
A Spectral Clustering Approach to
Application-Specific Network-on-Chip Synthesis

Vladimir Todorov†, Daniel Mueller-Gritschneder‡, Helmut Reinig†, Ulf Schlichtmann‡
† Intel Mobile Communications GmbH. ‡Technische Universitaet Muenchen

vladimir.todorov@intel.com daniel.mueller@tum.de helmut.reinig@intel.com ulf.schlichtmann@tum.de

Abstract—Modern System-on-Chip (SoC) design relies heavily
on efficient interconnects like Networks-on-Chip (NoCs). They
provide an effective, flexible and cost efficient way of commu-
nication exchange between the individual processing elements of
the SoC. Therefore, the choice of topology and design of the
NoC itself plays a crucial role in the performance of the system.
Depending on the field of application, standard topologies like
meshes, fat-trees, and tori might be suboptimal in terms of power
consumption, latency and area. This calls for a custom topology
design methodology, which is based on the requirements imposed
by the application, function and the use-cases of the SoC in
question. This work proposes a fast approach, which uses spectral
clustering and cluster ensembles to partition the system using
normalized cuts and insert the necessary routers. Then, by using
delay-constrained minimum spanning trees, links between the
individual routers are created, such that any present latency
constraints are satisfied at minimum cost. Results from applying
the methodology to a smartphone SoC are presented.

I. INTRODUCTION

Network-on-Chip (NoC) interconnects play an increasingly
important role in the design and the performance of modern
Systems-on-Chip (SoCs) [1]. As technology scales, the num-
ber of integrated circuit components on chip increases. This
high integration of multiple processing elements (PEs) within
the same die, the complex communication patterns between
them, and the relatively long distances make point-to-point
interconnects and buses infeasible due to scalability issues.
Thus, NoCs have emerged as a new design concept, which
is able to tackle this problem. The NoC is a packet switched
network consisting of multiple routers and links. The PEs
are connected to the routers via network interfaces, which
encapsulate and decapsulate packets. Scaling of the NoC is
easily done by either insertion of more routers or by increasing
the sizes of the current ones.

Most commonly the NoC interconnects can be encountered
as standard regular structures, such as meshes, trees, and
tori. These regular topologies are well suited for general
purpose platforms, where the application and its traffic patterns
between the PEs, are unknown at design time and cannot
be predicted. The regular topologies, however, could prove
suboptimal for SoCs with a specific purpose, resulting in a
diminished performance and an unnecessary area and wire
overhead [2]. Therefore, custom designed NoC topologies are
the preferred design choice. However, creating such topologies
is not a straightforward task, but a complex combinatorial
problem.

The information and requirements provided by the use cases
for the SoC can be used both as testing criteria for the
custom topology as well as a guide for creating it. Therefore,

it is advantageous to make use of this information when
constructing the topology. For example, in a mobile phone
SoC one use case is as follows. The long term evolution (LTE)
subsystem is used together with the video decoder, the memory
controller and the sound module to stream and play a video
off the Internet. Another is the usage of the camera interface
together with the memory controller and the video encoder to
capture and store a video. These use cases indicate that the
memory controller is a central component and that the LTE
communicates less with the video encoder than with the video
decoder.

This work proposes a novel, fast and deterministic approach
for constructing custom NoC topologies based on a set of
use cases with latency constraints. It infers a cost-optimal
partitioning from the use cases and determines the appropriate
number of routers needed for interconnecting the SoC. This is
done by applying spectral clustering, a partitioning algorithm
based on eigenvalue decomposition [3]. It is better than a min-
cut algorithm as it avoids constructing clusters with just a
single member. The clusters for the different use cases are
then combined into a final cost-optimal partitioning of the
SoC via ensemble learning [4]. The routers are instantiated
according to the final partitioning. Finally, delay-constrained
minimum spanning trees are used to insert the links between
the routers in a cost effective way, which also satisfies the
latency constraints, e.g. number of hops. The results for an in-
dustrial smartphone SoC show that the algorithm substantially
reduces the communication costs, latencies, and the hardware
resources in a negligible time (≈ 0.15 seconds).

