
978-3-9815370-0-0/DATE13/©2013 EDAA

Leveraging Variable Function Resilience for Selective Software Reliability

on Unreliable Hardware
Semeen Rehman, Muhammad Shafique, Pau Vilimelis Aceituno, Florian Kriebel, Jian-Jia Chen, Jörg Henkel

Karlsruhe Institute of Technology (KIT), Germany

{semeen.rehman, florian.kriebel}@student.kit.edu; {muhammad.shafique, j.chen, henkel}@kit.edu

Abstract—State-of-the-art reliability optimizing schemes deploy

spatial or temporal redundancy for the complete functionality. This

introduces significant performance/area overhead which is often

prohibitive within the stringent design constraints of embedded
systems. This paper presents a novel scheme for selective software

reliability optimization constraint under user-provided tolerable

performance overhead constraint. To enable this scheme, statistical

models for quantifying software resilience and error masking proper-
ties at function and instruction level are proposed. These models

leverage a whole new range of reliability optimization. Given a

tolerable performance overhead, our scheme selectively protects the
reliability-wise most important instructions based on their masking

probability, vulnerability, and redundancy overhead. Compared to

state-of-the-art [7], our scheme provides a 4.84X improved reliability

at 50% tolerable performance overhead constraint.

I. INTRODUCTION AND RELATED WORK
Reliability has become an imperative design criterion for advanced
computing systems. Aggressive shrinking of transistor dimensions, a
reduced gap between threshold and nominal voltages, etc. result in
unreliable hardware susceptible to different sources of faults like soft
errors, aging, etc. [1]-[4]. Transient faults (like radiation-induced soft
errors) manifest as spurious bit flips in the hardware that may propagate
to the application software layer and jeopardize the correct application
execution. To mitigate these issues, diverse reliability-enhancing
schemes have been developed at hardware and software levels.

Hardware-based reliability schemes (like TMR, pipeline protection
with shadow latches [6], design with reduced architectural vulnerability
factor [4][5], adding ultra-reduced instruction set co-processors to
execute faulty instructions [25], etc.) typically incur significant overhead
in terms of area, power, and validation cost. To alleviate this overhead
and in order to complement existing hardware schemes, several soft-
ware-based reliability schemes have been proposed, such as redundant
code (instruction & register duplication) and control flow checking
using EDDI [8], [9][10], SWIFT/CRAFT [7], etc. These software-based
schemes, however, duplicate all the instructions and incur a significant
performance and/or memory overhead (> 2X) [7]-[10].

Significant overhead in typical design metrics like performance,
area, or power is often prohibitive within the stringent design con-
straints of embedded systems. On the one hand, insufficient reliability
may result in an ineffective product due to its functional degradation.
On the other hand, an excessive protection may lead to a resulting
product that is uncompetitive. Therefore, reliable embedded system
design needs to optimize reliability under tolerable overheads while
accounting for the error masking behavior of target applications and
avoiding ‘design for over-protection’. Previous work on constrained
reliability optimization leverage instruction scheduling and transfor-
mations in a reliability-driven compiler [18][26][27], but does not
account for error masking effects and selective protection.

Here is an interesting observation: often, different application
programs and even different functions in an application are not
equally susceptible to transient faults [18][19] due to different data &
control flow properties, internal error masking effects, etc. (see Fig.
1). Therefore, these functions exhibit distinct resilience to hardware-
level faults. The observed difference in function-level resilience may
be leveraged to limit the growing overheads of reliability optimiza-
tions under constraints like performance or power.

Motivational Example: Fig. 1(a) shows the error distribution in two
applications “AES” and “SusanC” at a fault rate of 5 faults/MCycles
(see Section VI for the experimental setup). When comparing “AES”
to “SusanC”, the percentage of “Incorrect Output” errors is lower in
“SusanC”, which is mainly due to the relatively high instruction-level
masking, i.e. an error at an instruction will be masked until the visible
output due to control flow properties and/or logical masking in the
hardware. From the above observation, it is implicit that even for the
same hardware and same fault scenario different applications exhibit
distinct resilience properties due to their varying control flow,
type/number and sequence of instructions. Moreover, the vulnerabili-
ties of different instructions in a given function vary due to spatial
effects (i.e. using different pipeline components of different hardware
area) and temporal effects (i.e. different amount of time spent in the
pipeline components). Fig. 1(b) illustrates the distribution of instruc-
tion vulnerabilities (estimated using the model of [18]) in “SusanC”
for a selected range of program counter (PC, x-axis). It is noteworthy
that a few instructions (like ‘multiply’, ‘load’, ‘branches’) have
significantly high vulnerability compared to other instructions (like
‘add’ and ‘sub’) due to relatively large spatial and temporal effects.

The above-discussion and observation in Fig. 1 illustrate that differ-
ent applications/functions differ in terms of their resilience and different
instructions differ in terms of vulnerabilities. Therefore, not all functions
and instructions require same level of protection. Pessimistically
applying redundancy to all instructions of all functions may incur
significant overhead that can be curtailed by leveraging the variable
resilience, masking, and vulnerability properties of application software
at different granularities (i.e. functions, basic blocks, and instructions).

