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Abstract—Circuit reliability in the presence of variability is 

a major concern for SRAM designers. With the size of 

memory ever increasing, Monte Carlo simulations have 

become too time consuming for margining and yield 

evaluation. In addition, dynamic write-ability metrics have an 

advantage over static metrics because they take into account 

timing constraints. However, these metrics are much more 

expensive in terms of runtime. Statistical blockade is one 

method that reduces the number of simulations by filtering 

out non-tail samples, however the total number of simulations 

required still remains relatively large. In this paper, we 

present a method that uses sensitivity analysis to provide a 

total speedup of ~112X compared with recursive statistical 

blockade with only a 3% average loss in accuracy. In addition, 

we show how this method can be used to calculate dynamic 

VMIN and to evaluate several write assist methods.    

I. INTRODUCTION 

Static Random Access Memory (SRAM) is a critical 

component of today’s SoCs consuming large amounts of 

area and often setting the critical timing path. Technology 

scaling has allowed reductions in area, power, and delay. In 

order to continue this trend, the minimum operating voltage 

(VMIN) of SRAMs must continue to scale down. This has 

become increasingly difficult as devices enter the nanoscale 

range due to increased device variability and leakage. 

SRAM devices are typically minimum sized, which further 

compounds this problem [1]. The increase in both variation 

and leakage leads to reduced read and write margins, 

making it more difficult to design low power SRAMs that 

meet frequency and yield constraints. In addition, as the 

capacity of SRAM arrays continues to increase, the stability 

of the worst case bitcell degrades. Therefore it has become 

increasingly important to accurately predict SRAM yield at 

a given supply voltage. 

The most common method for evaluating yield is 

through Monte Carlo (MC) simulations. However for very 

large arrays (i.e. 10 Mb) the number of simulations required 

to identify the worst case bitcell becomes prohibitively 

large. Because the majority of simulated samples do no lie 

in the tail region, a full MC simulation is not an efficient 

method for estimating very small failure probabilities. A 

common approach to reducing simulation time is to run a 

relatively small number of samples and then fit the resulting 

distribution to the normal distribution. Once the µ and σ are 

known, the stability of the worst case bitcell can be 

identified. The problem with this approach is that it can only 

be applied to data sets that replicate a known distribution 

[2][3]. However, it has been recognized that the dynamic 

write margin does not fit the normal distribution [3][6]. The 

distribution resembles the long tail F-distribution, but does 

not match it exactly. Because the distribution does not 

closely match any known statistical distribution, it is 

difficult to model without full simulation of the tail region.   

One approach to solve this problem is to develop purely 

analytical models as in [4][5]. However these approaches 

are less accurate because approximations must be made to 

simplify the problem.  [6] showed that these approximations 

can lead to errors in failure probability estimates of up to 

three orders of magnitude. Two methods that reduce MC 

run time by effectively simulating only points in the tail 

region include importance sampling [7][8] and statistical 

blockade [9][10]. These techniques can be used to reduce 

simulation time by several orders of magnitude. However, 

because the calculation of the dynamic margin requires a 

much larger number of simulations than the static noise 

margin (SNM), these methods still require long simulation 

times. In this paper we present a methodology using 

sensitivity analysis to further reduce the time required to 

calculate dynamic write VMIN.  

The rest of this paper is organized as follows. Section II 

provides background information on the dynamic metric 

used to quantify write-ability. In section III we present the 

methodology. Section IV shows how this methodology can 

be used to calculate dynamic write VMIN. Section V applies 

the methodology to evaluate write assist methods and 

section VI concludes. We use a sub-32nm commercial 

CMOS bulk process for all of the simulations in the paper. 

