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Abstract—State-of-the-art reliability optimizing schemes deploy 

spatial or temporal redundancy for the complete functionality. This 

introduces significant performance/area overhead which is often 

prohibitive within the stringent design constraints of embedded 
systems. This paper presents a novel scheme for selective software 

reliability optimization constraint under user-provided tolerable 

performance overhead constraint. To enable this scheme, statistical 

models for quantifying software resilience and error masking proper-
ties at function and instruction level are proposed. These models 

leverage a whole new range of reliability optimization. Given a 

tolerable performance overhead, our scheme selectively protects the 
reliability-wise most important instructions based on their masking 

probability, vulnerability, and redundancy overhead. Compared to 

state-of-the-art [7], our scheme provides a 4.84X improved reliability 

at 50% tolerable performance overhead constraint. 

I. INTRODUCTION AND RELATED WORK 
Reliability has become an imperative design criterion for advanced 
computing systems. Aggressive shrinking of transistor dimensions, a 
reduced gap between threshold and nominal voltages, etc. result in 
unreliable hardware susceptible to different sources of faults like soft 
errors, aging, etc. [1]-[4]. Transient faults (like radiation-induced soft 
errors) manifest as spurious bit flips in the hardware that may propagate 
to the application software layer and jeopardize the correct application 
execution. To mitigate these issues, diverse reliability-enhancing 
schemes have been developed at hardware and software levels. 

Hardware-based reliability schemes (like TMR, pipeline protection 
with shadow latches [6], design with reduced architectural vulnerability 
factor [4][5], adding ultra-reduced instruction set co-processors to 
execute faulty instructions [25], etc.) typically incur significant overhead 
in terms of area, power, and validation cost. To alleviate this overhead 
and in order to complement existing hardware schemes, several soft-
ware-based reliability schemes have been proposed, such as redundant 
code (instruction & register duplication) and control flow checking 
using EDDI [8], [9][10], SWIFT/CRAFT [7], etc. These software-based 
schemes, however, duplicate all the instructions and incur a significant 
performance and/or memory overhead (> 2X) [7]-[10]. 

Significant overhead in typical design metrics like performance, 
area, or power is often prohibitive within the stringent design con-
straints of embedded systems. On the one hand, insufficient reliability 
may result in an ineffective product due to its functional degradation. 
On the other hand, an excessive protection may lead to a resulting 
product that is uncompetitive. Therefore, reliable embedded system 
design needs to optimize reliability under tolerable overheads while 
accounting for the error masking behavior of target applications and 
avoiding ‘design for over-protection’. Previous work on constrained 
reliability optimization leverage instruction scheduling and transfor-
mations in a reliability-driven compiler [18][26][27], but does not 
account for error masking effects and selective protection. 

Here is an interesting observation: often, different application 
programs and even different functions in an application are not 
equally susceptible to transient faults [18][19] due to different data & 
control flow properties, internal error masking effects, etc. (see Fig. 
1). Therefore, these functions exhibit distinct resilience to hardware-
level faults. The observed difference in function-level resilience may 
be leveraged to limit the growing overheads of reliability optimiza-
tions under constraints like performance or power. 

Motivational Example: Fig. 1(a) shows the error distribution in two 
applications “AES” and “SusanC” at a fault rate of 5 faults/MCycles 
(see Section VI for the experimental setup). When comparing “AES” 
to “SusanC”, the percentage of “Incorrect Output” errors is lower in 
“SusanC”, which is mainly due to the relatively high instruction-level 
masking, i.e. an error at an instruction will be masked until the visible 
output due to control flow properties and/or logical masking in the 
hardware. From the above observation, it is implicit that even for the 
same hardware and same fault scenario different applications exhibit 
distinct resilience properties due to their varying control flow, 
type/number and sequence of instructions. Moreover, the vulnerabili-
ties of different instructions in a given function vary due to spatial 
effects (i.e. using different pipeline components of different hardware 
area) and temporal effects (i.e. different amount of time spent in the 
pipeline components). Fig. 1(b) illustrates the distribution of instruc-
tion vulnerabilities (estimated using the model of [18]) in “SusanC” 
for a selected range of program counter (PC, x-axis). It is noteworthy 
that a few instructions (like ‘multiply’, ‘load’, ‘branches’) have 
significantly high vulnerability compared to other instructions (like 
‘add’ and ‘sub’) due to relatively large spatial and temporal effects. 