Susan C
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

AES Susan C

Er
ro

r
D

is
tr

ib
u

ti
o

n
 [

%
]

AES
0

20

40

60

80

100

Susan C

Program
Failure

Incorrect
Output

Correct
Output

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0x
b9

8_
sa

ve
_i

m
m

0x
bf

8_
sm

ul
_r

eg
0x

c2
c_

ad
d_

im
m

0x
c5

c_
ld

_r
eg

0x
c8

c_
ad

d_
re

g
0x

cb
c_

bl
e

0x
ce

c_
sm

ul
_r

eg
0x

d1
c_

ld
_r

eg
0x

d4
c_

jm
pl

_i
m

m
0x

4f
f8

_l
d_

im
m

0x
50

40
_a

dd
_i

m
m

0x
50

70
_s

et
hi

0x
50

b0
_l

d_
im

m
0x
50
e0

_l
du

b_
im

…
0x

51
10

_l
du

b_
re

g
0x

51
40

_s
ub

_r
eg

0x
51

70
_l

du
b_

re
g

0x
51

a0
_s

m
ul

_r
eg

0x
51

d0
_s

t_
im

m
0x

52
00

_o
r_

im
m

0x
52

30
_a

dd
_i

m
m

0x
52

60
_l

d_
im

m
0x

52
90

_b
g

0x
52

cc
_s

et
hi

0x
8a

08
_c

al
l

0x
8a

44
_o

r_
re

g
0x

9c
7c

_s
t_

im
m

0x
9d

38
_l

d_
re

g
0x

9d
68

_b
e

0x
9d

fc
_b

g
0x

ba
f4

_c
al

l
0x

bb
44

_o
r_

im
m

0x
bb

d8
_a

dd
_i

m
m

0x
bc

9c
_o

r_
re

g
0x

bd
b4

_o
r_

im
m

0x
be

a0
_b

gu
0x

be
dc

_o
r_

im
m

0x
bf

1c
_l

d_
im

m
0x

bf
60

_s
t_

im
m

0x
c1
1c
_r
es
to
re
_…

0x
c1

64
_b

gu
0x

c3
9c

_b
e

0x
c3

cc
_a

dd
_i

m
m

0x
ca
28

_s
ub

cc
_i
…

Susan C

In
st

ru
ct

io
n

V
u

ln
er

ab
ili

ty

0xb98
0

0.2

0.4

0.8

1.0

… 0xca28

0.6

(a)

(b)

Fig. 1 (a) Error Distribution for two Applications; (b) Instruction
Vulnerability distribution for different instructions in “SusanC”

State-of-the-art schemes in error-resilience exploit inherent resilience of
image/video processing applications to tolerate errors while accepting
incorrect output values with degraded output quality [11]-[15]. These
schemes primarily aim at reducing the power consumption using
aggressive voltage scaling, while tolerating errors introduced by voltage
scaling. These state-of-the-art schemes do not quantify and model
application resilience in terms of functional correctness. Therefore,
these schemes cannot efficiently exploit resilience to guide reliability-
optimizing schemes at the software and/or hardware layers. Moreover,
state-of-the-art like [28][29] has not yet exploited application resilience
and error masking properties quantitatively for selective reliability-
optimization under tolerable performance overhead constraints. Note,
AVF based techniques like [4][5] cannot be applied at the soft-
ware/compiler layer as they do not provide a quantification of vulnera-
bilities and masking probabilities at the instruction level.

Problem: there is a need to selectively optimize the software reliabil-
ity under tolerable performance overhead constraints. This requires
modeling and quantitative estimation of (1) resilience of application
software at the function level; (2) error masking effects at the instruc-

tion level. Selective reliability-optimizing schemes need to be guided
with these models to curtail their protection overhead and to realize
constrained reliability-optimization.

A. Our Novel Contributions and Idea: Overview
1) A Resilience-Driven Selective Software Reliability Scheme

(Section V) that selects a set of reliability-wise most important in-
structions in different functions for protection depending upon func-
tion resilience, instruction-level error masking, and instruction vul-
nerability under user-provided tolerable performance overhead con-
straint. The key is to give more protection to the less-resilient part of
the application, while less protection to more-resilient part.

2) Resilience Modeling and Estimation (Section III): Modeling and
estimating the resilience of application at function-level w.r.t. the
functional correctness based on statistics and information theory con-
cepts;

3) Software Masking Analysis and Modeling (Section IV): A proba-
bilistic analysis, modeling, and estimation of instruction masking ef-
fects inside a function, i.e. probability that an error during the execu-
tion of this instruction will be masked until the visible function output.

Fig. 2 shows an overview of our novel scheme integrated in a reliability-
driven compiler. To the best of authors’ knowledge, this is the first work
that targets selective software reliability under constraints leveraged by
modeling and quantitative estimation of resilience and masking proper-
ties of application software.

Existing Modules

Machine

Code

Assembly

Code

Our Resilience-Driven Selective Instruction Redundancy

LEGEND

New Modules

Function and Basic

Block Resilience

Modeling and

Estimation (Section III)

Instruction Masking

Modeling and

Estimation (Section IV)

Resilience-Driven Selective

Instruction Protection

(Section V)

· Resilience-Aware Performance

Overhead Quota Distribution

· Instruction-Level Protection

Efficiency Computation

· Selective Instruction

Redundancy

Binary Utilities

Reliability-Aware

Compiler

Back-End

Application

Program

C/C++ Code

Protection

Method

[7] or [8]

Tolerable

Perfromance

Overhead

Application

Profiling

and

Analysis

Instruction

Reliability

Model [18]

Processor

Model

(Sparc V8)

Reliability-Aware Compiler Front-/Middle-End

Reliability-Aware ISS with

Resilience and Masking

Estimation Support

(Section VI.A)
Fig. 2 Overview our Selective Software Reliability Scheme

integrated in a Reliability-Driven Compiler

Before proceeding to the details of our novel contribution, we present
formal model & system models for clarity/consistency of discussion.