The paper is structured in the following way: Section II in-
troduces the already existing work on the problem, Section III
provides a detailed overview of the synthesis flow, Section IV
shows how a use case is partitioned, Section V describes how
the final system partitioning is derived, Section VI discusses
the delay constrained insertion of links between the resulting
routers. Finally, Section VII presents the results obtained from
applying the methodology to a smartphone SoC.

II. RELATED WORK

Several works on NoC topology generation already exist. The
authors of [1] and [2] present an iterative algorithm, where
different parameters such as link-width and number of routers
are varied until a topology that optimizes the user objectives
is produced. The authors of [5] use linear programming (LP)
to approximate the solution to an integer LP formulation for
the topology synthesis. The approach is extended in [6] by978-3-9815370-0-0/DATE13/ c©2013 EDAA

PE3

PE0

PE11

PE4

PE8
PE20φ0

φ2

φ1 φ3
φ4

φ5

φ6

φ7

Fig. 1. A use case showing the flows between several PEs

applying mixed-integer LP. These approaches, however, do not
address the issue of multiple use cases and possible latency
constraints. An algorithm, which considers multiple use cases,
but no latency constraints is presented in [7]. It solves an LP
shortest path problem such that the requirements of all use
cases are satisfied.

In contrast, the proposed methodology does not only aim
at satisfying the requirements of the provided use cases. It
exploits them to structure the yet uncoupled PEs in com-
munication clusters. These clusters are used to instantiate the
routers and to construct the NoC in a cost optimal way, while
keeping the all latency constraints.

III. SYNTHESIS FLOW

A use case describes a particular application scenario of the
SoC. It can be depicted as a graph V = (S,Φ), where the
nodes S represent the different system PEs and the edges Φ
show the flows of information between them (Fig. 1). A flow
φ ∈ B × L is a tuple described by a maximum bandwidth
β ∈ B and a latency constraint ` ∈ L. The new methodology
for synthesizing custom NoC topologies is shown in Fig. 2.
As an input the methodology takes the different use cases and
the applicable cost functions. For each use case the system
is partitioned in a cost optimal way using spectral clustering.
For each use cases there might be different number of clusters
and PEs. Therefore, a consensus on the system partitioning
is found by using ensemble learning applied to the results
from the previous step. The final step instantiates a router
for each partition and connects it to the PEs there. Then it
interconnects the routers by using delay constrained minimum
spanning trees, such that the latency constraints from the use
cases are kept at a minimal cost. In addition, the routing is
constructed at the time of link insertion.

IV. USE CASE PARTITIONING

To construct the NoC each use case is partitioned into clusters
based on the communication demands between its PEs. Thus,
clusters containing PEs with high communication demands
between each other are produced. This work approaches the
problem of use case partitioning by applying spectral clus-
tering (SC). It is a graph partitioning algorithm, exhaustively
used in the field of artificial intelligence. Some of its uses
include image segmentation in computer vision [8], [9], blind
source separation in signal processing [10] and identifying
clusters in bioinformatics [3]. The algorithm partitions an
undirected graph, such that the connectivity between the nodes

Use Cases Cost Functions

Use Case Partitioning (Spectral Clustering)

System Partitioning (Ensemble Learning)

Topology & Routing Construction (Delay Constrained MSTs)

Topology & Routing

Input

Output

Synthesis

Fig. 2. The proposed synthesis methodology

in a cluster is maximized, while the connectivity between
the clusters is minimized. It uses the eigen decomposition
(spectrum) of the graph’s Laplacian matrix. The SC algorithm
can be found in various forms [3], [9], [11]. The form used in
this work approximates the solution of finding the normalized
cuts in a graph (an NP–complete problem [9]) by analyzing
its random-walk Lapacian (Sec. IV-B). The advantage of this
algorithm is that it approximates the global optimum, rather
than a local one [11]. The normalized cut between two clusters
(κa and κb) is defined by Eq. 1, where cut(κa, κb) is the total
weight of the edges between κa and κb, and vol(κ) is the total
weight of the edges within κ. The algorithm approximates
the solution of Eq. 2, where C is the resulting clustering
that maximizes the weight within the individual clusters and
minimizes the weight between them.