The above-discussion and observation in Fig. 1 illustrate that differ-
ent applications/functions differ in terms of their resilience and different 
instructions differ in terms of vulnerabilities. Therefore, not all functions 
and instructions require same level of protection. Pessimistically 
applying redundancy to all instructions of all functions may incur 
significant overhead that can be curtailed by leveraging the variable 
resilience, masking, and vulnerability properties of application software 
at different granularities (i.e. functions, basic blocks, and instructions). 
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Fig. 1 (a) Error Distribution for two Applications; (b) Instruction 
Vulnerability distribution for different instructions in “SusanC” 

State-of-the-art schemes in error-resilience exploit inherent resilience of 
image/video processing applications to tolerate errors while accepting 
incorrect output values with degraded output quality [11]-[15]. These 
schemes primarily aim at reducing the power consumption using 
aggressive voltage scaling, while tolerating errors introduced by voltage 
scaling. These state-of-the-art schemes do not quantify and model 
application resilience in terms of functional correctness. Therefore, 
these schemes cannot efficiently exploit resilience to guide reliability-
optimizing schemes at the software and/or hardware layers. Moreover, 
state-of-the-art like [28][29] has not yet exploited application resilience 
and error masking properties quantitatively for selective reliability-
optimization under tolerable performance overhead constraints. Note, 
AVF based techniques like [4][5] cannot be applied at the soft-
ware/compiler layer as they do not provide a quantification of vulnera-
bilities and masking probabilities at the instruction level. 

Problem: there is a need to selectively optimize the software reliabil-
ity under tolerable performance overhead constraints. This requires 
modeling and quantitative estimation of (1) resilience of application 
software at the function level; (2) error masking effects at the instruc-



tion level. Selective reliability-optimizing schemes need to be guided 
with these models to curtail their protection overhead and to realize 
constrained reliability-optimization. 

A. Our Novel Contributions and Idea: Overview 
1) A Resilience-Driven Selective Software Reliability Scheme 

(Section V) that selects a set of reliability-wise most important in-
structions in different functions for protection depending upon func-
tion resilience, instruction-level error masking, and instruction vul-
nerability under user-provided tolerable performance overhead con-
straint. The key is to give more protection to the less-resilient part of 
the application, while less protection to more-resilient part. 

2) Resilience Modeling and Estimation (Section III): Modeling and 
estimating the resilience of application at function-level w.r.t. the 
functional correctness based on statistics and information theory con-
cepts; 

3) Software Masking Analysis and Modeling (Section IV): A proba-
bilistic analysis, modeling, and estimation of instruction masking ef-
fects inside a function, i.e. probability that an error during the execu-
tion of this instruction will be masked until the visible function output. 

Fig. 2 shows an overview of our novel scheme integrated in a reliability-
driven compiler. To the best of authors’ knowledge, this is the first work 
that targets selective software reliability under constraints leveraged by 
modeling and quantitative estimation of resilience and masking proper-
ties of application software. 
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Fig. 2 Overview our Selective Software Reliability Scheme 

integrated in a Reliability-Driven Compiler 

Before proceeding to the details of our novel contribution, we present 
formal model & system models for clarity/consistency of discussion. 

II. SYSTEM MODELS AND PRELIMINARIES 
Application Model: An application software A = (F, E) is composed 
of different functions F={f1, f2, …, fl}. 
Function: Each function may compose of multiple basic blocks; 
fi={Bi, BDi, Li, eFi, Ri} such that Bi={B1, B2, …, Bm}. BDi is the se of 
basic block dependencies, Li is the average execution time, eFi is the 
expected execution frequency, and Ri is the resilience of the ith 
function. 
Basic Block: A basic block is a sequence of instructions without any 
jump/branch; Bij={Iij, Eij, Lij, eFij, Rij}, such that Iij={I1, I2, …, In}, Lij is 
the average execution time, eFij is the expected execution frequency, 
and Rij is the resilience of the jth basic block of ith function. Eij is the 

set edges that denote the instruction dependencies; Eij={eIxieIyi | 
Ixi, Iyi  Iij} and is given as the edge weight that represents the latency 
from instruction Ixi to Iyi. 
Instruction: Each instruction is represented as a tuple Iijk={PTM, Pim, υ, P, 
S, L, d, o}ijk. PTM is the total masking probability from the kth instruction 
to the visible output. Pim is the internal masking during the execution of 
an instruction (i.e. masking through the pipeline components). υ denotes 
the vulnerability of an instruction in the pipeline. Pijk={p1, …, pa}ijk and 
S={s1, …, sb}ijk are the sets of predecessor and successor instructions, 

respectively. L is the execution time of the instruction, while d and o are 
the sets of destination and source operands. 

