
On Reconfigurable Single-Electron Transistor

Arrays Synthesis Using Reordering Techniques

Chang-En Chiang, Li-Fu Tang, Chun-Yao Wang, Ching-Yi Huang,

Yung-Chih Chen§, Suman Datta†, Vijaykrishnan Narayanan‡

Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.
§Department of Computer Science and Engineering, Yuan Ze University, Chung Li, Taiwan, R.O.C.

†Department of Electrical Engineering, The Pennsylvania State University, PA, U.S.
‡Department of Computer Science and Engineering, The Pennsylvania State University, PA, U.S.

Abstract—Power consumption has become one of the primary
challenges in meeting Moore’s law. Fortunately, Single-Electron
Transistor (SET) at room temperature has been demonstrated as
a promising device for extending Moore’s law due to its ultra low
power consumption during operation. An automated mapping
approach for the SET architecture has been proposed recently
for facilitating design realization. In this paper, we propose an
enhanced approach consisting of variable reordering, product
term reordering, and mapping constraint relaxation techniques
to minimizing the area of mapped SET arrays. The experimental
results show that our enhanced approach, on average, saves 40%
in area and 17% in mapping time compared to the state-of-the-
art approach for a set of MCNC and IWLS 2005 benchmarks.

I. INTRODUCTION

As technology scaling enables the packing of billions of

transistors into a single chip, reducing power consumption

has become one of the primary challenges in chip design.

To this end, at the device level, many low power devices

have been explored. Among these devices, Single-Electron

Transistors (SETs) are particularly attractive when operating

at room temperature [11][14][16].

Recent advances have resulted in the fabrication of SETs

using conventional process steps akin to that used in multi-

gate transistors. The use of wrap-gate structures akin to

multi-gate Metal Oxide Semiconductor Field Effect Transistor

(MOSFET) structures has been used to demonstrate SETs by

two different groups [6][7]. A recent effort in [10] experi-

mentally confirms a reconfigurable single-electron device that

can be operated in short, Coulomb blockades and open mode

operations. This work also projects that scaling of the device

dimension beyond the proof-of-concept experimental device

will enable room temperature operations. Such progress in

small nano-islands has been demonstrated using focused ion-

beam technology resulting in operational room-temperature

8nm nano-islands [6].

Since only a few electrons are involved in the switching

process, SETs have poor driving capability and threshold

control. Thus, a new binary decision diagram (BDD)-based

This work is supported in part by the National Science Council of Taiwan
under Grant NSC 101-2628-E-007-005, NSC 100-2628-E-007-031-MY3, and
NSC 101-2221-E-033-073, and by the National Science Foundation of USA
under grants 0916887 and 1147388.

978-3-9815370-0-0/DATE13/ c©2013 EDAA

Fig. 1. (a) Node devices. (b) Node devices realized by controlling nanowires
with wrap-gate SETs [9].

[2] logic architecture was proposed as a suitable candidate for

implementing logic functions using SETs [1]. Using this, a

Boolean circuit can be implemented by mapping its BDD onto

the BDD-based SET logic architecture, which is presented as

a hexagonal nanowire network controlled by Schottky wrap

gates [5][8].

To implement a BDD, each BDD node corresponds to a

node device in the hexagonal fabric. As shown in Fig. 1(a), a

node device works like a switch that receives the messenger

electrons from a preceding device through the entry branch

and sends the electrons to a following device through either the

left (0) or the right (1) exit branches according to the control

variable. The node device can be realized by controlling

nanowires with wrap-gate SETs as shown in Fig. 1(b) [9].

Each exit branch (left or right) corresponds to a nanowire and

its conductivity is controlled by a wrap-gate SET that has two

operating modes: active high and active low. Furthermore, all

the node devices at the same row in the hexagonal fabric are

controlled by a single input variable.

However, the realization of the BDD architecture in [8]

is fixed and not amendable to functional reconfiguration. To

increase the flexibility and reliability of the BDD-based SET

array in [1][5][8], a reconfigurable version of SET using wrap

gate tunable tunnel barriers was proposed in [4]. The electro-

static properties of this device were also presented in [9][12].

The results showed that this device can potentially provide an

energy-delay product that is an order of magnitude smaller

than the Complementary MOSFET-based devices [9][12].