II. SYSTEM MODELS AND PRELIMINARIES
Application Model: An application software A = (F, E) is composed
of different functions F={f1, f2, …, fl}.
Function: Each function may compose of multiple basic blocks;
fi={Bi, BDi, Li, eFi, Ri} such that Bi={B1, B2, …, Bm}. BDi is the se of
basic block dependencies, Li is the average execution time, eFi is the
expected execution frequency, and Ri is the resilience of the ith
function.
Basic Block: A basic block is a sequence of instructions without any
jump/branch; Bij={Iij, Eij, Lij, eFij, Rij}, such that Iij={I1, I2, …, In}, Lij is
the average execution time, eFij is the expected execution frequency,
and Rij is the resilience of the jth basic block of ith function. Eij is the

set edges that denote the instruction dependencies; Eij={eIxieIyi |
Ixi, Iyi Iij} and is given as the edge weight that represents the latency
from instruction Ixi to Iyi.
Instruction: Each instruction is represented as a tuple Iijk={PTM, Pim, υ, P,
S, L, d, o}ijk. PTM is the total masking probability from the kth instruction
to the visible output. Pim is the internal masking during the execution of
an instruction (i.e. masking through the pipeline components). υ denotes
the vulnerability of an instruction in the pipeline. Pijk={p1, …, pa}ijk and
S={s1, …, sb}ijk are the sets of predecessor and successor instructions,

respectively. L is the execution time of the instruction, while d and o are
the sets of destination and source operands.

Processor Model: single-core RISC architecture, in-order, multiple
Pipeline stages (like SPARC V8 with 5 stages).

Fault Model: Transient faults – single or multiple bit upsets.

Error Categories: We classify application outputs in 3 categories:
1) Correct Output: Output data values are correct and useful
2) Incorrect Output: Output data values are incorrect; may/may not

be useful; and
3) Application Failure: like crash, halt, abort, etc.

Instruction Vulnerability Model: In order to estimate the vulnerabil-
ity υ of an instruction Iijk, we employ an existing model Instruction
Vulnerability Index [18] (see Eq. 1),which quantifies the effects of
hardware-level faults at the software level. The Instruction Vulnerabil-
ity Index υ is defined as the weighted sum of instruction vulnerabili-
ties in different Pipeline components p with area Ap and micro-
architectural error probability PE(p).

 p E pp Pipeline p Pipeline

p A P p A (1)

III. MODELING THE RESILIENCE OF APPLICATION FUNCTIONS
Definition: The resilience of an application function is defined as the
probabilistic measure of functional correctness (output quality) in
presence of faults.

Modeling: Modeling resilience requires error probabilities for basic
blocks outputs. There are two possible error types: “incorrect output”
and “application failure”. Therefore, output of each instruction in a
given basic block can be modeled as a Markov Chain with three
states: SC, SIC, and SF denoting “correct”, “incorrect”, and “application
failure” states, respectively (see Fig. 3). Considering that the execu-
tion of a program is a stochastic process, we adopt Markov Chain
technique for output modeling as it provides a good tradeoff between
the model complexity and accuracy when compared to exhaustive
Monte-Carlo Simulations, Fault-Tree Analysis, and Principal Compo-
nent Analysis based reliability models [21].

Assuming that each state depends upon the previous instructions’
output and the error state can only be observed at the end or at the
time of “application failure”, the execution path can be modeled as a
Hidden Markov Chain, with the above-discussed three states as hidden
states and the observation state as “application failed” or “not-failed”.
The parameters of this model are the state transition probabilities
(given in the matrix T, see Fig. 3) that depend upon the executed
instructions. Note, the Markov Chain is non-homogeneous as the
transition probabilities change depending upon an instruction Iijk.

1 32

p11

p21

p12

p13

p22

p23

p33

1: SC 2: SIC 3: SF

11 12 13

21 22 23

() () ()

() () () ()

0 0 1

p i p i p i

T i p i p i p i

Fig. 3 Markov Chain for Instruction Output with State Transition

Probabilities

Once these probabilities are estimated (see parameter estimation later
in this section), we can compute the final state probability for a given
basic block Bij using Eq. 2, where ξ is the final state probability vector
containing the probability of three states: pC, pIC, and pF.

ijij

ij C IC F ij 1 x IB
(B) p p p (B) T(x)

 (2)

Following the information theory concepts, we model the resilience of
a function as the normalized mutual information between the required
correct result (from a golden execution run X) and the result at the
end of a function execution (from a potentially faulty execution under
a given fault rate), i.e. amount of useful function output (see Eq. 3). A
large value of mutual information illustrates that more information
about the correct output can be inferred, i.e. high resilience. The

resilience of a basic block Bij is given as R(Bij)=1–H(X|Y)/H(X), where
H(X) is the information about the correct execution, i.e. H(X)=bLive,
such that bLive denotes the bits of live output registers of Bij. The
conditional entropy H(X|Y) is the information lost in Bij and given as
Eq. 3, where pC(x) denotes the probability of correct value being x;
and p[IC,F](x, y) is the conditional probability of faulty output being
“incorrect” or “application failure”.

ij Live

[IC,F] 2 C [IC,F]x X ,y Y

R(B) 1 – H(X |Y) / H(X); H(X) b

H(X |Y) p (x, y) log p (x) / p (x, y)
 (3)

Assuming, resilience of a basic block R(Bij) can be characterized as
resilience to “incorrect output” and resilience to “application failures”,
we can compute the conditional entropy separately for both cases.
H(X|Y)F is given as pF(Bij) using Eq. 2, while H(X|Y)IC is given by Eq. 4.

 ij

n
IC IC 2 IC IC 2 IC

B
H(X |Y) p log (p / (2 1)) (1 p) log (1 p) (4)

By replacing the terms of Eq. 3 with Eq. 4, we can compute the
resilience of a basic block against failures and incorrect outputs where
the second term in Eq. 5 denotes the combined information loss.

 ij IC F IC FR(B) 1 H(X |Y) H(X |Y) H(X |Y) H(X |Y) / H(X) (5)

Given the resilience values of all basic blocks Bi of a function fi,
resilience R(fi) can be computed using Eq. 6.

 i i ib Bi b Bi, fi F
R(f) R(b) / eF (b) eF (b)

 (6)

Parameter Estimation: For estimating the model parameters, i.e.

transition probabilities given in Eq. 2, we make few assumptions:

· observation of faulty output is made at the end of function

· no recovery mechanism and no error protection is available; i.e.

starting from a base case of unreliable hardware => p33=1; p21=0.

