) do
13: cost← cost +Dik(wk ,uk)∗λik
14: end for
15: if cost < bestCost then
16: bestCost← cost
17: bestw← wi
18: bestu← ui
19: end if
20: end for
21: implement vi by bestw and bestu
22: end for
23: Call FIX_VIOLATIONS(V , L, α)
24: return V
25: end function

Algorithm 3 Reverse Topological Heuristic to Fix Violations
1: function FIX_VIOLATIONS(circuit graph V , library L, power weighting factor α)
2: for all vi ∈ X in reverse topological order do
3: if out_capi > max_capi then
4: bestCost← ∞

5: for all wi ∈Wi do
6: cost← αpi(wi,ui)+ ∑

v j∈ f anin(vi)
D ji(wi,ui)∗λ ji

7: cost← cost +βi ∗ (out_capi−max_capi)
8: if out_capi ≤ max_capi w.r.t current wi then
9: if cost < bestCost then

10: bestCost = cost
11: bestw = wi
12: end if
13: end if
14: end for
15: implement vi by bestw
16: end if
17: end for
18: return V
19: end function

gate. The ISPD Contest benchmark suite comprises 7 different
industrial-size circuits (from 25K to 959K gates), each one
subject to 2 different timing constraints (slow and fast).

The experiments were performed on a machine with two
CPUs Intel(R) Xeon(R) E5620 @ 2.4GHz with 12GB RAM.
Table I shows the following experimental results for our
technique: leakage power, remaining critical path slack and
runtime after running 60 iterations on each circuit. Our re-
ported results were obtained by using the ISPD Contest scripts.
Table I also brings the leakage power obtained by the ISPD
2012 Contest top three teams (1st NTUgs, 2nd UFRGS-Brazil
and 3rd PowerValve) as well as the lowest leakage obtained
over all teams for each circuit, labeled as “Lowest” [16].

Concerning the indivual leakage power results, our tech-
nique outperforms all teams for circuits with more than
100K gates except for DES_PERF_SLOW. Unlike NTUgs
and UFRGS-Brazil teams, our technique does not violate any
constraint (neither timing nor max slew and max capacitance
constraints). Table I also brings the average leakage power
excluding the infeasible results. Compared to the top three
teams, our technique obtained on average 18.9%, 16.7% and
43.8% less leakage power, respectively. The resulted critical
path slacks indicate that there is still room for further opti-
mization.

The impact of scheduling the power weighting factor (Algo-
rithm 1, line 9) on the convergence of the proposed technique
when optimizing LEON3MP_FAST (which resulted in viola-
tion for the top two teams of the Contest) is illustrated by Fig.
1 and Fig. 2. On one hand, when power factor is scheduled,
the importance of power is quickly reduced in the initial
iterations, allowing for the timing violations to be solved.
In the following iterations the TNS (total negative slacks at
the PO) violations are kept under control and the importance
of power is slightly increased to recover the power spent to
solve the timing violations. On the other hand, when power
factor is not scheduled, some paths (Fig. 2, iterations 13-21)
do not meet the timing constraints even though their LMs (λ)
are increased. As the step size (9) of subgradient method is
reduced each iteration, it is difficult to control the large timing
violations in the later iterations. Moreover, despite the LMs (λ)
of gates with small timing violations are increased, the high
power weighting factor makes such gates to trade delay for
power. Those results put in evidence the importance of such
scheduling during a LR-based power optimization.

Another important feature of our technique is the relaxation
of capacitance violations within the objective. Fig. 3 shows the
sum of max cap and max slew violations on LEON3MP_FAST
for three different scenarios: 1) max cap constraints are not
relaxed and hence not accounted for in the cost (Algorithm
2, lines 8 and 11). 2) max cap constraints are relaxed but not
fixed (i.e. Algorithm 3 is not applied). 3) max cap constraints
are relaxed and fixed. The exhibited behavior shows that
both the relaxation of max cap and the fix procedure are
essential to guarantee the convergence. Furthermore, we have
also observed through experiments that it is important to
keep out_cap and out_slew within the range specified in the

0

0.5

1

1.5

2

2.5

3

3.5

10 20 30 40 50 60

0.0e+0

5.0e+5

1.0e+6

1.5e+6

2.0e+6

2.5e+6

3.0e+6

3.5e+6

4.0e+6

L
e
a
k
a
g
e
P
o
w
e
r
(W

)

T
o
ta
l
N
e
g
a
ti
v
e
S
la
ck

(p
s)

Iteration

Leakage Power

TNS

Fig. 1: Optimization of circuit LEON3MP_FAST (649K gates) by scheduling
the power weighting factor.