However, although the feasibility of the BDD-based SET ar-

ray had been demonstrated, the mapping process of a Boolean

circuit that is represented as a BDD, onto the SET array was

manual rather than automatic [4]. To this end, an automatic

synthesis method was proposed [3].

(c)

1

High (logic 1)

Low (logic 0)

Short

Current detector

Fig. 2. (a) An SET array fabric. (b) An example of a EXOR b. (c)An abstract
diamond fabric of a EXOR b [3].

root node
(0, 0)

x 1 3 2 0 -1 -2 -3

y

3

2

1

0

n

left edge
right edge

-4 4

n

(-3, 3)

Fig. 3. An abstract diamond fabric [3].

Although [3] can reduce the effort required to map a

Boolean function into an SET array, it does not consider

the variable ordering of the mapped SET array, which sig-

nificantly affects the mapped area. Furthermore, the map-

ping rules it referred to were stricter such that its re-

sults were not area-efficient. Thus, in this paper, we pro-

pose an enhanced synthesis method for minimizing the

mapped area. The proposed approach consists of three tech-

niques: variable reordering, product term reordering, and

mapping constraint relaxation.

We conducted the experiments on a set of MCNC and IWLS

2005 benchmarks [15] [17]. The experimental results show

that on average our enhanced approach saves 40% in area and

17% in mapping time compared to [3].

II. BACKGROUND

An SET array can be presented as a graph composed of

hexagons as shown in Fig. 2(a). In Fig. 2(a), there is a current

detector at the top of the SET array that measures the current

coming from the bottom of the hexagonal fabric. All the

sloping edges in the SET array can be configured as high, low,

short, or open with respect to input variables. For example,

a hexagonal implementation of an a⊕b is shown in Fig. 2(b),

where the current is detected by the current detector when

either (a=1, b=0)(left path) or (a=0, b=1)(right path). Since all

the vertical edges of the hexagons are electrically short, for

ease of discussion, only the sloping edges are preserved in

the SET array and the new fabric is referred as the diamond

fabric, as shown in Fig. 2(c) and the rest of the paper [3].

A. Notation

Fig. 3 shows the diamond fabric where each node n, i.e.,

the root of a pair of left and right edges, has a unique location

(x, y). Based on the root node located at (0, 0), which is below

the current detector, the y value increases from top to bottom,

and the x value increases or decreases from center to right

or left, respectively. The status of an edge can be high, low,

short, or open, which indicates that the edge is configured as

high, low, short, or open, respectively. Additionally, let n(x,y)

denote the node located at (x, y).

B. Fabric constraint

A configuration circuitry, which involves metal wires, is

used to program the SET array. To decrease the number

 ROBDD → Product term → SET array

High (logic 1)

Low (logic 0)

Short(don’t care)

Open

Fig. 4. The overview of the mapping method in the state-of-the-art [3].

P0:10001

P1:101 1

(a) (b)

Fig. 5. The prevention of an invalid path by expansion.

of metal wires used for programming the SET array when

supplying the input signals, a typical mapping constraint,

called the fabric constraint [4][8], is imposed on the mapping

process.

The fabric constraint allows the designers to use an input

variable x to control all the left edges and x′ to control all

the right edges or vice versa for all cells in the same row

of an SET array [4]. Thus, both (high, low) and (low, high)

configurations cannot simultaneously appear in the same row

of an SET array.

III. DISCUSSION OF THE PREVIOUS WORK

[3] proposed an approach synthesizing a logic function by

mapping all its product terms into the SET architecture. Its

mapping method is illustrated in Fig. 4. First, the approach

extracts all the product terms of the function which is repre-

sented by a reduced ordered BDD (ROBDD). These product

terms are exactly the paths leading to the terminal 1 from

the root of the function’s ROBDD. Then, it sequentially maps

these product terms into the SET array.

[3] attempted to configure a path in an SET array for each

product term while avoiding creating invalid paths. An invalid

path could be created from the short edges connecting to two

conducting edges (high, low, or short) during the mapping

process. For example, assume that Fig. 5(a) is the mapping

result of a function containing only two product terms P0 and

P1. However, when applying the input pattern 10011, which is

not a product term of this function, the current can be detected

at the top of this mapped SET array and causes incorrect

behavior. This is because a partial conducting path is created

in the fourth row of SET array, as looped. After discovering

the phenomenon illustrated in Fig. 5(a), the authors in [3]

found that the cause of the invalid path creation is usually that

there exist two adjacent conducting edges involving one short

edge, and these adjacent edges are from different conducting

paths. Thus, their approach strictly prohibited the short edges

connecting to any conducting edge from different conducting

paths. As a result, in this example, they expanded the SET

array at the first row to obtain a correct mapping result as

shown in Fig. 5(b).