· Initial state and input is error-free; [pC pIC pF](t=0)f1=[1 0 0].

Note, p11+p12+p13=1. To expedite the parameter estimation process,
we have grouped instructions in NT primitive instruction categories
(like arithmetic, multiply, divide, logical, load/store, calls/jumps,
floating point, etc.) such that all instructions in a given category share
the same transition probabilities. The parameter can be estimated
using fault injection campaigns. Consider there are NS different fault-
injection experiments at a given fault rate, NC and NIC are the number
of cases with correct and incorrect output, respectively. For a particu-
lar fault injection experiment s, for a certain instruction category tk,
the transition probability p11 can be estimated using the maximum
likelihood, thus deriving1 Eq. 7. NI(t,s) denotes the number of instruc-
tion type t in that simulation.

T

k

N

S C 11
s S t 0,t t

11 k k 2

k
s S

log N N s NI t,s log p t

log p t NI t ,s

NI t ,s

 (7)

Assuming p23(t) = p13(t), we can re-use Eq. 7 to obtain the probability

p22(tk). In this way we can compute all the remaining transition probabil-

ities, such that, p23(tk)=p13(tk)=1–p22(tk); and p12(tk)=p22(tk) –p11(tk).
Fig. 4 shows a simplified flow of different steps of our scheme

towards modeling and estimation of function resilience along with
parameter estimation and computation of conditional entropy.

Execution
Traces

(Golden Run)

Extract
Instruction
Statistics

Parameter Estimation (Eq. 7) (Solving a system of
equations, linear regression, and maximum likelihood)

C
o

m
p

u
te

 F
u

n
c

ti
o

n

R
e

s
il
ie

n
c

e
 (

E
q

.
6

)

Fault Injection
Campaigns

(Traces & Error
Logs)

Extract
Error

Statistics

Compute Transition
Probability Matrix (Fig. 3)

Compute Output
Probability Vector (Eq. 2)

Compute Conditional
Entropy (Eq. 3, 4)

Compute Basic Block
Resilience (Eq. 5)

Fig. 4 Flow of Steps to Compute Basic Block & Function Resilience

1
 Complete derivation is omitted due to space limitations.

Complexity: The complexity of resilience estimation is O(|Bi| NT
log(|Iij|), which is much smaller than the complexity of fault tree based
methods (i.e. O(|Bi| |Iij|

3) and Monte-Carlo simulations (i.e. O(|Bi|
|Iij|

2)) for each basic block.

The resilience model quantifies the reliability properties at a
coarse-grained level, i.e. function and basic block that facilitates
prioritizing functions and basic blocks for selective protection.
However, to enable the selective protection within a basic block and to
prioritize different instructions, there is a need to model and estimate
the instruction masking probabilities.

IV. MODELING SOFTWARE MASKING EFFECTS
Definition: Software masking probability pTM(Iijk) at a certain instruc-
tion Iijk is defined as the probability that an error at Iijk does not
become visible at the application output and therefore is denoted as
‘masked’.

Software-level masking impacts the application software reliability by
blocking the error propagation such that: (1) the output value remains
correct; or (2) a degraded value does not propagate to the subsequent
execution iterations. In this paper, we assume that the program control
flow is protected using, e.g., basic block signatures [30].

Modeling: pTM(Iijk) depends upon two key parameters:
1) pM(Iijk) which is defined as the total masking during the execution

of an instruction Iijk due to the microarchitecture-level masking
effects, i.e. a transient fault during the instruction execution is
blocked due to a subsequent gate in the pipeline components, thus
the error is not latched by a memory element, thus does not affect
the correct output of the instruction Iijk;

2) ppostM(Iijk) which is defined as the total masking probability after
the execution of an instruction Iijk such that, an erroneous output
value is masked in the path from Iijk until the visible output point
due to, for instance, dependent instructions, operation masking,
control flow, etc.

 TM ijk M ijk M ijk postM ijkp I p I 1 p I p I (8)

Once pM(Iijk) and ppostM(Iijk) are estimated, pTM(Iijk) is computed using
dynamic programming starting from the leaf node (i.e. last instruction
on an execution path before the value is written to the main memory
or returned from the application function), which has ppostM(Iijk)=0.

Estimating pM(Iijk): An instruction Iijk uses different pipeline compo-
nents p, each having logical masking LM(p|ep) as the conditional
probability of error masking given an error occurs in a pipeline
component p, i.e. ep. Considering that the probability of error in each
cycle is same, the pM(Iijk) can be computed using Eq. 9.

M ijk p Pipeline

p I LM p|e(p) (9)

LM(p|ep) can be computed using fault injection experiments or using
statistical techniques like EPP [20]. In this paper, we determine
LM(p|ep) through extensive fault injection campaigns considering area
of different pipeline components.