Ncut(κa, κb) =
cut(κa, κb)

vol(κa)
+
cut(κa, κb)

vol(κb)
(1)

C = arg min
Ĉ

∑
κa∈Ĉ

∑
κb∈Ĉ
κb 6=κa

cut(κa, κb)

vol(κa)
(2)

A. Combining Flows

As SC works on undirected graphs, first the directed use
case graph (e.g. Fig. 1) has to be converted to an undirected
one. This is done by combining all flows φ between every two
PEx and PEy . The combination of flows is done according to
Eq. 3–5. If two flows cannot exist at the same time (φi ⊥ φj),
the combination of their bandwidths results in maximum of
both. In the converse case (φi ‖ φj) the resulting bandwidth
is the sum of both. The latency is always taken to be the
minimum of all combined latencies.

φsum = φi + φj = (βsum, `sum) (3)

βsum =

{
max(βi, βj), if φi ⊥ φj
βi + βj , if φi ‖ φj

(4)

`sum = min(`i, `j) (5)

Fig. 3(a) shows the directed flows in the use case. In Fig. 3(b)
these flows are combined into a single undirected edge.

B. Affinity Matrix and Graph Laplacian

Next, the affinity function of Eq. 6 is applied on the resulting
sums of flows. The function is used to compute the attraction
of the PEs to each other. It is based on both the cumulative

PEx PEy
φi

φj
(a) Directed

PEx PEy
φsum

(b) Undirected

PEx PEy
ax,y

(c) Affinity

Fig. 3. Use case to undirected graph conversion

bandwidth and latency between two PEs. The coefficients c0
and c1 allow scaling the weight of respectively bandwidth and
latency.

fa(φsum) = c0βsum +
c1
`sum

(6)

An affinity matrix A is constructed by using fa. The entries
ax,y = fa(φsum) represent the affinity between PEx and PEy
within the context of the current use case (Fig. 3(c)).

From the affinity matrix A a diagonal matrix D, representing
the weighted degree of each PE, is computed. The entries
of D, containing the integrated affinity for the PEs, are
computed according to Eq. 7.

D(i, i) =
∑
j

ai,j (7)

Finally, the random-walk graph Laplacian Lrw = D−1A is
constructed. The name derives from the fact that the entries
of Lrw can be seen as PE–to–PE transition probabilities.
The eigen-decomposition Lrw = UΛUT is computed, where
U is the matrix containing all the eigenvectors of Lrw and Λ
is the matrix, which has the corresponding eigenvalues on its
diagonal. The mapping ψ : Λ → U preserves the association
of an eigenvalue with its corresponding eigenvector.

C. Number of Clusters and Partitioning

The number of clusters, to be produced by the partitioning,
is determined by finding the position of the eigen-gap of
Lrw’s spectrum. It shows the natural number of clusters χ
that occur in the graph [10], [12]. The eigen-gap is found by
inspecting the eigenvalues Λ. First, the entries in Λ are sorted
in descending order into the vector λ. Then λ is iterated until
the eigen-gap max(λi−1 − λi) is found. Hence, number of
clusters χ is computed by Eq. 8.

χ = arg max
i∈[2;n]

(λi−1 − λi) (8)

The matrix P is constructed using the χ eigenvectors cor-
responding to the largest χ eigenvalues. Each row of P
represents the Rχ-space coordinates of a PE from the use
case. The final clusters C are obtained by clustering the rows of
P using harmonic K-means [13], deterministically initialized
using Kaufman initialization [14] and by using χ as the
number of clusters. Algorithm 1 summarizes the steps used
to cluster a use case V . If the latency constraint between two
PEs does not allow them to reside in different clusters, they
are treated as a single PE. Thus, latency constraints are kept
irrespective of the affinity function used.