Although the previous work successfully mapped the correct

results, the mapping rules it employed for invalid conducting

path prevention were too strict, leading to a large mapped

area. Thus, in the proposed approach, we loosen the restriction

on the mapping rules while continuing to prevent invalid

conducting paths.

In addition to this invalid conducting path issue, we observe

that changing the input variable orderings and product term or-

derings significantly affects the mapping results. Furthermore,

we allow the expansion operation for configuring a new path

at any level of the array based on the SET’s characteristic.

IV. THE PROPOSED APPROACH

The intention to the techniques of variable reordering and

product term reordering is to create more shared edges, which

are the edges shared among different product terms, in an SET

array. This is because, in general, more shared edges result in

a smaller SET array area.

For the ease of illustrating these techniques, the product

term set derived from the ROBDD can be seen as a matrix as

shown in Fig. 4. In this matrix, each column index and row

index represents a variable and a product term, respectively.

Therefore, the variable ordering and the product term ordering

are the corresponding column ordering and row ordering in

this matrix. Our objective is to rearrange the matrix such that

the mapping results along with this matrix are minimized. In

the following discussion, the terms variable reordering and

product term reordering are referred as the column reordering

and row reordering.

A. Column reordering

Since each product term corresponds to a path in an SET

array, the order of variables in the product terms affects the

structure and the size of the resultant array. Therefore, we

propose a column reordering technique, which consists of two

steps: front-end column determination, and remaining column

reordering, to determine the column ordering for creating more

shared edges among all the product terms.

1) Front-end column determination: A column ordering

can be seen as a column index string where the leftmost

column is the first column to map, and so on. In this step,

we move the column having the same bit value B, where

B ∈ (0, 1, –), among all product terms to the front-end or the

leftmost of the string. This is because these columns′ edges

can be completely shared at the upper levels of the SET array.

These columns are named all-shared columns.

Additionally, since the bit value – will be configured as short

in the mapping process, which provides more flexibility to the

succeeding mapping, we move the all-shared columns having

this bit value, –, to the back-end of the all-shared column

substring.

However, it is possible that there exists no all-shared column

for a given set of product terms. If so, we will determine the

first column of column string based on the method introduced

in the next subsection.

2) Remaining column reordering: After determining the

front-end columns, we start to reorder the remaining columns.

We observed that there are some good share relationships

between two product terms. For example, in Fig. 6(a), the

product term, 001001, has a good share relationship with

another product term, 010001, where only two variables con-

figuring different types of edges in the rows of two and three.

Because these two product terms branch in the second row and

Fig. 6. Branch-then-Share.

Fig. 7. An example for demonstrating the column reordering.

merge in the third row such that the remaining edges are all

shared, we name this case Branch-then-Share. Thus, we do

not break down this share relationship during the process of

remaining column reordering. Additionally, we only consider

two-bit Branch-then-Share cases like Fig. 6(a), and four-

bit Branch-then-Share cases like Fig. 6(b) in this work.

To recognize which pair of product terms is a Branch-then-

Share, we simply scan all pairs of product terms. For example,

in Fig. 6(a), we find that the first different bit between the two

product terms is the second bit. Then, we check whether the

combination of pairs of the second and third bits of the two

product terms is one of [(1, 0), (0, 1)], [(1, –), (0, 1)], [(1,

0), (0, –)], or [(1, –), (0, –)]. If so, we then check whether

the remaining bits of these two product terms, i.e., from the

fourth bit to the last bit, are identical or not.

After identifying the columns that involve Branch-then-

Share product terms, we start to reorder the remaining

columns. We determine the remaining column ordering ac-

cording to the quantity and the distribution of bit values, 0, 1,

and –, in each remaining column among all the product terms.