Processor Model: single-core RISC architecture, in-order, multiple 
Pipeline stages (like SPARC V8 with 5 stages). 

Fault Model: Transient faults – single or multiple bit upsets. 

Error Categories: We classify application outputs in 3 categories: 
1) Correct Output: Output data values are correct and useful 
2) Incorrect Output: Output data values are incorrect; may/may not 

be useful; and 
3) Application Failure: like crash, halt, abort, etc. 

Instruction Vulnerability Model: In order to estimate the vulnerabil-
ity υ of an instruction Iijk, we employ an existing model Instruction 
Vulnerability Index [18] (see Eq. 1),which quantifies the effects of 
hardware-level faults at the software level. The Instruction Vulnerabil-
ity Index υ is defined as the weighted sum of instruction vulnerabili-
ties in different Pipeline components p with area Ap and micro-
architectural error probability PE(p). 

       
   p E pp Pipeline p Pipeline

p A P p A   (1) 

III. MODELING THE RESILIENCE OF APPLICATION FUNCTIONS 
Definition: The resilience of an application function is defined as the 
probabilistic measure of functional correctness (output quality) in 
presence of faults. 

Modeling: Modeling resilience requires error probabilities for basic 
blocks outputs. There are two possible error types: “incorrect output” 
and “application failure”. Therefore, output of each instruction in a 
given basic block can be modeled as a Markov Chain with three 
states: SC, SIC, and SF denoting “correct”, “incorrect”, and “application 
failure” states, respectively (see Fig. 3). Considering that the execu-
tion of a program is a stochastic process, we adopt Markov Chain 
technique for output modeling as it provides a good tradeoff between 
the model complexity and accuracy when compared to exhaustive 
Monte-Carlo Simulations, Fault-Tree Analysis, and Principal Compo-
nent Analysis based reliability models [21]. 

Assuming that each state depends upon the previous instructions’ 
output and the error state can only be observed at the end or at the 
time of “application failure”, the execution path can be modeled as a 
Hidden Markov Chain, with the above-discussed three states as hidden 
states and the observation state as “application failed” or “not-failed”. 
The parameters of this model are the state transition probabilities 
(given in the matrix T, see Fig. 3) that depend upon the executed 
instructions. Note, the Markov Chain is non-homogeneous as the 
transition probabilities change depending upon an instruction Iijk. 

1 32

p11

p21

p12

p13

p22

p23

p33

1: SC 2: SIC 3: SF

11 12 13

21 22 23

( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 1

p i p i p i

T i p i p i p i

 
 

 
 
 

 
Fig. 3 Markov Chain for Instruction Output with State Transition 

Probabilities 

Once these probabilities are estimated (see parameter estimation later 
in this section), we can compute the final state probability for a given 
basic block Bij using Eq. 2, where ξ is the final state probability vector 
containing the probability of three states: pC, pIC, and pF. 

 
ijij

ij C IC F ij 1 x IB
( B ) p p p ( B ) T( x )   

    (2) 

Following the information theory concepts, we model the resilience of 
a function as the normalized mutual information between the required 
correct result (from a golden execution run X) and the result at the 
end of a function execution (from a potentially faulty execution under 
a given fault rate), i.e. amount of useful function output (see Eq. 3). A 
large value of mutual information illustrates that more information 
about the correct output can be inferred, i.e. high resilience. The 



resilience of a basic block Bij is given as R(Bij)=1–H(X|Y)/H(X), where 
H(X) is the information about the correct execution, i.e. H(X)=bLive, 
such that bLive denotes the bits of live output registers of Bij. The 
conditional entropy H(X|Y) is the information lost in Bij and given as 
Eq. 3, where pC(x) denotes the probability of correct value being x; 
and p[IC,F](x, y) is the conditional probability of faulty output being 
“incorrect” or “application failure”. 