Estimating ppostM(Iijk): For a given path in the instruction flow graph,
ppostM(Iijk) can be computed using the total bit masking probability of
the actual operation [pV(Iijk)] and ppostM of the dependent/successor
instructions (Sijk); see Eq. 10.

ijk

postM ijk V V postMs S
p I p s 1 p s p s

 (10)

Sijk denotes the set of successors. Assuming single bit faults with same

fault probability in all of the operand bits, we can compute the total bit

masking probability using Eq. 11.

 ijk ijk
V ijk Bits(o) m v ijkbv o

p I 1 N p b ,I

 (11)

bv denotes the bits of operands assuming that all bits having similar

probability to get faults, while oijk is the set of operands.
Example: Let us assume an instruction c=a&b, where operation is “bit-
wise and (&)”, a=0x0000FFFF, and b=0xFFFFFFFF [bit sequence

Algorithm 1: Resilience-Driven Selective Instruction Redundancy

INPUT:

A : Original unprotected application software // see formal model in Sec. II

Γ : User-provided tolerable performance overhead in cycles

P : User-provided protection method like EDDI, SWIFT, CRAFT, etc.

OUTPUT: A' : Application software with redundant instruction

BEGIN

1. {if F // compute resilience of basic blocks & functions

2. {ij iB f

3. (); }ij ijR computeBBResilience B // see Eq. 5

4. ();i iR computeNormalizedFunctionResilience f // see Eq. 6

5. }

6. (());F i i ifi F 1 R L eF

7. {if F

8. ((()))i i i i F1 R L eF ; // function’s overhead quota

9. (());B ij ij ijBij Bi 1 R L eF

10. {ij iB B

11. ((()))ij ij ij ij B i1 R L eF ; // BB’s overhead quota

12. {ijins I // compute pTM and υ for all instructions

13. ();TM TMins.P computeP ins // see Eq. 8

14. ();ins. computeInstrVul ins // see Eq. 1

15. }

16. (() (() > 0)){ij ins Iij
while 0 || isNotProtected ins

17. Best Best Best0; 0; I NULL;

18. {ijins I

19. ();insgetProtectionOverhead ins L , ,P

20. (((1-)));ins TMins p ins . . /

21. (()&&(() 0)) {ins Best ij if

22. }Best ins Best Best; ; I ins;

23. }

24. ();BestProtect I ,P // perform instruction redundancy

25. Bestij ij ;

26. }

27. }

28. }

END

31…0]. In this case, for b, error masking probability w.r.t. the operation
type pm(bv, Iijk) is given as: pm(b0…15, &)=0 and pm(b16…31, &)=1.

Our scheme computes ppostM(Iijk) recursively using ppostM of the succes-
sor instructions (Sijk), starting with the leaf node (i.e. last instruction of
the execution path) that has ppostM(Iijk)=0 (i.e. all instructions occurring
at the leaf node will propagate to memory). A breadth-first bottom-up
search is employed that starts from the leaf nodes and explores the
instruction flow graph.

Complexity: The time complexity of this search is O(Σ b Bi

(|Iij|+|Eij|)) and space complexity is O(Σ b Bi |Iij|).

The above-presented software resilience and masking models enable
selective reliability-optimizing schemes under constrained scenarios
that provide a tradeoff between reliability and performance. Function
and basic block resilience leverages selective redundancy schemes to
prioritize functions and basic blocks w.r.t. their reliability importance,
while the instruction-level masking model leverages prioritizing the
instructions within basic blocks and functions.

V. LEVERAGING RESILIENCE AND SOFTWARE MASKING FOR
SELECTIVE SOFTWARE RELIABILITY

In this paper, we propose a selective instruction redundancy scheme
that leverages both function and basic block resilience along with
instruction masking probability and vulnerability to selectively protect
reliability-wise most important instructions in a given application
software under user-provided tolerable performance overhead.

Our selective instruction redundancy scheme operates in two steps:
Step-1: First, distribute the tolerable performance overhead quota

among different functions of an application and their constituting
basic blocks based on their resilience value (i.e. Ri and Rij).

Step-2: Afterwards, select a set of reliability-wise most important
instructions within a basic block for protection using selective instruc-
tion redundancy depending upon their masking probabilities pTM(Iijk)
and vulnerability index υIijk.

The key is to provide more protection to the less-resilient functions,
while less protection to more-resilient functions. Our selective instruc-
tion redundancy scheme provides means to reduce the redundancy
overhead, while still ensuring a high probability of correct output.

Algorithm 1 shows the pseudo-code of our resilience-driven selective
instruction redundancy scheme.

Input: Original unprotected application software A=(F,E); see
application model in Section II.
Output: Reliability-optimized application A' with selective instruc-
tion protection.
Constraint: A user-provided tolerable performance overhead con-
straint Γ in terms of cycles or percentage of performance-optimized
execution that can be converted to a cycle quota accordingly.

Optimization Goal: The protection efficiency (λ) of an instruction is
given as the instruction reliability benefit if protected (using a user-
specified protection scheme P), such that the instruction with the
highest protection efficiency (λBest) is selected for protection first
given its protection overhead is under the cap of tolerable performance
overhead Γ. The protection efficiency (λ) of an instruction is a joint
function of total masking probability (pTM, see Section IV), instruction
vulnerability (υ, see Eq. 1), and protection overhead “γ” that depends
upon the execution latency of the candidate instruction and protection
scheme. The protection efficiency (λ) is defined as ((1-pTM)*υ/γ. The
product of the term “1-pTM” and υ provides the effective vulnerability
that an error occurring in an instruction will ultimately propagate to
the output. The algorithm should protect the instruction with the
highest effective vulnerability. However, it might happen that an
instruction with the highest effective vulnerability incurs significant
protection overhead. It might be better to protect more instructions

with a slightly reduced effective vulnerability, rather than protecting
one instruction with a high overhead. Fig. 5 illustrates an abstract
example comparing two selection schemes (1) selecting instructions
based on the effective vulnerability; and (2) selecting instructions
based on the protection efficiency. The value in the box shows the
effective vulnerability. Fig. 5 shows that the second scheme provides a
higher protection reduction in the effective vulnerability for a given
tolerable performance overhead of 7 cycles. Overall, the total protec-
tion efficiency of the second scheme is 0.71 compared to the 0.4
efficiency of the first scheme, i.e. an improvement of 0.31 => 77%
better reliability compared to the first scheme.