We directly use Fig. 7 to demonstrate the proposed column

ordering. In Fig. 7(a), there are seven product terms (rows)

of seven columns with the initial column ordering from a to

g. Since the largest Max (#0, #1, #–) among all columns is

six, which occurs at the column e, we move this column e to

the front-end of the column index string. After this movement

as shown in Fig. 7(b), we repeat the ordering process for the

remaining columns. However, a major difference is that we

only focus on the partial product terms that are within the

scope of one edge of the mapped SET, as squared in Fig. 7(b).

This is because the column e has been mapped to two edges

and each edge has its own scope for the succeeding mapping.

Thus, the product terms without column e are divided into two

scopes according to the value of the first column e, and the

larger scope (P1 ∼ P6) is first used for determining the order

of the remaining columns.1

1These two scopes need to adopt the same column ordering when mapping.
Thus, we first use the larger scope to effectively analyze the results. If the
information in the larger scope is not enough to determine the result, we then
refer to the other scope.

In the scope under consideration in Fig. 7(b), both columns

b and c have the largest Max (#0, #1, #–) value of 5, thus, we

move the column b instead of c to the front in accordance with

the original column ordering. Furthermore, since the product

terms, P5 and P6, belong to two-bit Branch-then-Share case

involving the columns b and c, we also order the column c

next to b. The result is shown in Fig. 7(c). Next, we continue

calculating the Max (#0, #1, #–) for the remaining columns in

the shrunk scope. We find that columns a, f , and g have the

largest Max (#0, #1, #–) value, and a is listed in the front of

the original order. Therefore, we set a as the fourth column as

shown in Fig 7(d). In Fig. 7(d), for the larger scope, although

we found that each remaining column has the same Max (#0,

#1, #–) value and the same number of bit values, we first

consider the columns f and g. This is because column d has a

bit value of –, which could cause expansion. In this situation,

we need to further consider the other smaller scope, where

the column g has the largest Max (#0, #1, #–) value. Hence,

we move the column g to the front as the fifth column. For

the remaining columns d and f , because the column d has

the largest Max (#0, #1, #–) value in the upper scope, we

select the column d as the sixth column. The final result of

this column ordering is shown in Fig. 7(e).

B. Row reordering

In the row reordering technique, the basic idea is to shape

the mapping result like a ladder. This is because a ladder-like

shape usually results in a smaller area.

In the following paragraphs, we introduce the proposed row

reordering heuristic consisting of three steps for constructing

a ladder-like mapping structure.

1) Grouping: Grouping is a step that explores the share

relationship among all the rows by building a grouping tree.

According to the grouping tree, we can realize which rows

have good share relationships with other rows. We use an ex-

ample whose column ordering has been determined, and hence

neglected, to demonstrate the construction of this grouping

tree. First, we scan all the rows column-wise from the left to

the right until two or three different bit values occur in one

column. As seen in Fig. 8, we found that three bit values, 0,

1, and – appear in the third column. Then, the rows with the

same bit value are grouped into one group, and we obtain three

groups of P1∼P6, P7, and P8 accordingly. Then, we further

separate a group having more than two rows until each group

has either one or two rows. The group having either one or

two rows is named leafgroup. The separation of one group

is based on the last different bit of scanned bit string from

the left to the right. For example, using the next distinct bit

value after the bit string 1–1, the P1∼P6 group is further

separated into two groups, P1∼P5 and P6. The bit string

that is shown on a leaf group is named the label of the leaf

group. In this example, these rows are grouped into six leaf

groups that are located at the leaf nodes of the grouping tree.

Since two rows belonging to the same leaf group have the most

bits in common consecutively, they are treated as having the

best share relationship. For the sibling groups, they also have

a good share relationship. For example, P4 and P5 group

has the most bits in common consecutively, 1–1100. This

P1:1 11011 1

P2:1 11011 0

P3:1 1101011

P4:1 11000 0

P5:1 1100001

P6:1 1010001

P7:1 01 0000

P8:1 1 1111

P1~P8

P7
P1~P6

P6 P1~P5

P4,P5 P1~P3

1 0
1 1

1 10

1 11011 1100

1 11

label
P1,P2P3

1 110111 11010

leaf group

P8

1

Expansion & branch level prediction

P1:9 P2:8 P3:6 P4:9 P5:8 P6:3 P7:3 P8:9

Tentative product term mapping order

P7 � P6� P5� P4� P3� P1� P2 � P8

Fig. 8. An example of the grouping tree construction.