II. BACKGROUND 

The dynamic noise margin is defined as the minimum 

pulse width required to write the cell, or TCRIT [11-16]. The 

benefit of this metric is that it takes into account the 

transient behavior of the bitcell, which is not captured by 

static metrics. This metric has been shown by [14] to 

produce more accurate VMIN estimations than static metrics, 

since static metrics give optimistic write margins and 

pessimistic read margins, due to the infinite wordline (WL) 

pulse width. In this paper we focus primarily on dynamic 

write-ability since the static metric results in optimistic 

yields and because it has been shown that write failure is 

more likely in newer technologies [17]. The downside to 

using transient simulations is that they are more time 

costly, especially when running large numbers of Monte 

Carlo samples to isolate the worst case bitcells. Whereas 



 

the static margin can be calculated using a single 

simulation (Figure 1a), the calculation of TCRIT requires a 

binary search. This takes on average ten to fifteen iterations 

to accurately determine the critical pulse width with a high 

level of precision. Figure 1 b-c shows that in the presence of 

variation, pulling QB below Q doesn’t guarantee a 

successful write.  

In [2][3] the author defines static VMIN under the 

presence of variation. VMIN is defined as the point where the 

SNM becomes zero. The author uses the hold SNM to 

define the data retention voltage, the read SNM to define 

read VMIN, and the WL sweep method to define write VMIN 

[18]. To estimate the failure probability at a given supply 

voltage, each metric is simulated across a range of VDDs. 

Each resulting distribution is then fitted to the normal 

distribution. As VDD is reduced, the mean of the write 

distribution decreases and the standard deviation increases. 

Then using equations (1) and (2), the failure probability can 

be calculated for any VDD. In equation (1), s is equal to the 

SNM which causes a failure, which in this case is just zero. 

μl and μh are defined as the SNM for writing a zero and 

writing a one. Equation (2) is a best fit line representing the 

value of μ and σ versus VDD. 

 

 

 

    
 

 
     

    

    
  

 

 
     

    

    
  

 

 
     

    

    
  

 

 
     

    

    
          (1) 

     + a(     
                                (2)  

The problem with this approach is that the dynamic 

margin is not normally distributed. From Figure 2, the 

shape of the TCRIT distribution is long tailed, making the 

normal approximation inaccurate. In order to apply a 

similar method as in [2][3], a new distribution must be 

identified that fits the data. Using the curve fitting toolbox 

in MATLAB, we were able to determine that the TCRIT 

distribution closely matches the Frechet distribution, whose 

probability density function is shown in (3), for VDD ≤ 800 

mV.  
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       The Frechet distribution is an extreme value 

distribution, commonly used to estimate the maxima of 

long sequences of random variables. The three parameters: 

μ, α and β represent the offset, shape, and scale 

respectively. When applying the fit to a sample size of 5K 

Monte Carlo points, we were able to closely match the 

Monte Carlo data. However, due to the shape of the 

distribution, the fit software calculates a large confidence 

interval for the three fitting parameters, resulting in errors 

modeling the tail region. Figure 3 shows three possible fit 

lines predicted by the curve fitting tool. The actual line 

represents data taken using importance sampling to 

estimate the extremely low failure probabilities. At a 

certain point, the probability of failure remains constant as 

the WL pulse width is increased. This is due to the fact that 

at 500 mV, the memory is approaching the static failure 

point, and therefore a wider WL pulse does not reduce the 

failure probability. This figure shows that it is not possible 

to extrapolate the tail of the distribution using only a small 

(5K) Monte Carlo sample. 

Figure 2. The distribution of TCRIT does not fit a normal 

distribution 
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Figure 1. a) DC sweep of WL allows for the write margin to be calculated in a single simulation, b) successful write operation c) even with 

QB pulling below Q at the end of the WL pulse, the write is not successful 
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Another method to determine the dynamic write margin 

of the worst case bitcell is recursive statistical blockade 

[10]. However, in order to accurately determine the dynamic 

margin using binary search, its takes an average of twelve 

simulations. Using this method, it would take over 894,000 

simulations to identify the worst case write margin for a 

100 Mb memory. In the next section we will describe a 

method using sensitivity analysis to accurately predict the 

worst case bitcell that requires less than 1,100 simulations.  