   

 

 

ij Live

[ IC,F ] 2 C [ IC,F ]x X ,y Y

R( B ) 1 – H( X |Y ) / H( X );      H( X ) b

H( X |Y ) p ( x, y ) log p ( x ) / p ( x, y )
 (3) 

Assuming, resilience of a basic block R(Bij) can be characterized as 
resilience to “incorrect output”  and resilience to “application failures”, 
we can compute the conditional entropy separately for both cases. 
H(X|Y)F is given as pF(Bij) using Eq. 2, while H(X|Y)IC is given by Eq. 4. 

          ij

n
IC IC 2 IC IC 2 IC

B
H( X |Y ) p log ( p / ( 2 1)) (1 p ) log (1 p )  (4) 

By replacing the terms of Eq. 3 with Eq. 4, we can compute the 
resilience of a basic block against failures and incorrect outputs where 
the second term in Eq. 5 denotes the combined information loss. 

 ij IC F IC FR( B ) 1 H( X |Y ) H( X |Y ) H( X |Y ) H( X |Y ) / H( X )        (5) 

Given the resilience values of all basic blocks Bi of a function fi, 
resilience R(fi) can be computed using Eq. 6. 

   i i ib Bi b Bi, fi F
R( f ) R(b ) / eF (b ) eF (b )

     
    (6) 

Parameter Estimation: For estimating the model parameters, i.e. 

transition probabilities given in Eq. 2, we make few assumptions: 

· observation of faulty output is made at the end of function 

· no recovery mechanism and no error protection is available; i.e. 

starting from a base case of unreliable hardware => p33=1; p21=0. 

· Initial state and input is error-free; [pC pIC pF](t=0)f1=[1 0 0]. 

Note, p11+p12+p13=1. To expedite the parameter estimation process, 
we have grouped instructions in NT primitive instruction categories 
(like arithmetic, multiply, divide, logical, load/store, calls/jumps, 
floating point, etc.) such that all instructions in a given category share 
the same transition probabilities. The parameter can be estimated 
using fault injection campaigns. Consider there are NS different fault-
injection experiments at a given fault rate, NC and NIC are the number 
of cases with correct and incorrect output, respectively. For a particu-
lar fault injection experiment s, for a certain instruction category tk, 
the transition probability p11 can be estimated using the maximum 
likelihood, thus deriving1 Eq. 7. NI(t,s) denotes the number of instruc-
tion type t in that simulation. 
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 (7) 

Assuming p23(t) = p13(t), we can re-use Eq. 7 to obtain the probability 

p22(tk). In this way we can compute all the remaining transition probabil-

ities, such that, p23(tk)=p13(tk)=1–p22(tk); and p12(tk)=p22(tk) –p11(tk). 
Fig. 4 shows a simplified flow of different steps of our scheme 

towards modeling and estimation of function resilience along with 
parameter estimation and computation of conditional entropy. 
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Fig. 4 Flow of Steps to Compute Basic Block & Function Resilience 

                                                                 
1
 Complete derivation is omitted due to space limitations. 

Complexity: The complexity of resilience estimation is O(|Bi| NT 
log(|Iij|), which is much smaller than the complexity of fault tree based 
methods (i.e. O(|Bi| |Iij|

3) and Monte-Carlo simulations (i.e. O(|Bi|
|Iij|

2)) for each basic block. 

The resilience model quantifies the reliability properties at a 
coarse-grained level, i.e. function and basic block that facilitates 
prioritizing functions and basic blocks for selective protection. 
However, to enable the selective protection within a basic block and to 
prioritize different instructions, there is a need to model and estimate 
the instruction masking probabilities. 

IV. MODELING SOFTWARE MASKING EFFECTS 
Definition: Software masking probability pTM(Iijk) at a certain instruc-
tion Iijk is defined as the probability that an error at Iijk does not 
become visible at the application output and therefore is denoted as 
‘masked’. 

Software-level masking impacts the application software reliability by 
blocking the error propagation such that: (1) the output value remains 
correct; or (2) a degraded value does not propagate to the subsequent 
execution iterations. In this paper, we assume that the program control 
flow is protected using, e.g., basic block signatures [30]. 

Modeling: pTM(Iijk) depends upon two key parameters: 
1) pM(Iijk) which is defined as the total masking during the execution 

of an instruction Iijk due to the microarchitecture-level masking 
effects, i.e. a transient fault during the instruction execution is 
blocked due to a subsequent gate in the pipeline components, thus 
the error is not latched by a memory element, thus does not affect 
the correct output of the instruction Iijk; 

2) ppostM(Iijk) which is defined as the total masking probability after 
the execution of an instruction Iijk such that, an erroneous output 
value is masked in the path from Iijk until the visible output point 
due to, for instance, dependent instructions, operation masking, 
control flow, etc. 