1.0 0.9 0.9 0.9 0.8 0.6 0.4

5 1 1 1 2 1 1 2

I1 I2 I3 I4 I5 I6 I7 I8 Γ = 7 Cycles

Effective Vulnerability

Instructions

Protection Overhead [Cycles]

Effective Vulnerability-
Based Selection

Protection Efficiency-
Based Selection

0.9

I1 , I2 , I3

…

I2 , I3 , I4 , I5 , I6 , I7

Total Protection Efficiency
= (1.0+0.9+0.9)/7 = 0.40

Total Protection Efficiency
= (0.9+0.9+0.9+0.9+0.8+0.6)/7 = 0.71

Fig. 5 Abstract Example Comparing Two Selection Schemes

Note: in this work, we employ standard protection methods (like instruc-
tion redundancy at the compilation level) to evaluate our models and
scheme. However, our approach is equally beneficial for adapting/guiding
other hardware-/software-based reliability enhancing mechanisms in order
to reduce their overhead depending upon a given user constraint.

Algorithm Flow: The goal of our algorithm is to select a set of
instructions for protection using user-specified protection scheme P)

such that, the application software reliability is maximized under
given tolerable performance overhead constraint (i.e. maximizing the
total protection efficiency), while accounting for the resilience and
masking properties (see Sections III and IV).

First, the resilience values of all basic blocks and functions are
computed using Eq. 5 and 6 (lines 1-5). Afterwards, the tolerable
performance overhead quota for each function is computed using its
resilience value (Ri, see Section III) and the user-provided tolerable
performance overhead (lines 6-8). The idea is to allocate more over-
head quota to less-resilient function, while providing less overhead
quota to more-resilient function. The function’s performance overhead
quota is distributed among different basic blocks depending upon their
resilience values (Rij, see Section III) and execution frequencies (eFij,
see Section II), such that more frequently executing and less-resilient
block receives more quota (lines 9-11). Afterwards, the basic blocks
overhead quota is distributed among different instructions by selecting
reliability-wise more important instruction for redundancy-based
protection. An instruction for redundancy is selected depending upon
its protection efficiency “λ” (lines 17-25). The protection overhead is
subtracted from the basic block’s overhead quota (line 25). The loop is
iterated until the tolerable overhead of the basic block is exhausted or
all instructions are protected (line 16).

VI. RESULTS AND DISCUSSION

A. Experimental Setup
Fig. 6 shows our experimental and modeling setup. A reliability-aware
ISS is employed which exhibits an integrated fault generation and
injection module which takes different fault models and parameters as
input. Important parameters are: (1) fault rate obtained using the
neutron flux calculator [16] and city coordinates, (2) processor layout
and frequency (a Leon-II processor @100 MHz is deployed in this
work [24]), (3) single bit flip transient faults, randomly distributed.
We consider three different fault rates in our experiments (1, 5, 10
faults/MCycles) to cover a wide range of cases (terrestrial to aerial).
Like in prominent industrial and research projects by AMD [23] and
IBM [22], the caches are assumed to be protected. The errors are
observed at the application software layer and classified in different
categories (see Section II). Error distributions, application analysis,
IVI traces, etc. are generated from the reliability-aware ISS and
forwarded to the resilience modeling and parameter estimation.
Further details of fault injection process and reliability analysis can be
found in [18][26].

Modeling and parameter estimation is done in MATLAB. Appli-
cation control and data flow graphs are used for computing the
masking probabilities. The models and application reliability analysis
is forwarded to the reliability-driven compiler (based on GCC frame-
work), that performs the selective instruction redundancy.

C
o

n
fi

g
u

-
ra

b
le

F
a

u
lt

G

e
n

e
ra

to
r Fault

Files Fault

Injector

Error Logging

Erroneous
Executions

Error-Free
Execution

Application

Analysis

Error Characterization

IVI

Estimation

S
ta

ti
s

ti
c

a
l

A
n

a
ly

s
is

Instruction
Masking

Probability

Resilience of
BBs and

Functions

Error Type
Distribution

IVI
Distribution

CFG/DFG
BB Diagram

Other
Compiler
Blocks

Quota
Calculation

Instruction
Selection

Protection

Appli-
cation

Instruction
Masking

R2

R1

R3

R4R5

BB/Function
Resilience

ISS

A
n

a
ly

s
is

S
o

ft
w

a
re

R
e

li
a

b
il
it

y
-

A
w

a
re

 I
S

S

Modeing & Estimation
Setup on MATLAB Reliability-

Driven
Compiler

Fig. 6 Experimental and Modeling Setup

For evaluation, we employ various applications “H.264”, “ADPCM”,
“SusanS”, “CRC”, “SHA” from MiBench and integrate them into a
complex real-world application scenario of “secure audio-video
coding and filtering” for quota distribution. The “H.264” application
exhibits various compute intensive functions like “SAD” and “DCT”.

B. Comparison to State-of-the-Art for Instruction Redundancy
For reliability comparison, we have selected the most prominent state-
of-the-art in software based protection schemes, i.e. SWIFT [7], which
performs instruction redundancy and recovery for all instructions in
the program. The reliability comparison is performed for the vulnera-
bility reduction using the model of [18] and protection efficiency (see
Fig. 5, Section V). Since SWIFT [7] incurs >3X performance over-
head for a RISC processor, its protection efficiency (i.e. reliability
improvement per overhead) is ≤ 0.33. In contrast to this, the protection
efficiency of our approach ranges from 0.95 to 1.21, see Fig. 7b. This
corresponds to an improvement of 3.6X in the protection efficiency.