V. SYSTEM PARTITIONING

The number of clusters depend on the use case. Thus,
different use cases may result in different clusters composed
of different PEs. Hence, a consensus solution is constructed

Algorithm 1 Use Case Partitioning
1: PROCEDURE: UseCaseSpectralClustering(V = (S,Φ))
2: BEGIN
3: for ∀PEi, PEj ∈ S do //Iterate over all PEs ∈ S
4: ai,j ← affinity(PEi, PEj ,Φ) //Compute affinity
5: end for
6: for i ∈ rows(A) do //Compute the diagonal matrix
7: Di,i ←

∑
j∈rows(A) ai,j

8: end for
9: Lrw ← D−1A //Compute the random walk Laplacian

10: [U,Λ]← eigen(Lrw) //Eigenvalue decomposition
11: λ← sort(diag(Λ)) //Sort eigenvalues
12: χ← eigengap(λ) //Find eigengap
13: for i ∈ [0, χ− 1] do //Get the interesting eigenvectors
14: P ← [P,ψ(λi)] //Create an Rn×χ representation
15: end for
16: C = HarmonicKmeans(P, χ) //Perform clustering
17: return C
18: END

based on the individual solutions for the use cases. This is
achieved by treating the clustering as a multi-learner system
and by using cluster ensembles which improve the quality
and the robustness of the results [4]. In this work each use
case partitioning is treated as a single learner. The system
partitioning is achieved by combining the different solutions.

Given a set C of N clusterings of a system with n PEs,
a final consensus solution CF is obtained from C, so that
the normalized mutual information between CF and ∀C ∈ C
is maximized. The mutual information is a measure which
quantifies the statistical information shared between two dis-
tributions [15]. Equation 9 provides an expression for the
normalized mutual information between two clusterings Ca
and Cb. In the expression n is the total number of unique
PEs in C, nah is the number of PEs in cluster h according
to Ca, na,b is the number of common PEs between Ca and
Cb, nbl is the respective number of PEs in cluster l in Cb and
nh,l is the number of shared PEs between clusters h and l.

η(Ca, Cb) =

∑
h∈Ca

∑
l∈Cb nh,llog

(
n·na,b

na
hn

b
l

)
√(∑

h∈Ca n
a
hlog

na
h

n

)(∑
l∈Cb n

b
l log

nb
l

n

) (9)

Therefore, Eq. 10 describes the objective function. The final
clustering CF is the one, which maximizes the sum of its
normalized mutual information to the clusterings in C.

CF = arg max
Ĉ

|C|−1∑
z=0

η(Ĉ, Cz) (10)

Direct optimization of CF is infeasible because it is a com-
binatorial problem. Therefore, a heuristic is used. The cluster-
based similarity partitioning algorithm (CSPA) [4] solves the
problem by inducing a pairwise similarity measure from C,
which is used within a clustering algorithm to produce CF .

First in CSPA, each partitioning C ∈ C is represented as a
matrix. The rows of the matrix represent the different PEs
in the system and the columns the different clusters from
the partitioning in question. For each row, a 1 indicates a
membership of the corresponding PE to a cluster. If the

use cases have different probability weights, the appropriate
weights can be used instead of 1. A row of zeros indicates that
the PE is not present in the use case. For example, the use
case partitioning Ci = {{PE0, PE1, PE2}, {PE3}, {PE5}}
of a system with 6 PEs is represented by the matrix Hi in
Fig. 4. PE4 is not part of the use case and, thus, it is not part
of any cluster.

κa κb κc
PE0 1 0 0
PE1 1 0 0
PE2 1 0 0
PE3 0 1 0
PE4 0 0 0
PE5 0 0 1

Fig. 4. A matrix Hi of a system consisting of 6 PEs grouped in 3 clusters

Such a matrix is constructed for each C ∈ C, corresponding
to the solution to a specific use case. All the matrices are then
concatenated into a single one H = [H0, H1, . . . ,H|C|−1].
This results in H ∈ Rn×k, with k equal to the total number
of clusters in C.