        TM ijk M ijk M ijk postM ijkp I p I 1 p I p I     (8) 

Once pM(Iijk) and ppostM(Iijk) are estimated, pTM(Iijk) is computed using 
dynamic programming starting from the leaf node (i.e. last instruction 
on an execution path before the value is written to the main memory 
or returned from the application function), which has ppostM(Iijk)=0.  

Estimating pM(Iijk): An instruction Iijk uses different pipeline compo-
nents p, each having logical masking LM(p|ep) as the conditional 
probability of error masking given an error occurs in a pipeline 
component p, i.e. ep. Considering that the probability of error in each 
cycle is same, the pM(Iijk) can be computed using Eq. 9. 

   
M ijk p Pipeline

p I  LM p|e( p )  (9) 

LM(p|ep) can be computed using fault injection experiments or using 
statistical techniques like EPP [20]. In this paper, we determine 
LM(p|ep) through extensive fault injection campaigns considering area 
of different pipeline components. 

Estimating ppostM(Iijk): For a given path in the instruction flow graph, 
ppostM(Iijk) can be computed using the total bit masking probability of 
the actual operation [pV(Iijk)] and ppostM of the dependent/successor 
instructions (Sijk); see Eq. 10. 

        
ijk

postM ijk V V postMs S
p I p s 1 p s p s

 
       (10) 

Sijk denotes the set of successors. Assuming single bit faults with same 

fault probability in all of the operand bits, we can compute the total bit 

masking probability using Eq. 11. 

      ijk ijk
V ijk Bits( o ) m v ijkbv o

p I 1 N p b ,I


    (11) 

bv denotes the bits of operands assuming that all bits having similar 

probability to get faults, while oijk is the set of operands. 
Example: Let us assume an instruction c=a&b, where operation is “bit-
wise and (&)”, a=0x0000FFFF, and b=0xFFFFFFFF [bit sequence 



Algorithm 1: Resilience-Driven Selective Instruction Redundancy 

INPUT:  

A : Original unprotected application software // see formal model in Sec. II 

Γ : User-provided tolerable performance overhead in cycles 

P : User-provided protection method like EDDI, SWIFT, CRAFT, etc. 

OUTPUT:   A' : Application software with redundant instruction 

BEGIN 

1. {if F   // compute resilience of basic blocks & functions 

2.  {ij iB f   

3.   ( );  }ij ijR computeBBResilience B  // see Eq. 5 

4.  ( );i iR computeNormalizedFunctionResilience f  // see Eq. 6 

5. }  

6. (( ) );F i i ifi F 1 R L eF       

7. {if F   

8.  ((( ) ) )i i i i F1 R L eF ;       // function’s overhead quota 

9.  (( ) );B ij ij ijBij Bi 1 R L eF       

10.  {ij iB B   

11.   ((( ) ) )ij ij ij ij B i1 R L eF ;       // BB’s overhead quota 

12.   {ijins I   // compute pTM and υ for all instructions 

13.    ( );TM TMins.P computeP ins  // see Eq. 8 

14.    ( );ins. computeInstrVul ins   // see Eq. 1 

15.   }  

16.   (( ) ( ( ) > 0)){ij ins Iij
while 0 || isNotProtected ins     

17.        Best Best Best0; 0; I NULL;   

18.    {ijins I   

19.     ( );insgetProtectionOverhead ins L  , ,P  

20.     (((1- ) ) );ins TMins p ins   . . /  

21.     (( )&&(( ) 0))  {ins Best ij     if  

22.          }Best ins Best Best; ; I ins;       

23.    }  

24.    ( );BestProtect I ,P // perform instruction redundancy 

25.    Bestij ij    ;     

26.   }  

27.  }  

28. }  

END 

 

31…0]. In this case, for b, error masking probability w.r.t. the operation 
type pm(bv, Iijk) is given as: pm(b0…15, &)=0 and pm(b16…31, &)=1. 

Our scheme computes ppostM(Iijk) recursively using ppostM of the succes-
sor instructions (Sijk), starting with the leaf node (i.e. last instruction of 
the execution path) that has ppostM(Iijk)=0 (i.e. all instructions occurring 
at the leaf node will propagate to memory). A breadth-first bottom-up 
search is employed that starts from the leaf nodes and explores the 
instruction flow graph. 