III. ESTIMATING DYNAMIC WRITE MARGIN (TCRIT) 

In order to reduce the cost of running large numbers of 

transient Monte Carlo simulations, we propose using 

sensitivity analysis to quickly generate the TCRIT 

distribution [19]. The first step in this method is to sweep 

the threshold voltages of each transistor to produce the plot 

shown in Figure 4. The PU, PD, and PG labels represent 

the pull-up, pull-down, and passgate transistors 

respectively. The left node of the bitcell is initially holding 

a ‘0’ and the right node is initially holding a ‘1’. The x-axis 

represents the VT shift of each transistor ranging from -6σ 

to 6σ; the y-axis represents the resulting TCRIT value. When 

sweeping the VT of each transistor, all other transistors are 

left at nominal VT. We then fit each curve to a third order 

polynomial. Once each of the curves has been fitted, the 

next step is to generate a VT distribution for each of the six 

transistors (Figure 5). This is done by generating a normal 

distribution using the sigma values from the Spice model. 

Next, the VT offset of each transistor is plugged into (4), 

and the six offsets are then added to the nominal case to 

produce the TCRIT prediction: 

 

This calculation is repeated N times depending on the 

desired sample size. Clearly, computing (5) is much faster 

than running the set of simulations required to find TCRIT 

using Spice. 

 One assumption made by sensitivity analysis is that the 

VT variation of each transistor has an independent effect on 

TCRIT. In order to verify this, we repeat the VT sweep on 

each transistor, adding Monte Carlo variation to the other 

five transistors. If the VT variation of each transistor does 

have an independent effect on TCRIT, then we would expect 

the shape of the VT curve to remain the same in the 

presence of variation. As shown in Figure 6, the shape of 

the VT shift vs. TCRIT curves does not change significantly; 

the curves are simply shifted up or down from the nominal 

case. This is true for all six transistors. There is some slight 

overlap between the curves which leads to small errors in 

the predicted value.  

In order to verify the accuracy of this methodology, we 

compared the margin of the worst case bitcell calculated by 

the model to the worst case margin calculated by the 

Bitcell 

Netlist 

Run VT vs. Tcrit 

simulation 

Fit each curve to a 3rd 

order polynomial Eq. (4)  

Generate VT distribution  

(e.g., in Matlab) 

Compute TCRIT using Eq. (5)  

Repeat for N iterations 

Figure 5. Flowchart of the proposed TCRIT estimation model 
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Figure 4. In order to characterize the bitcell, the VT of each 

transistor is swept independently 
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 CRIT = TCRIT-NOM + TCRIT-OFFSET-PUL+…+ TCRIT-OFFSET-PGR (5) 

Figure 3. The three distributions match the MC data, however 

they do not match the tail of the distribution 
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recursive statistical blockade tool [10]. The accuracy of the 

model was tested for three memory sizes: 100 Kb, 10 Mb, 

and 100 Mb. The model was also tested across a range of 

VDDs from 500 mV up to 1V. The results are shown in 

Table 1. We can see from the table that the worst case error 

is only 6.83%, while the average is 3.01%. A positive 

percentage error means that the model overestimated the 

TCRIT value, resulting in slightly pessimistic margins. 

The advantage of this method is that it greatly reduces 

simulation times while sacrificing very little accuracy 

compared to statistical blockade. This same technique can 

be applied to importance sampling to reduce the total run 

time. Simulating the VT curves in Figure 4 requires 

approximately 18.8 minutes. Once these curves have been 

produced, random samples are generated (e.g., by 

MATLAB) and applied to (5). The run time for the 

sensitivity analysis increases linearly with the number of 

samples. The total run time for a 100 Mb memory is only 

32 minutes. One disadvantage of the statistical blockade 

tool is that in order to determine the worst case write 

margin, two separate test cases must be run: writing a ‘0’ 

and writing a ‘1’. This means that two separate filters must  

 
Table 1. Percentage error of the sensitivity analysis versus 

statistical blockade for varying memory sizes and VDD 

Modeled data vs. Statistical Blockade 

(Percentage Error) 

   100K  10M  100M  

500 mV  6.83 -4.25 6.51 

600 mV  2.96 -3.69 5.61 

700 mV  -0.18 -2.64 4.75 

800 mV  0.83 -0.7 1.21 

900 mV  -4.5 0.83 1.43 

1000 mV  -2.72 -2.2 -2.27 

Average  3.01 2.39 3.63 

 
Table 2. A comparison of the run times between statistical 

blockade and sensitivity analysis. 