S =
1

||C||HH
T (11)

From H a new similarity matrix S is computed by multi-
plication (Eq. 11). The product HHT provides a measure of
how many times two PEs have been grouped in the same
cluster. All the diagonal entries of S are set to 0 so that the
self-similarity is removed. To obtain the number of clusters
and the final partitioning of the system (CF), SC from the
previous section is used with A = S. Thus, the clusterings
based on the individual use cases are effectively combined into
one final partitioning. The solution approximates the optimum
of Eq. 10. Algorithm 2 lists the whole process of partitioning
a system using a set of use cases V .

Algorithm 2 System Partitioning
1: PROCEDURE: ClusterUseCases(V)
2: BEGIN
3: for all V ∈ V do //Iterate over all use cases
4: CV ← UseCaseSpectralClustering(V) //Cluster use case
5: HV ← ToMatrix(CV) //Convert to matrix
6: H ← [H,HV] //Extend H
7: end for
8: S ← 1

||C||HH
T //Compute similarity matrix

9: A← S − diag(S) //Convert S to affinity matrix
10: CF ← SpectralClustering(A) //Get final clustering
11: END

VI. TOPOLOGY & ROUTING CONSTRUCTION

For every partition κi ∈ CF a router ri is instantiated and
connected to the PEs in κi. The links between the routers are
constructed so that the communication cost is minimized with-
out violating the latency constraints in the system. This work
uses delay-constrained minimum spanning trees (DCMSTs) to
insert links. A DCMST is a MST which satisfies given latency
constraints. The general DCMST problem is NP–complete
[16]. However, its solution can be efficiently approximated
using different heuristics [16], [17]. The algorithm presented

here is based on the Kruskal heuristic from [17], but it is able
to work with heterogeneous latency constraints.

A minimum of |CF | − 1 links are needed to interconnect
|CF | routers in a tree structure. A single tree, however, is
not guaranteed to meet all latency constraints. A DCMST
solves the interconnection problem for at least one source
node (router) and multiple target nodes. Therefore, as set T
of |CF | DCMSTs is constructed. Each T ∈ T is spanned
with a different router rs acting as a source node. Finally,
|CF | topologies are constructed by combining the trees in T .
The final topology is selected to be the cheapest among the
available ones. The following subsections present the detailed
steps of the algorithm.

A. Set of Possible Links and Link Costs

The latency constraint and bandwidth requirement between
two routers ra and rb are computed by combining the flows
using Eq. 3–5 between the PEs connected to each router over
all use cases (Eq. 12).

φ(ra, rb) =
∑
V ∈V

∑
x∈κa

∑
y∈κb

∑
φ(x,y)∈Φ

φ(x, y) (12)

A bidirectional link ζ(ra, rb) can only be inserted between
the routers ra and rb if there exists an inter-router flow
φ(ra, rb) = (β(ra, rb), `(ra, rb)). The set Z contains all these
possible links. Each possible link has a delay d(ζ) = 1 because
this work assumes the usage of hop-delay. The presented
algorithm, however, can work with any delay measure. The
cost of each link is computed by Eq. 13. It assigns lower cost
to links corresponding to high bandwidth flows.

fcost(ζ(ra, rb)) = 1/β(ra, rb) (13)

B. Spanning a DCMST

The Kruskal-based heuristic DCMST algorithm has two
stages. Algorithm 3 lists the first stage, where low-cost links
are inserted first, if they do not cause latency violations. First, a
source router rs is selected. Next, the shortest path ρs between
rs and each other router ri is computed. This is done by
applying Dijkstra’s shortest-path algorithm (line 4) on a graph
containing all routers as nodes and all possible links in Z as
edges. The estimated delay de(ri) between each router ri and
rs is initialized with the delay of the shortest path ρs between
the two routers (line 5).