Fig. 9. (a)∼(c): Incorret expansion examples. (d)∼(e): Correct expansion
examples.

group also has a good share relationship with its sibling group

P1∼P3. Therefore, according to the relationship information

found in the grouping tree, a proper mapping order among all

the rows can be determined.

2) Expansion and branch level predictions: To obtain a

ladder-like mapping result, we need to know the expansion

and branch level (EBL) of each product term before mapping.

Thus, in this second step we predict the EBL for each product

term. We first use an example in Fig. 9 to demonstrate the

effect of expansion operation.

Since the fabric constraint has been employed in the map-

ping process, we can realize that the consecutive mapping of

different bits, e.g., 01 (1 after 0) or 10 (0 after 1), creates the

pitfall of invalid path creation during expansion. That is, if we

expand, using short edge in this work, at the second level of

the mapping of 01 (1 after 0) or 10 (0 after 1), an invalid path

will occur. This situation is highlighted in a general mapping

array of Fig. 9(a). For example, Fig. 9(b) is the mapping result

of a product term: 10100. If there is another product term

whose first two bits are 10 and expand at the second level,

an invalid path 0–100 will be created, as shown in Fig. 9(c).

Thus, the expansion level for this case should be upward by at

least one level, as shown in Fig. 9(d) for successful mapping.

On the contrary, if the expansion operation is performed at the

end of two consecutive bits of the same value, e.g., 00 or 11,

an invalid path will not be introduced, as shown in Fig. 9(e).

Since we have explored the relationships among all the

product terms by building the grouping tree, we can figure out

a tentative ordering for the product terms to obtain a ladder-

like mapping result. We observed that for a leaf group in the

grouping tree, if its label has more bits than that of other leaf

groups, the product term that belongs to this leaf group would

branch at lower levels. Thus, its priority in the mapping order

should be lower. To reflect this observation in the mapping

order, the EBL of a product term in a leaf group is determined

by the number of bits in its label. For example, consider the P3
group in Fig. 8. Since the last two bits of its label are different,

10, the EBL is estimated to be 6, which is the number of bits

in its label, 7, minus 1 to avoid creating an invalid path such

as Fig. 9(a). Similarly, for P6 group, the EBL is estimated to

be (4− 1) = 3.

We know that an expansion operation at the end of two

consecutive bits of the same value is safe. Thus, for a leaf

group whose label′s last two bits are the same, an expansion at

this location is safe. However, we attempt to search for a safe

and even lower location for expansion. For example, consider

P5 (1–1100001) in a leaf group with the label 1–1100 in Fig.

8. Here, the last two bits of the label are 00. Hence, we further

scan the bits after the label until the bit is not 0 or is the last

bit. As a result, the last bit we scan in P5 is 1. Similarly, if

we expand at this level of 1, an invalid path 1–110001– will

be created. Hence, the EBL of P5 is estimated to be 8, which

is the summation of the number of bits in the label and the

number of bit 0 after the label (6 + 2).

A short configuration has two edges, left and right, for

conducting. However, only one direction will be used in the

actual operation. Hence, we have to interpret the bit value

– in a product term as either 0 or 1 for EBL prediction.

This interpretation determines the direction that a product term

might expand. A bit value of – in a product term might occur

in the label of its leaf group or not. First, we interpret the bit

value of – in the label. We scan the bits in the label from the

last bit to the bit which is either 0 or 1, then all the – in the

label, either scanned or non-scanned, are interpreted as this

bit value. For example, for the leaf group P8 in Fig. 8, we

scan its label from the last bit to the bit that is either 0 or

1, and we reach the first bit. Hence, the scanned bit value –

in the second and third bits are interpreted to be 1. For P4,

since its last bit in the label is 0, the non-scanned bit value –

in the second bit is interpreted to be 0. The labels in the P7
group, and the P1 and P2 group are interpreted to be 100,

and 1111011, respectively.

Next, we interpret the other bit value – of a product term

that is not in the label. We calculate the number of 0s and the

number of 1s in the label, and use the bit value with a larger

number to interpret the – not in the label. This is because

the bit value with a larger number in the label indicates the

direction of this product term most likely expands (1: left, 0:

right). If there is a tie, we use the last bit value of the label to

interpret the – not in the label. In the last example, the label of

P8 has three 1s and no 0s after the interpretation of –. Hence,

the bit value – of P8 in the fifth bit is then interpreted as 1.