Complexity: The time complexity of this search is O(Σ b Bi 

(|Iij|+|Eij|)) and space complexity is O(Σ b Bi  |Iij|). 

The above-presented software resilience and masking models enable 
selective reliability-optimizing schemes under constrained scenarios 
that provide a tradeoff between reliability and performance. Function 
and basic block resilience leverages selective redundancy schemes to 
prioritize functions and basic blocks w.r.t. their reliability importance, 
while the instruction-level masking model leverages prioritizing the 
instructions within basic blocks and functions. 

V. LEVERAGING RESILIENCE AND SOFTWARE MASKING FOR 
SELECTIVE SOFTWARE RELIABILITY 

In this paper, we propose a selective instruction redundancy scheme 
that leverages both function and basic block resilience along with 
instruction masking probability and vulnerability to selectively protect 
reliability-wise most important instructions in a given application 
software under user-provided tolerable performance overhead. 

Our selective instruction redundancy scheme operates in two steps: 
Step-1: First, distribute the tolerable performance overhead quota 

among different functions of an application and their constituting 
basic blocks based on their resilience value (i.e. Ri and Rij). 

Step-2: Afterwards, select a set of reliability-wise most important 
instructions within a basic block for protection using selective instruc-
tion redundancy depending upon their masking probabilities pTM(Iijk) 
and vulnerability index υIijk. 

The key is to provide more protection to the less-resilient functions, 
while less protection to more-resilient functions. Our selective instruc-
tion redundancy scheme provides means to reduce the redundancy 
overhead, while still ensuring a high probability of correct output. 

Algorithm 1 shows the pseudo-code of our resilience-driven selective 
instruction redundancy scheme. 

Input: Original unprotected application software A=(F,E); see 
application model in Section II. 
Output: Reliability-optimized application A' with selective instruc-
tion protection. 
Constraint: A user-provided tolerable performance overhead con-
straint Γ in terms of cycles or percentage of performance-optimized 
execution that can be converted to a cycle quota accordingly. 

Optimization Goal: The protection efficiency (λ) of an instruction is 
given as the instruction reliability benefit if protected (using a user-
specified protection scheme P), such that the instruction with the 
highest protection efficiency (λBest) is selected for protection first 
given its protection overhead is under the cap of tolerable performance 
overhead Γ. The protection efficiency (λ) of an instruction is a joint 
function of total masking probability (pTM, see Section IV), instruction 
vulnerability (υ, see Eq. 1), and protection overhead “γ” that depends 
upon the execution latency of the candidate instruction and protection 
scheme. The protection efficiency (λ) is defined as ((1-pTM)*υ/γ. The 
product of the term “1-pTM” and υ provides the effective vulnerability 
that an error occurring in an instruction will ultimately propagate to 
the output. The algorithm should protect the instruction with the 
highest effective vulnerability. However, it might happen that an 
instruction with the highest effective vulnerability incurs significant 
protection overhead. It might be better to protect more instructions 

with a slightly reduced effective vulnerability, rather than protecting 
one instruction with a high overhead. Fig. 5 illustrates an abstract 
example comparing two selection schemes (1) selecting instructions 
based on the effective vulnerability; and (2) selecting instructions 
based on the protection efficiency. The value in the box shows the 
effective vulnerability. Fig. 5 shows that the second scheme provides a 
higher protection reduction in the effective vulnerability for a given 
tolerable performance overhead of 7 cycles. Overall, the total protec-
tion efficiency of the second scheme is 0.71 compared to the 0.4 
efficiency of the first scheme, i.e. an improvement of 0.31 => 77% 
better reliability compared to the first scheme. 

1.0 0.9 0.9 0.9 0.8 0.6 0.4

5 1 1 1 2 1 1 2

I1 I2 I3 I4 I5 I6 I7 I8 Γ = 7 Cycles

Effective Vulnerability

Instructions

Protection Overhead [Cycles]

Effective Vulnerability-
Based Selection

Protection Efficiency-
Based Selection

0.9

I1 , I2 , I3

…

I2 , I3 , I4 , I5 , I6 , I7

Total Protection Efficiency 
= (1.0+0.9+0.9)/7 = 0.40

Total Protection Efficiency 
= (0.9+0.9+0.9+0.9+0.8+0.6)/7 = 0.71  

Fig. 5 Abstract Example Comparing Two Selection Schemes 

Note: in this work, we employ standard protection methods (like instruc-
tion redundancy at the compilation level) to evaluate our models and 
scheme. However, our approach is equally beneficial for adapting/guiding 
other hardware-/software-based reliability enhancing mechanisms in order 
to reduce their overhead depending upon a given user constraint. 