To have a more fair comparison, we adapted SWIFT towards
selective instruction redundancy scheme by providing it our resilience
based overhead quota distribution. However, instead of applying
selective redundancy, SWIFT-variant selects instructions in a sequen-
tial manner. Fig. 7a shows such a comparison, where our experiments
illustrates that, compared to SWIFT, our scheme provides a vulnera-
bility reduction of 6% to 48% at 5% and 50% tolerable performance
overheads, respectively.

Susan C
000,000%

000,010%

000,020%

000,030%

000,040%

000,050%

000,060%

5 10 20 30 40 50A
p

p
.

V
u

ln
. s

av
in

g
[%

]
5%

0

20

40

60

10% 20% 30% 40% 50%

Tolerable Performance Overhead
Susan C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6

Tolerable Performance Overhead
5%

0

0.8

1.2

10% 20% 30% 40% 50%

0.4

P
ro

te
ct

io
n

Ef
fi

ci
e

n
cy

Fig. 7 (a) Overall reduction in the application vulnerability
compared to the SWIFT [7] at different tolerable performance

overhead constraints; (b) corresponding protection efficiency of
our scheme; SWIFT has 0.33 protection efficiency

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ADPCM CRC DCT SAD SHA SUSAN

V
u

ln
e

ra
b

ili
ty

R
e

d
u

ct
io

n
[%

]

ADPCM
0

20

40

60

80

100

CRC DCT SAD SHA SUSAN

5% 10% 20% 30% 40% 50%

Tolerable Performance Overhead

Fig. 8 Vulnerability reduction of our scheme for various
application functions compared to the unprotected case

at different tolerable performance constraints

We have additionally compared our scheme to the unprotected case.
Fig. 8 shows the overall vulnerability reduction of various application
functions at different tolerable performance overhead constraints. It is
noticeable that our scheme reaches >80% vulnerability reduction at
50% overhead, since in this quota it already protects the most vulnera-
ble instructions. It denotes a protection efficiency of 1.6 for
“ADPCM”, “SHA”, and “SUSAN”, which is 4.84X better compared
to the 0.33 protection efficiency of full SWIFT [7]. Fig. 8 shows that
“Susan” and “SHA” almost reach 95% vulnerability reduction with
only a 50% overhead, while the vulnerability reduction is already
more than 40% for only a 10% overhead. This also illustrates the
benefit of using resilience for quota distribution, as in this case more
quota is allocated to “ADPCM” and “SAD” and less quota is given to
“DCT”. High reliability is required for both “SHA” and “CRC” as
they are critical applications in terms of data protection.

C. Results for Function Resilience and Software Masking
The resilience is used to distribute the tolerable performance overhead
quota among different functions of the application. A more resilient
function would get a less quota for protection compared to a less-
resilient function that may not tolerate more errors. Fig. 9 illustrates

the resilience (in log scale) and the performance overhead quota for
different application functions. The resilience and quota are provided
separately for the “incorrect output” and “application failure” cases
along with the combined case. Note, here “incorrect output” and
“application failure” are both treated as information loss. In cases,
where “incorrect output” is tolerable, resilience to “application
failure” is important to be considered. In our experiments of selective
instruction redundancy, we have employed the quotas for the com-
bined case as we consider all types of errors. Due to its high resili-
ence, “DCT” gets lesser quota compared to the “ADPCM”, “SHA”,
and “SAD”. The resilience of “DCT” is high because it is an unrolled
version, with a relatively less number of branches compared to other
applications that leads to less control flow errors in “DCT”.

ln
(1

-R
e

si
li

e
n

ce
)

-8

-10

-12

-14

Q
u

o
ta

25%

20%

10%

0%

A
D

P
C

M

C
R

C

D
C

T

S
A

D

S
H

A

S
U

S
A

N

A
D

P
C

M

C
R

C

D
C

T

S
A

D

S
H

A

S
U

S
A

N

A
D

P
C

M

C
R

C

D
C

T

S
A

D

S
H

A

S
U

S
A

N

Incorrect
Output

Application
Failure

Combined
= (Incorrect Output +
Applicaiton Failure)

Fig. 9 Resilience of various application functions (inverse values in

log scale): resilience is shown separately for “incorrect output”,
“application failures”, and “combined”

M
a

sk
in

g
p

ro
b

a
b

il
it

y

0

1

0.2

0.4

0.6

0.8

Horizontal axis represents different instructions in the graph

(c)(a) (b)

Fig. 10 Distribution of masking probabilities for different instruc-
tions in (a) DCT, (b) low-precision filter, (c) vertical edge-detector

Fig. 10 illustrates the distribution of instruction masking probability in
three different functions “DCT”, “Filter”, and “Edge Detector”. Fig. 10
(a) shows that the distribution of masking probabilities in “DCT”
exhibits significant variations from instruction to instruction, depending
upon the instruction dependencies. Zero masking probabilities denote
the instruction on the sequential path, where all errors will propagate to
the successor instructions. In the “Edge Detector”, there is a high
masking probability because the possible output values are “0” or “1”,
i.e. if there is an edge is or not. Therefore, all errors that are smaller than
the boundary value (specified in the application program) of the differ-
ence between pixels from an edge will not be seen. A similar masking
behavior is observed “Filter” function, where all errors that are smaller
than the precision bits are dismissed. The small variations correspond to
shift instructions, while similar group of bars in Fig. 10(b, c) show the
symmetric execution paths in “Edge Detector”.