Since the last two bits of P8’s label are now 11, we further

scan the succeeding bits until reaching 0 or the last bit. As

a result, we reach the last bit. Since the last two bits of P8,

11, are the same bit value, the EBL for P8 is predicted to be

9, which is the summation of 3 and 6. For P4, we interpret

the bit value – in the eighth bit as 0, and we also scan the

succeeding bits to the last bit. Hence, the EBL for P4 is also

predicted to be 9 (6 + 3). The EBLs of all the product terms

are summarized in Fig. 8.

3) Row order determination: In this subsection, we figure

out a tentative row mapping order based on the estimated EBL,

Branch-then-Share occurrences, and group relationships in the

grouping tree.

First, we choose the row that has the smallest estimated

EBL to map due to a ladder-like shape consideration. If there

is more than one row having the same smallest estimated EBL,

we determine their ordering by their positions in the grouping

tree. That is, we first find these rows’ nearest common ancestor

group. Then, the row in the smallest child group is first

selected to map. As shown in Fig. 8, the P6 group and P7
group have the same EBL. Since the number of rows in the

left child group (P7) is 1 and is less than that in the right

child group (P1 ∼ P6), 6, we first choose P7 to map. This

is because P7 is less related to (P1 ∼ P6) and P7 needs

to expand more if we map (P1 ∼ P6) first. As a result, we

always choose the product term in the smaller child group to

map first.

Since Branch-then-Share represents a good share relation-

ship between two rows, we sequentially map them. For the

other rows, when we have mapped one row, we look for the

product term that is within the same leaf group. If there is no

such row, we go back to its parent group and map the row

with the smallest EBL.

C. Mapping constraint relaxation

During the mapping process, if we want to keep the mapping

results like a ladder, the expansion level or the branch level

of current product term cannot be smaller than that of the

previous one. Although we can guarantee the correctness of

mapping results by prohibiting configuring partial conducting

paths, we could not always construct the mapping structure

like a ladder using the proposed algorithm. Thus, if there is

a product term chosen for mapping whose expansion level is

smaller than that of the previous one, we prohibit this product

term from connecting to the array from anywhere other than

this short edge of the expansion. As a result, we can ensure

that no partial conducting path exists.

V. EXPERIMENTAL RESULTS

We implemented the proposed algorithm in C language. We

set the fabric constraint (high, low) for every row of the SET

array for simplicity. The experiments were conducted on a 3.0

GHz Linux platform (CentOS 4.6), as was used in [3]. The

benchmarks are from the MCNC and IWLS 2005 benchmark

suites [15] [17]. For each benchmark, we separately mapped

the Boolean function of each primary output (PO) due to

the physical constraint in SET arrays, and measured the total

number of configured hexagons, the width of the mapping

area, and the total CPU time.

Table I summarizes the experimental results of the previous

approach [3] and our approach. Column 1 lists the bench-

marks. Columns 2 and 3 show the number of primary inputs

(PIs) and POs in each benchmark. The next column lists the

number of computed product terms (PT) obtained from its

ROBDD [13]. Columns 5 to 7 list the number of hexagons,

width, and CPU time obtained in the previous approach [3],

respectively. Columns 8 to 10 list the corresponding results

TABLE I
THE EXPERIMENTAL RESULTS OF [3], [3] WITH EDL, AND OURS.

benchmark PI PO PT
[3] [3] with EDL ours ratio (%)