0

0.5

1

1.5

2

2.5

3

3.5

10 20 30 40 50 60

0.0e+0

5.0e+5

1.0e+6

1.5e+6

2.0e+6

2.5e+6

3.0e+6

3.5e+6

4.0e+6

L
e
a
k
a
g
e
P
o
w
e
r
(W

)

T
o
ta
l
N
e
g
a
ti
v
e
S
la
ck

(p
s)

Iteration

Leakage Power

TNS

Fig. 2: Optimization of circuit LEON3MP_FAST (649K gates) without
scheduling the power weighting factor.

standard cell library. This avoids overloading some gates in
the circuit what increases too much the delay of some paths
and hampers the convergence.

The short execution runtime of our technique makes possi-
ble to optimizate circuits with up to 959K gates within only
51 minutes. Comparing to the top three teams of the ISPD
Contest, our technique is on average 38, 31 and 39 times
faster, respectively. The time complexity of a single iteration
of SOLVE_LRS algorithm is linear to the number of gates
(n) in the circuit. However, the overall algorithm (Algorithm
1) runtime complexity can vary with the number of iterations
used. Fig. 4 plots the runtime behavior of Algorithm 1 over all
ISPD circuits for a fixed number of 60 iterations. The linear
regression reveals a runtime complexity of O(n1.0254) which is
very close to linear runtime. Such runtime complexity allows
for optimizing circuits with up to 10M gates within 10 hours.

VI. CONCLUSION

Based on the observation that in the commonly used LR
formulation the circuit arrival times are eliminated from LRS
by the KKT conditions, we have devised a fast LR-based topo-
logical greedy heuristic to solve LRS. Our technique relies on
local information to guide the algorithm’s decision, since the
paths criticalities are already embedded in the LMs. This is in
opposition to costly dynamic programming-based techniques
that poorly scale to very-large circuits. Our formulation also
incorporates max capacitance and max slew restrictions within
the objective function, which greatly contributes to reduce

TABLE I: Leakage power (W) and runtime (hours) comparison with the ISPD 2012 Discrete Gate Sizing Contest top 3 teams [16]. “X” corresponds to results
with violations. a Ignoring results with violations.

ISPD 2012 Contest Results (Leakage Power (W)) Proposed Technique

BENCHMARKS # of GATES NTUgs UFRGS-Brazil PowerValve Lowest Leakage Crit. Path Slack [ps] Runtime [hrs]Power [W] (% of Ao)

DMA_SLOW 25K 0.205 0.158 0.147 0.147 0.165 7.91 (0.88) 0.02
DMA_FAST 25K 0.511 0.323 0.312 0.312 0.380 11.23 (1.46) 0.02

PCI_BRIDGE32_SLOW 33K 0.203 0.115 0.116 0.115 0.124 3.03 (0.42) 0.03
PCI_BRIDGE32_FAST 33K 0.512 0.168 0.226 0.168 0.225 2.5 (0.38) 0.03

DES_PERF_SLOW 111K 0.674 0.884 0.697 0.674 0.807 6.96 (0.77) 0.10
DES_PERF_FAST 111K 2.390 3.520 2.320 2.320 1.970 1.24 (0.17) 0.10
VGA_LCD_SLOW 165K 0.415 0.378 0.391 0.378 0.359 14.9 (2.13) 0.13
VGA_LCD_FAST 165K 0.758 0.580 0.773 0.580 0.534 1.85 (0.30) 0.13

B19_SLOW 219K 0.627 0.614 0.736 0.614 0.607 16.25 (0.65) 0.26
B19_FAST 219K 2.710 X 4.490 1.040 0.973 5.95 (0.28) 0.26

LEON3MP_SLOW 649K 1.420 1.790 2.960 1.420 1.363 8.91 (0.50) 0.58
LEON3MP_FAST 649K X X 4.940 2.020 1.757 1.67 (0.11) 0.6

NETCARD_SLOW 959K 1.770 1.970 1.940 1.770 1.763 14.69 (0.77) 0.85
NETCARD_FAST 959K 2.010 2.300 2.970 2.010 1.909 11.73 (0.98) 0.85

AVERAGE LEAKAGEa 1.140 1.109 1.644 0.969 0.924

AVERAGE RUNTIMEa 10.764 8.868 11.027 8.170 0.283

0

1

2

3

4

5

6

7

8

9

10 20 30 40 50 60

lo
g
(s
u
m

o
f
v
io
la
ti
o
n
s)

Iteration

Violations not relaxed

Violations not �xed

Violations relaxed and �xed

Fig. 3: Effect of controlling max cap and max slew violations on circuit
LEON3MP_FAST (649K gates).