VII. CONCLUSIONS
We illustrate that our selective software reliability scheme provides
means to reduce the redundancy overhead, while still ensuring a high
probability of correct output. This is leveraged by employing the
variable function/basic block resilience and instruction masking
probabilities to selectively protect instructions of application software
under a user-provided tolerable performance overhead. Our novel
resilience and masking models enable selective reliability optimiza-
tion under constrained scenarios at both hardware and software levels.

Due to the conceptual enhancements in Section III, IV, and V, state-
of-the-art software reliability schemes by principal cannot reach the
level of constrained reliability optimizations that our scheme provides.

ACKNOWLEDGMENT
This work is supported in parts by the German Research Foundation
(DFG) as part of the priority program "Dependable Embedded
Systems" (SPP 1500 - spp1500.itec.kit.edu).

REFERENCES
[1] R. Baumann, “Radiation-induced soft errors in advanced semiconductor

technologies,” IEEE TDMR, vol. 5, no. 3, pp. 305-316, 2005.

[2] S.Borkar et al., “Design and Reliability Challenges in Nanometer
Technologies”, IEEE DAC, pp. 75-75, 2004.

[3] P.Shivakumar, M.Kistler, “Modeling the effect of technology trends on
the soft error rate of combinational logic”. IEEE DSN, 2002.

[4] S. S. Mukherjee, C. Weaver, J. Emer, S.K. Reinhardt, T.Austin, “A
systematic methodology to compute the architectural vulnerability factors
for a high-performance microprocessor", MICRO, pp. 29-40, 2003

[5] R. Vadlamani et al.,"Multicore soft error rate stabilization using adaptive
dual modular redundancy", IEEE DATE, pp. 27-32, 2010.

[6] D. Ernst et al., “Razor: circuit-level correction of timing errors for low-
power operation,” IEEE MICRO, vol. 24, no. 3, pp. 10-20, 2004.

[7] G. A. Reis, J. Chang, D. I. August, “Automatic instruction-level software
only recovery”, IEEE MICRO, pp. 36–47, 2007.

[8] N. Oh et al., “Error detection by duplicated instructions in super-scalar
processors”, IEEE Transaction on Reliability, 51-1, pp. 63-75, 2002.

[9] J. Hu et al., “In-Register Duplication: Exploiting Narrow-Width Value
for Improving Register File Reliability,” DSN, pp. 281-290, 2006.

[10] J. S. Hu et al., “Compiler-Directed Instruction Duplication for Soft Error
Detection,” DATE, vol.2, pp. 1056-1057, 2005

[11] G. V. Varatkar, N. R. Shanbhag, “Energy-efficient motion estimation
using error-tolerance”, IEEE ISLPED, pp. 113-118, 2006.

[12] V. Chippa, A. Raghunathan, K. Roy, S. Chakradhar, “Dynamic Effort
Scaling: Managing the Quality-Efficiency Tradeoff”, DAC, 2011.

[13] M. Shafique et al., "Power-Efficient Error-Resiliency for H.264/AVC
Context-Adaptive Variable Length Coding", DATE, pp. 697-702, 2012.

[14] M. A. Makhzan, A. Khajeh, A. Eltawil, F. J. Kurdahi, “A low power
JPEG2000 encoder with iterative and fault tolerant error concealment”,
IEEE TVLSI, vol. 17, no. 6, pp. 827-837, 2009.

[15] A. Heinig, M. Engel, F. Schmoll, P. Marwedel, “Improving transient
memory fault resilience of an H.264 decoder”, ESTIMedia, 2010.

[16] Flux calculator: www.seutest.com/cgi-bin/FluxCalculator.cgi.

[17] H.264 Codec JM 13.2: http://iphome.hhi.de/suehring/tml/index.htm.

[18] S. Rehman et al., “Reliable software for unreliable hardware: Embedded
code generation aiming at reliability”, Codess+ISSS, pp. 237-246, 2011.

[19] P. Giacinto et al., “An experimental Study of Soft Error in Microproces-
sors”, MICRO, pp. 30-39, 2005.

[20] S. Z. Shazli, M. B. Tahoori, “Obtaining Microprocessor Vulnerability
Factor Using Formal Methods”, DFTVS, 2008.

[21] M. Xie, K.-L. Poh, Y.-S. Dai, “Computing Systems Reliability: Models
and Analysis”, Springer, ISBN 978-0-306-48496-4, 2004.

[22] IBM® XIV®: http://publib.boulder.ibm.com/infocenter/ibmxiv/r2/index.jsp.

[23] AMD PhenomTM II Processor Product Data Sheet 2010.

[24] J. Gaisler, “A portable and fault-tolerant microprocessor based on the SPARC
v8 architecture”, DSN, pp. 409-415, 2002.

[25] A. Rajendiran et al. “Reliable computing with ultra-reduced instruction set co-
processors”, IEEE DAC, pp. 697-702, 2012.

[26] S. Rehman, M. Shafique, J. Henkel, “Instruction Scheduling for Reliability-
Aware Compilation", IEEE DAC, pp. 1288-1296, 2012.

[27] S. Rehman et al., "RAISE: Reliability Aware Instruction SchEduling for
Unreliable Hardware", IEEE ASP-DAC, pp.671-676, 2012.

[28] J. Cong, K. Gururaj, “Assuring Application-Level Correctness Against Soft
Errors”, ICCAD, pp. 150-157, 2011.

[29] A. Sundaram et al., “Efficient fault tolerance in multi-media applications
through selective instruction replication”, WREFT, pp. 339-346, 2008.

[30] E. Borin et al., “Software-Based Transparent and Comprehensive Control-
Flow Error Detection”, CGO, pp. 333-345, 2006.

http://iphome.hhi.de/suehring/tml/index.htm