After this, the DCMST graph is set up. Initially, it contains
all routers as nodes and no edges (links). Thus, each node ri
is a separate graph component Ki, having a local root ν(Ki)
equal to the node ri itself (line 6).

Next, all links in Z are sorted in ascending order based on
their cost (line 9). The algorithm proceeds by iterating through
the sorted links and tries to merge the graph components by
inserting the cheapest links. Thus, to minimize the cost, it first
tries to put direct connections for the high bandwidth flows.
A link ζ(ru, rv) between two routers ru ∈ Ku and rv ∈ Kv

is inserted into the DCMST graph, if Ku 6= Kv and if the two
nodes ru and rv satisfy the condition of Eq. 14, which assures
that no latency constraint is violated.

ds(ru, rv) ≥ 0 with (14)
ds(ru, rv) = ∆min(rv)− d(ζ(ru, rv))− de(ru) (15)

The measure ds(ru, rv) shows the worst delay slack left
between rs and the nodes from Kv by inserting the link
ζ(ru, rv), under the assumption that rs will be connected
through the local root of Ku. A negative value of ds indicates
a constraint violation. The delay margin ∆min(rv) is the
minimum available delay slack, left on the paths from rv to
the rest of the nodes in its graph component Kv (Eq. 16).

∆min(rv) = min
rh∈Kv

(`(rs, rh)− 1− d(rv, rh)) (16)

In the equation, d(rv, rh) is the delay of the path between
nodes rv and rh in the DCMST graph. At the beginning of the
algorithm, ∆min(rv) is initialized to `(rs, rv)− 1 if φ(rs, rv)
exists, else to ∞ (line 7).

Equation 14 is checked for both directions ((ru, rv) and
(rv, ru)). If Eq. 14 is satisfied in at least one direction, the
link ζ(ru, rv) is inserted into the DCMST graph. In this case,
the graph components Ku and Kv are merged into a new
one Kw = Ku ∪Kv (line 12). For the graph component Kw,
resulting from the merging, a new local root ν(Kw) is selected.
It is chosen to be ν(Ku) if ds(ru, rv) ≥ ds(rv, ru), else it is
set to ν(Kv). Thus, the local root providing the better delay
slack between rs and the nodes in Kw is preferred. After that,
∆min(rw) and the estimated delay de(rw) are updated for
every node rw ∈ Kw by, respectively, Eq. 16 and Eq. 17.

de(rw) = d(ν(Kw), rw) + de(ν(Kw)) (17)

Algorithm 3 Insertion of cheap links
1: PROCEDURE: DCMST STAGE1(rs)
2: BEGIN
3: for ∀r do //Initialize graph components
4: ρs(r)← Dijkstra(rs, r) //Get shortest delay paths from rs
5: de(r)← d(ρs(r)) //Set the estimated delay from rs to r
6: ν(Kr)← r //Initialize the local root of the component
7: ∆min(r)← `(rs, r)− 1 //Initialize the worst delay margin
8: end for
9: ζ ← sort(Z) //Sort all possible links

10: for ζ ∈ ζ do //Iterate over the sorted links
11: if ds(ru(ζ), rv(ζ)) ≥ 0 ∨ ds(rv(ζ), ru(ζ)) ≥ 0 then
12: merge(Ku,Kv) //Merge components by inserting the link
13: end if
14: end for
15: END

The second stage (Algorithm 4) merges all the graph com-
ponents that the first stage was not able to merge. The
remaining graph components are connected to rs by using
the shortest delay paths ρs. D is the set of all the local roots
of the disconnected graph components. For each of the local
roots ν ∈ D, the path ρs(ν) between the source rs and ν
is backtracked and the corresponding links are inserted. If
loops result, they are destroyed by removing the link to the
predecessor (in the DCMST graph) of the node on ρs where
the loop occurred.