Algorithm Flow: The goal of our algorithm is to select a set of 
instructions for protection using user-specified protection scheme P) 



such that, the application software reliability is maximized under 
given tolerable performance overhead constraint (i.e. maximizing the 
total protection efficiency), while accounting for the resilience and 
masking properties (see Sections III and IV). 

First, the resilience values of all basic blocks and functions are 
computed using Eq. 5 and 6 (lines 1-5). Afterwards, the tolerable 
performance overhead quota for each function is computed using its 
resilience value (Ri, see Section III) and the user-provided tolerable 
performance overhead (lines 6-8). The idea is to allocate more over-
head quota to less-resilient function, while providing less overhead 
quota to more-resilient function. The function’s performance overhead 
quota is distributed among different basic blocks depending upon their 
resilience values (Rij, see Section III) and execution frequencies (eFij, 
see Section II), such that more frequently executing and less-resilient 
block receives more quota (lines 9-11). Afterwards, the basic blocks 
overhead quota is distributed among different instructions by selecting 
reliability-wise more important instruction for redundancy-based 
protection. An instruction for redundancy is selected depending upon 
its protection efficiency “λ” (lines 17-25). The protection overhead is 
subtracted from the basic block’s overhead quota (line 25). The loop is 
iterated until the tolerable overhead of the basic block is exhausted or 
all instructions are protected (line 16). 

VI. RESULTS AND DISCUSSION 

A. Experimental Setup 
Fig. 6 shows our experimental and modeling setup. A reliability-aware 
ISS is employed which exhibits an integrated fault generation and 
injection module which takes different fault models and parameters as 
input. Important parameters are: (1) fault rate obtained using the 
neutron flux calculator [16] and city coordinates, (2) processor layout 
and frequency (a Leon-II processor @100 MHz is deployed in this 
work [24]), (3) single bit flip transient faults, randomly distributed. 
We consider three different fault rates in our experiments (1, 5, 10 
faults/MCycles) to cover a wide range of cases (terrestrial to aerial). 
Like in prominent industrial and research projects by AMD [23] and 
IBM [22], the caches are assumed to be protected. The errors are 
observed at the application software layer and classified in different 
categories (see Section II). Error distributions, application analysis, 
IVI traces, etc. are generated from the reliability-aware ISS and 
forwarded to the resilience modeling and parameter estimation. 
Further details of fault injection process and reliability analysis can be 
found in [18][26]. 

Modeling and parameter estimation is done in MATLAB. Appli-
cation control and data flow graphs are used for computing the 
masking probabilities. The models and application reliability analysis 
is forwarded to the reliability-driven compiler (based on GCC frame-
work), that performs the selective instruction redundancy. 
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Fig. 6 Experimental and Modeling Setup 

For evaluation, we employ various applications “H.264”, “ADPCM”, 
“SusanS”, “CRC”, “SHA” from MiBench and integrate them into a 
complex real-world application scenario of “secure audio-video 
coding and filtering” for quota distribution. The “H.264” application 
exhibits various compute intensive functions like “SAD” and “DCT”. 

B. Comparison to State-of-the-Art for Instruction Redundancy 
For reliability comparison, we have selected the most prominent state-
of-the-art in software based protection schemes, i.e. SWIFT [7], which 
performs instruction redundancy and recovery for all instructions in 
the program. The reliability comparison is performed for the vulnera-
bility reduction using the model of [18] and protection efficiency (see 
Fig. 5, Section V). Since SWIFT [7] incurs >3X performance over-
head for a RISC processor, its protection efficiency (i.e. reliability 
improvement per overhead) is ≤ 0.33. In contrast to this, the protection 
efficiency of our approach ranges from 0.95 to 1.21, see Fig. 7b. This 
corresponds to an improvement of 3.6X in the protection efficiency. 