Nhex W T (s) Nhex W T (s) Nhex W T (s) Nhex W T
C17 5 2 8 66 31 0.09 68 33 0.10 54 31 0.09 81.81 100.00 100.00
cm138a 6 8 48 438 217 0.09 530 224 0.10 460 199 0.10 105.02 91.70 111.11
x2 10 7 33 790 188 0.10 663 193 0.10 397 134 0.10 59.87 71.27 100.00
cm85a 11 3 49 528 123 0.10 669 171 0.10 686 174 0.09 129.92 141.46 90.00
cm151a 12 2 25 1045 195 0.10 1032 195 0.10 521 109 0.09 50.48 55.90 90.00
cm162a 14 5 37 1163 188 0.09 1098 180 0.10 578 156 0.09 52.64 86.66 100.00
cu 14 11 24 662 116 0.10 659 118 0.10 415 103 0.09 62.97 88.79 90.00
cmb 16 4 26 855 146 0.10 704 144 0.10 376 122 0.09 53.40 84.72 90.00
cm163a 16 5 27 1029 145 0.09 940 140 0.09 391 113 0.09 41.59 80.71 100.00
pm1 16 13 41 1239 180 0.10 1064 176 0.10 586 156 0.10 55.07 88.63 100.00
pcle 19 9 45 1775 212 0.10 1201 212 0.10 751 183 0.10 62.53 86.32 100.00
sct 19 15 142 5186 606 0.11 5228 632 0.10 3168 620 0.11 61.08 102.31 110.00
cc 21 20 57 2306 242 0.10 1823 225 0.10 1040 191 0.09 57.04 84.88 90.00
i1 25 16 38 1920 173 0.10 1757 166 0.10 1190 159 0.09 67.72 95.78 90.00
lal 26 19 160 8684 735 0.15 7438 726 0.33 3312 613 0.11 44.52 84.43 73.33
pcler8 27 17 68 3435 324 0.12 3011 336 0.14 1920 315 0.10 63.76 97.22 83.33
frg1 28 3 399 13731 1027 0.33 21453 1597 0.44 13962 1224 0.22 101.68 119.18 66.66
c8 28 18 94 4869 416 0.12 3623 385 0.11 2026 427 0.11 55.92 110.90 100.00
term1 34 10 1246 80293 4923 7.88 80806 5367 160.70 35975 4622 1.16 44.80 93.88 14.72
count 35 16 184 14678 987 0.29 10088 956 0.44 4590 755 0.15 45.49 78.97 51.72
unreg 36 16 64 4632 292 0.15 3566 281 0.11 1515 257 0.11 42.48 91.45 100.00
b9 41 21 352 22089 1200 2.08 22210 1405 695.97 9112 1520 0.24 41.25 126.66 11.53
cht 47 36 92 7934 394 0.11 7497 396 0.11 3556 349 0.13 47.43 88.57 118.18
apex7 49 37 1440 135543 5798 11.39 – – >36000 49004 5859 1.36 36.15 101.05 10.65
example2 85 66 430 50471 1447 0.72 – – >36000 14402 1517 0.50 28.53 104.83 69.44
steppermotordrive 29 29 795 – – – 38961 3186 2.99 22994 3250 0.35 – – –
usb phy 113 116 401 – – – 64067 1618 0.77 28960 1527 0.64 – – –
sasc 133 129 1407 – – – – – >36000 54987 5883 4.01 – – –
i2c 147 142 3187 – – – – – >36000 115944 9756 12.10 – – –
simple spi 148 144 3065 – – – – – >36000 129039 12483 13.05 – – –
i8 133 81 5316 – – – – – >36000 111992 14777 11.00 – – –
total 365361 20305 26.08 – – – 149987 19908 5.51 – – –
ratio 1 1 1 – – – 0.41 0.98 0.21 – – –
average – – – – – – – – – 59.73 94.25 82.42

of the algorithm in [3] with expansion at different levels

(EDL). Columns 11 to 13 list the corresponding results of our

approach. Columns 14 to 16 list the ratios of results between

our approach and the best of [3] as well as [3] with EDL.

For example, the lal benchmark has 26 PIs, 19 POs, and 160

product terms. [3] requires 0.15 seconds to map all the product

terms into an SET array of 8684 hexagons and 735 units in

width. [3] with EDL approach requires 0.33 seconds to map

the resultant SET array of 7438 hexagons and 726 units in

width, while our approach costs 0.11 seconds to get an SET

array with only 3312 hexagons and 613 units in width. Thus,

the ratios are 44.52% (3312/7438) for hexagon count, 84.43%

(613/726) for width, and 73.33% (0.11/0.15) for CPU time,

respectively.

According to the last row of Table I, our approach saves

about 40% of the hexagon count, 5% of the width, and 17%

of the CPU time on average compared with the best of [3] and

[3] with EDL. The CPU time-saving comes from the fact that

the number of required configurations is greatly reduced due to

the ladder-like shape in the mapping result. Table I also shows

some larger benchmarks that cannot be successfully mapped

by [3] with EDL. These benchmarks are excluded from the

comparison with our approach.