PE

Router

LCSyn only
Syn only
Syn & LCSyn

15

1.2GRadio 2.LTERadio 3.WiFiSlave 4.DMA 5.USBSlave 6.SPISlave
7.USBDMA 8.LTEDMA 9.Video dec. 10.Audio 11. 19. 20.SRAM 12.SDRAM
13.CPU 14.DSP 15.WiFiDMA 16.Video acc. 17.Display ctrl 18.Disp. data
21.SD/MMCDMA 22.SD/MMCSlave 23.Video enc. 24.Camera ctrl. 25.Camera data

Fig. 5. The synthesized Syn and LCSyn topologies

C. Constructing the Topologies & Routing

The DCMST algorithm is repeated with each router acting
as a source node. Then, for each tree T in the set of solutions
T , the remaining trees in T are sorted according to their
difference (in term of links) to T in increasing order. Next, the
initial topology is determined by T . If any latency constraints
are violated in T , the rest of the trees (in order) are used to
insert the alternate links and correct the issue. As the DCMST
problem is solved for each router separately, it is guaranteed
that the set T satisfies all constraints.

The routing for the individual solutions is first constructed
by the unique paths in T . New paths, added to the solution,
are also used to extend and adapt the routing.

Algorithm 4 Fallback to shortest delay path
1: PROCEDURE: DCMST STAGE2(D)
2: BEGIN
3: for ∀ν ∈ D do //Iterate over local roots
4: ρ = ρs(ν) //Get lowest latency path to ν
5: for i ∈ [|ρ| − 2; 0] do //Backtrack path
6: add link(ρ[i], ρ[i+ 1]) //Add new link
7: resolve loop() //If there is a loop, remove it
8: if d(ρs(ρ[i])) = d(rs, ρ[i]) then //Reached min. latency?
9: break //Yes, then ν is connected

10: end if
11: end for
12: end for
13: END

VII. RESULTS

The synthesis approach is applied to an industry design of
a smartphone SoC with 25 PEs. The SoC is described by 6
different use cases, depicting the scenarios: idle phone, high-
definition (HD) video playback, video capture, LTE communi-
cation, Wi-Fi communication, and a combination of HD video
playback with LTE and Wi-Fi communications. Two synthesis
results with (LCSyn) and without (Syn) latency constraints are
obtained (Fig. 5) and compared to the same system mapped
on a 5×5 mesh topology. In both cases fa is used with c0 = 1
and c1 = 0. Thus, the clustering is performed on bandwidth
basis.

Table I lists the resource utilizations of the different solutions
in terms of number of routers, number of ports, estimated
area, and maximum and average ports per router. Syn and
LCSyn use fewer routers and ports than the mesh. Thus, the
synthesized topologies consume much less area than the mesh.

(a) Average number of hops per use case (b) Maximum number of hops per use case

(c) Average bandwidth-hop product per use case (d) Maximum bandwidth-hop product per use case

Fig. 6. Comparison of different topologies for different use cases

TABLE I
RESOURCE UTILIZATION

routers # ports Area [µm2] Max. ports Av. ports

Syn 7 37 186762.2 9 5.29

LCSyn 7 39 197487.4 9 5.57

Mesh 25 109 572869.4 5 4.36

The synthesized solutions contain some larger, but feasible
routers. The average port count per router is comparable for
all solutions. LCSyn uses more ports than Syn because it has
more links due to the latency constraints.

Figures 6(a) and 6(b) show, respectively, the average and
maximum number of hops for the flows in the different use
cases. Both LCSyn and Syn are comparable and have a much
lower hop count than the mesh. Additionally, because of the
shorter paths, caused by the latency constraints, LCSyn has
lower hop count than Syn for some use cases. Overall, the
synthesized topologies provide better hop-latency and require
a significantly lower amount of hardware resources.