  Statistical Blockade Sensitivity Analysis 

  Num. simulations Run Time 

Initial Simulation 24,000 18.8 min 

100 Kb 107,904 0.72 s 

10M 531,096 72 s 

100M 231,288 12 min 

Total Simulations 894,288   

Total Run Time 60 Hours 32 minutes 

 

be generated, as well as two separate sets of Monte Carlo 

simulations. The total number of simulations required for 

the recursive statistical blockade tool is 894,288, 

corresponding to a total CPU runtime of 60 hours.  

In summary, our method provides a 112.5X speedup at 

the cost of an average loss in accuracy of 3.01% and a 

worst case loss of 6.83%. 

IV. DYNAMIC WRITE VMIN PREDICTION 

Write VMIN is defined as the minimum operating 

voltage in which the write operation will succeed. We can 

define this minimum operating point using either static or 

dynamic metrics. Static write VMIN is defined as the voltage 

that results in an SNM of zero, meaning that even if the 

WL is pulsed high for an infinite time period, the write 

operation will fail. Dynamic write VMIN is defined in [14] as 

the voltage in which the worst case TCRIT value is larger 

than the word line pulse width. In order to calculate 

dynamic write VMIN using our approach, we can repeat the 

procedure described in Figure 5 for varying VDD. In this 

example we chose six test points between 0.5V and 1V. 

The procedure can be repeated for different memory sizes, 
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Figure 7. The lines represent the point of single failure while the 

region above represents no fail, and the region below represents 

multiple bit fails 
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Figure 6. Transistor variation has a close to independent effect 

on TCRIT. Each line represents a single Monte Carlo iteration 
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and the worst case dynamic write margin can be plotted 

versus VDD. 

In the plot on Figure 7, the individual lines represent 

different memory sizes in bits. The curves represent the 

(TCRIT, VDD) point of the first single bit failure. Below the 

curve represents multiple bit failures and the region above 

the curve has no bit failures. By choosing a WL pulse width 

constraint and memory size, we are able to determine the 

minimum operating voltage necessary to ensure reliable 

operation. We can see that as the size of the memory 

increases, the critical word line pulse width for the worst 

case bitcell also increases. This effect becomes more 

pronounced as VDD is scaled down. Generating these same 

results across VDD using statistical blockade would take 

approximately 360 hours. 

To show the importance of using dynamic write VMIN as 

opposed to static, we have plotted the static failure 

probability versus VDD in Figure 8. At 500 mV, the static 

failure probability is 2.57e-8, which means that in a 100 

Mb SRAM cache, there will likely be two to three bitcells 

statically failing. At 600 mV, this failure probability 

decreases by over five orders of magnitude, meaning that at 

this operating voltage, it is unlikely that there will be any 

bitcells failing statically. As VDD is raised, the static failure 

probability continues to decrease. Clearly margining based 

on static failure probabilities leads to drastic overestimation 

of SRAM yield. While dynamic metrics allow for a much 

more accurate measure of VMIN they are much more costly 

to simulate than static metrics. This is why having a 

method to accurately predict dynamic write VMIN is so 

valuable. 

V. IMPACT OF ASSISTS ON DYNAMIC WRITE VMIN 

As SRAMs continue to scale, peripheral assist methods 

will be needed to allow for continued voltage scaling [20-

25]. Therefore it is important to determine which write 

assist methods provide the largest reductions in dynamic 

write VMIN. Some assist features such as cell VSS (CVSS) 

boost aim to weaken the cross coupled inverters, by 

reducing the gate to source voltage of the PMOS device.  