VI. CONCLUSION

Reconfigurable SETs have attracted researchers′ attention

due to their ultra low power consumption during operations

at room temperature. In this paper, we propose an approach

consisting of variable reordering, product term reordering,

and mapping constraint relaxation techniques to efficiently

mapping reconfigurable SET arrays. The experimental results

show that the proposed approach accelerates the mapping

process and scales to larger benchmarks while configuring

much less hexagons, compared with the prior art.

REFERENCES

[1] N. Asahi, et al., “Single-Electron Logic Device Based on the Binary Dicision
Diagram,” IEEE Trans. Electron Devices, vol. 44, pp. 1109-1116. Jul. 1997.

[2] R. Bryant, “Graph-based Algorithms for Boolean Function Manipulation,” IEEE
Trans. Computers, vol. 35, pp. 677-691, Aug. 1986.

[3] Y. C. Chen, et al., “Automated Mapping for Reconfigurable Single-Electron
Transistor Arrays,” in Proc. Design Automation Conf., 2011, pp. 878-883.

[4] S. Eachempati, et al., “Reconfigurable Bdd-based Quantum Circuits,” in
Proc. Int. Symp. on Nanoscale Architectures, 2008, pp. 61-67.

[5] H. Hasegawa, et al., “Hexagonal Binary Decision Diagram Quantum Logic Circuits
Using Schottky In-Plane and Wrap Gate Control of GaAs and InGaAs Nanowires,”
Physica E: Low-dimensional Systems and Nanostructures, vol. 11, pp. 149-154,
Oct. 2001.

[6] P. Santosh Kumar Karrea, et al., “Room Temperature Single Electron Transistor
Fabricated by Focused Ion Beam Deposition,” Journal of Applied Physics, vol. 102,
pp. 034316-024316-4, 2007.

[7] S. Kasai, et al., “GaAs Schottky Wrap-Gate Binary-Decision-Diagram Devices
for Realization of Novel Single Electron Logic Architecture,” in Proc. IEEE
International Electron Devices Meeting, 2000, pp. 585-588.

[8] S. Kasai, et al., “Fabrication of GaAs-based Integrated 2-bit Half and Full Adders
by Novel Hexagonal BDD Quantum Circuit Approach,” in Proc. Int. Symp. on
Semiconductor Device Research, 2001, pp. 622-625.

[9] L. Liu, et al., “Multi-Gate Modulation Doped In0.7Ga0.3As Quantum Well FET for
Ultra Low Power Digital Logic,” Electro Chemical Society Transactions, vol. 35,
issue 3, pp. 311-317, 2011.

[10] L. Liu, et al., “Device Circuit Co-Design Using Classical and Non-Classical III-
V Multi-Gate Quantum-Well FETs (MuQFETs),” in Proc. IEEE International
Electron Devices Meeting, 2011 pp. 83-86.

[11] H. W. Ch. Postma, et al., “Carbon Nanotube Single-Electron Transistors at Room
Temperature,” Science, vol. 293, pp. 76-79, Jul. 2001.

[12] V. Saripalli, et al., “Energy-Delay Performance of Nanoscale Transistors Exhibiting
Single Electron Behavior and Associated Logic Circuits,” Journal of Low Power
Electronics, vol. 6, pp. 415-428, 2010.

[13] F. Somenzi, CUDD: CU decision diagram package - release 2.4.2, 2009.
http://vlsi.colorado.edu/∼fabio/CUDD/

[14] Y. T. Tan, et al., “Room Temperature Nanocrystalline Silicon Single-Electron
Transistors,” Journal of Applied Physics, vol. 94, pp. 633-637, Jul. 2003.

[15] S. Yang, “Logic Synthesis and Optimization Benchmarks, Version 3.0,” Tech.
Report, Microelectronics Center of North Carolina, 1991.

[16] L. Zhuang, et al., “Silicon Single-Electron Quantum-Dot Transistor Switch Op-
erating at Room Temperature,” Applied Physics Letters, vol. 72, pp. 1205-1207,
Mar. 1998.

[17] http://iwls.org/iwls2005/benchmarks.html