Fig. 4: Runtime complexity of the proposed technique (considering 60
iterations).

the timing violations of a circuit. We also showed, through
experimental results, the importance of scheduling the power
weighting factor throughout the optimization process. The effi-
ciency of our technique became evident when evaluated under
the realistic ISPD 2012 Contest infrastructure. Our technique
can optimize large circuits with hundreds of thousands of gates
within only one hour. Furthermore, when compared to state-of-
the-art techniques our method could obtain at least 16.7% less
leakage power, while being more than an order of magnitude
faster.

REFERENCES

[1] J. P. Fishburn and A. E. Dunlop, “Tilos: A posynomial programming
approach to transistor sizing,” in Proc. ICCAD, 1985, pp. 326–328.

[2] O. Coudert, “Gate sizing for constrained delay/power/area optimization,”
IEEE Trans. on VLSI Systems, vol. 5, pp. 465–472, Dec 1997.

[3] D. Nguyen, A. Davare, M. Orshansky, D. Chinnery, B. Thompson,
and K. Keutzer, “Minimization of dynamic and static power through
joint assignment of threshold voltages and sizing optimization,” in Proc.
ISLPED, 2003, pp. 158–163.

[4] H. Tennakoon and C. Sechen, “Efficient and accurate gate sizing with
piecewise convex delay models,” in Proc. DAC, 2005, pp. 807–812.

[5] S. S. Shah, A. Srivastava, V. Zolotov, D. Sharma, D. Sylvester, and
D. Blaauw, “Discrete vt assignment and gate sizing using a self-
snapping continuous formulation,” in Proc. ICCAD, 2005, pp. 705–711.

[6] J. H. S. Hu, M. Ketkary, “Gate sizing for cell library-based designs,” in
Proc. DAC, 2007, pp. 847–852.

[7] C.-P. Chen, C. C. N. Chu, and D. F. Wong, “Fast and exact simultaneous
gate and wire sizing by lagrangian relaxation,” IEEE Trans. on CAD,
vol. 18, pp. 1014–1025, July 1999.

[8] H. Tennakoon and C. Sechen, “Gate sizing using lagrangian relaxation
combined with a fast gradient-based pre-processing step,” in Proc.
ICCAD, 2002, pp. 395–402.

[9] Y. Liu and J. Hu, “A new algorithm for simultaneous gate sizing and
threshold voltage assignment,” IEEE Trans. on CAD, vol. 2, pp. 223–
234, Feb 2010.

[10] M. Rahman, H. Tennakoon, and C. Sechen, “Power reduction via near-
optimal library-based cell-size selection,” in Proc. DATE, 2011, pp. 1–4.

[11] S. Zhou, H. Yao, Q. Zhou, and Y. Cai, “Minimization of circuit delay
and power through gate sizing and threshold voltage assignment,” in
Proc. ISVLSI, 2011, pp. 212–217.

[12] Y.-L. Huang, J. Hu, and W. Shi, “Lagrangian relaxation for gate
implementation selection,” in Proc. ISPD, 2011, pp. 167–174.

[13] M. M. Ozdal, S. Burns, and J. Hu, “Algorithms for gate sizing and
device parameter selection for high-performance designs,” IEEE Trans.
on CAD, vol. 31, pp. 1558–1571, Oct 2012.

[14] M. Rahman and C. Sechen, “Post-synthesis leakage power minimiza-
tion,” in Proc. DATE, 2012, pp. 99–104.

[15] W. N. Li, “Strongly np-hard discrete gate sizing problems,” in
Proc.ICCD, 1993, pp. 468–471.

[16] M. M. Ozdal, C. Amin, A. Ayupov, S. Burns, G. Wilke, and C. Zhuo,
“The ispd-2012 discrete cell sizing contest and benchmark suite,” in
Proc. ISPD, 2012, pp. 161–164.

[17] H. Tennakoon and C. Sechen, “Nonconvex gate delay modeling and
delay optimization,” IEEE Trans. on CAD, vol. 27, no. 9, pp. 1583–
1594, September 2008.

[18] I. H.-R. Jiang, Y.-W. Chang, and J.-Y. Jou, “Crosstalk-driven intercon-
nect optimization by simultaneous gate and wire sizing,” IEEE Trans.
on CAD, vol. 19, no. 9, pp. 999–1010, September 2000.

[19] Synopsys primetime user’s manual. [Online]. Available:
http://www.synopsys.com