To explore the benefits of the synthesized topologies, the
bandwidth-hop product is computed for all flows and use
cases. It shows the amount of data caused by the use case in
the NoC. Figures 6(c) and 6(d) show, respectively, the average
and maximum values obtained for the different topologies.
Both LCSyn and Syn exhibit significantly lower bandwidth-
hop products. Hence, the traffic is replicated on fewer routers
and ports leading to lower power consumption. The difference
between LCSyn and Syn is small because of the system parti-
tioning. There, most of the traffic has been concentrated within
the clusters, leaving only small inter-cluster bandwidths.

Finally, the execution time of the overall synthesis flow,
without any compiler optimizations, has been measured to be
≈ 0.15 seconds. Compared to the execution times of various
algorithms in [7] it makes the proposed approach one of the
fastest topology synthesis algorithms.

VIII. CONCLUSION

This paper has presented a novel, fast and deterministic ap-
proach for custom NoC topology synthesis based on multiple
use cases with latency constraints. The results have shown
that using SC with DCMST to partitioning and link insertion
provides excellent results, which exhibit significant advantage
over a regular mesh topology. Future work will concentrate
on expanding the concept and incorporating power domains,
floorplanning input and link scaling.

REFERENCES
[1] L. Benini, “Application specific NoC design,” in Proceedings, ser.

DATE ’06, 2006.
[2] S. Murali, P. Meloni, F. Angiolini, D. Atienza, S. Carta, L. Benini,

G. De Micheli, and L. Raffo, “Designing application-specific networks
on chips with floorplan information,” in ICCAD ’06, 2006.

[3] U. Luxburg, “A tutorial on spectral clustering,” Statistics and Com-
puting, Dec. 2007.

[4] A. Strehl and J. Ghosh, “Cluster ensembles – a knowledge reuse
framework for combining multiple partitions,” Journal on Machine
Learning Research, vol. 3, Dec. 2002.

[5] K. Srinivasan, K. S. Chatha, and G. Konjevod, “An Automated
Technique for Topology and Route Generation of Application Specific
On-Chip Interconnection Networks,” in ICCAD ’05, 2005.

[6] K. Srinivasan and K. S. Chatha, “A Methodology for Layout Aware
Design and Optimization of Custom Network-on-Chip Architectures,”
in International Symposium on Quality Electronic Design, 2006.

[7] G. Leary and K. Chatha, “A Holistic Approach to Network-on-Chip
Synthesis,” in CODES+ISSS’10, 2010.

[8] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Tran. on Pattern Analysis and Machine Intelligence, vol. 22, 1997.

[9] M. Maila and J. Shi, “A Random Walks View of Spectral Segmenta-
tion,” in AI and STATISTICS (AISTATS) 2001, 2001.

[10] N. Bassiou, V. Moschou, and C. Kotropoulos, “Speaker diarization
exploiting the eigengap criterion and cluster ensembles,” Trans. Audio,
Speech and Lang. Proc., 2010.

[11] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” in ADVANCES IN NEURAL INFORMATION
PROCESSING SYSTEMS. MIT Press, 2001, pp. 849–856.

[12] L. Zelnik-Manor and P. Perona, “Self-tuning spectral clustering,” in
Adv. in Neural Information Processing Systems. MIT Press, 2004.

[13] B. Zhang, M. Hsu, and U. Dayal, “K-Harmonic Means - A Data
Clustering Algorithm,” HP Laboratories, Tech. Rep., 1999.

[14] J. Pena, J. Lozano, and P. Larranaga, “An empirical comparison of
four initialization methods for the k-means algorithm,” 1999.

[15] T. M. Cover and J. A. Thomas, “Entropy, relative entropy and mutual
information,” in Elements of Information Theory, 1991.

[16] H. F. Salama, D. Reeves, and Y. Viniotis, “An Efficient Delay-
Constrained Minimum Spanning Tree Heuristic,” in 5th International
Conference on Computer Communications and Networks, 1996.

[17] M. Ruthmair and G. R. Raidl, “A Kruskal-Based Heuristic for the
Rooted Delay-Constrained Minimum Spanning Tree Problem,” in 12th
International Conference on Computer Aided Systems Theory, 2009.