To have a more fair comparison, we adapted SWIFT towards 
selective instruction redundancy scheme by providing it our resilience 
based overhead quota distribution. However, instead of applying 
selective redundancy, SWIFT-variant selects instructions in a sequen-
tial manner. Fig. 7a shows such a comparison, where our experiments 
illustrates that, compared to SWIFT, our scheme provides a vulnera-
bility reduction of 6% to 48% at 5% and 50% tolerable performance 
overheads, respectively. 
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Fig. 7 (a) Overall reduction in the application vulnerability 
compared to the SWIFT [7] at different tolerable performance 

overhead constraints; (b) corresponding protection efficiency of 
our scheme; SWIFT has 0.33 protection efficiency 
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Fig. 8 Vulnerability reduction of our scheme for various 
application functions compared to the unprotected case 

at different tolerable performance constraints 

We have additionally compared our scheme to the unprotected case. 
Fig. 8 shows the overall vulnerability reduction of various application 
functions at different tolerable performance overhead constraints. It is 
noticeable that our scheme reaches >80% vulnerability reduction at 
50% overhead, since in this quota it already protects the most vulnera-
ble instructions. It denotes a protection efficiency of 1.6 for 
“ADPCM”, “SHA”, and “SUSAN”, which is 4.84X better compared 
to the 0.33 protection efficiency of full SWIFT [7]. Fig. 8 shows that 
“Susan” and “SHA” almost reach 95% vulnerability reduction with 
only a 50% overhead, while the vulnerability reduction is already 
more than 40% for only a 10% overhead. This also illustrates the 
benefit of using resilience for quota distribution, as in this case more 
quota is allocated to “ADPCM” and “SAD” and less quota is given to 
“DCT”. High reliability is required for both “SHA” and “CRC” as 
they are critical applications in terms of data protection. 

C. Results for Function Resilience and Software Masking 
The resilience is used to distribute the tolerable performance overhead 
quota among different functions of the application. A more resilient 
function would get a less quota for protection compared to a less-
resilient function that may not tolerate more errors. Fig. 9 illustrates 



the resilience (in log scale) and the performance overhead quota for 
different application functions. The resilience and quota are provided 
separately for the “incorrect output” and “application failure” cases 
along with the combined case. Note, here “incorrect output” and 
“application failure” are both treated as information loss. In cases, 
where “incorrect output” is tolerable, resilience to “application 
failure” is important to be considered. In our experiments of selective 
instruction redundancy, we have employed the quotas for the com-
bined case as we consider all types of errors. Due to its high resili-
ence, “DCT” gets lesser quota compared to the “ADPCM”, “SHA”, 
and “SAD”. The resilience of “DCT” is high because it is an unrolled 
version, with a relatively less number of branches compared to other 
applications that leads to less control flow errors in “DCT”. 
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Fig. 9 Resilience of various application functions (inverse values in 

log scale): resilience is shown separately for “incorrect output”, 
“application failures”, and “combined” 
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Fig. 10 Distribution of masking probabilities for different instruc-
tions in (a) DCT, (b) low-precision filter, (c) vertical edge-detector 

Fig. 10 illustrates the distribution of instruction masking probability in 
three different functions “DCT”, “Filter”, and “Edge Detector”. Fig. 10 
(a) shows that the distribution of masking probabilities in “DCT” 
exhibits significant variations from instruction to instruction, depending 
upon the instruction dependencies. Zero masking probabilities denote 
the instruction on the sequential path, where all errors will propagate to 
the successor instructions. In the “Edge Detector”, there is a high 
masking probability because the possible output values are “0” or “1”, 
i.e. if there is an edge is or not. Therefore, all errors that are smaller than 
the boundary value (specified in the application program) of the differ-
ence between pixels from an edge will not be seen. A similar masking 
behavior is observed “Filter” function, where all errors that are smaller 
than the precision bits are dismissed. The small variations correspond to 
shift instructions, while similar group of bars in Fig. 10(b, c) show the 
symmetric execution paths in “Edge Detector”. 

VII. CONCLUSIONS 
We illustrate that our selective software reliability scheme provides 
means to reduce the redundancy overhead, while still ensuring a high 
probability of correct output. This is leveraged by employing the 
variable function/basic block resilience and instruction masking 
probabilities to selectively protect instructions of application software 
under a user-provided tolerable performance overhead. Our novel 
resilience and masking models enable selective reliability optimiza-
tion under constrained scenarios at both hardware and software levels. 

Due to the conceptual enhancements in Section III, IV, and V, state-
of-the-art software reliability schemes by principal cannot reach the 
level of constrained reliability optimizations that our scheme provides. 
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