However, we will show that this technique actually 

increases the worst case TCRIT value. With write WL 

(WWL) boosting, we increase the gate voltage of the 

passgate transistor in order to improve the drive strength. 

The negative BL reduction technique also increases the 

drive strength of the passgate by dropping the voltage on 

the source. Using sensitivity analysis, we can quickly and 

accurately make predictions about which assist methods are 

the most effective across a range of VDDs.  

In Figure 9, the memory size is 1 Mb, and the ΔV for 

each assist method is 100 mV. We can see that the CVSS 

boost technique actually increases the worst case TCRIT 

value. This is due to the fact that the weakening of the cross 

coupled pair results in a longer time delay for the node 

initially holding a ‘0’ to pull high. At high VDD, the 

negative BL reduction and WWL boost have comparable 

effects on reducing TCRIT, however as VDD is reduced, the  

negative BL technique provides much larger reductions in 

TCRIT. This can be explained by the VT curves in Figure 4. 

We can see from this plot that as the PUR transistor 

Figure 9. Measuring the effects of write assist methods on 

dynamic write VMIN 
 

500 600 700 800 900 1000
10

0

10
1

10
2

10
3

10
4

10
5

VDD

W
o

rs
t 
C

a
s
e

 T
c
ri
t

 

 

CVSS Boost

Nominal

WWL Boost

Neg WBL

W
o

rs
t 

C
as

e 
T

C
R

IT
 (

N
o

rm
al

iz
ed

) 

500 550 600 650 700 750 800
10

-30

10
-25

10
-20

10
-15

10
-10

10
-5

VDD

S
ta

ti
c
 F

a
ilu

re
 P

ro
b

a
b

ili
ty

Figure 8. Static failure probability versus VDD 
 

Figure 10. The negative BL reduction results in improved write 

times due to the QB node being pulled negative 
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(initially on) gets stronger, the TCRIT value increases as 

expected. However, as the PUL transistor (initially off) gets 

stronger, the TCRIT value decreases. This second order 

effect is due to the fact that as the PUL transistor gets 

stronger, it is able to more quickly pull the internal node 

high, resulting in a slightly faster switching time. Because 

the negative BL technique is passing a stronger ‘0’ (e.g. a 

negative voltage) into the bitcell, it is strengthening the 

PUL transistor by increasing its VGS. Therefore the effect of 

negative BL is twofold: it strengthens the passgate 

transistor as well as the PUL transistor. This second effect 

is not seen with the WL boost technique because it is not 

passing a strong ‘0’. Figure 10 shows that at lower VDD 

(e.g. 500 mV), the QB node pulls low relatively quickly, 

while the majority of the write operation is spent waiting 

for the Q node to pull high. This explains why boosting the 

WWL has negligible effects on reducing TCRIT as compared 

to negative BL at lower VDD. These results were obtained 

using the analysis described in section III, resulting in a 

total speedup of 672X over statistical blockade. 

VI. CONCLUSIONS 

We have shown that modeling the tail of the dynamic 

write margin using a small Monte Carlo simulation is not 

effective due to the shape of its distribution. While the 

static noise margin has been shown in [3] to fit the normal 

distribution, the dynamic write margin follows a skewed 

long tailed distribution. We found that at VDDs below 800 

mV, the distribution fits the Frechet distribution, however 

the tail of the distribution can only be determined by full 

simulation due to poor confidence in the tail fit.   

While statistical blockade is a good method for 

reducing simulation time, evaluating dynamic VMIN still 

requires a large number of simulations. We introduced a 

method using sensitivity analysis that provides a speed up 

over statistical blockade of 112X with an average 

percentage error of 3%. This approach allows for rapid 

assessment of dynamic write VMIN and write assist features. 

In addition, we determined that negative BL reduction has a 

greater effect on reducing dynamic VMIN than WL boosting. 
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