
Enabling Fine-Grained OpenMP Tasking on
Tightly-Coupled Shared Memory Clusters

Paolo Burgio, Giuseppe Tagliavini, Andrea Marongiu, Luca Benini
DEIS – Universitá degli Studi di Bologna – Viale Risorgimento 2, 40136 Bologna – Italy

Email: {paolo.burgio, giuseppe.tagliavini, a.marongiu, luca.benini}@unibo.it

Abstract—Cluster-based architectures are increasingly being
adopted to design embedded many-cores. These platforms can
deliver very high peak performance within a contained power
envelope, provided that programmers can make effective use the
available parallel cores. This is becoming an extremely difficult
task, as embedded applications are growing in complexity and
exhibit irregular and dynamic parallelism. The OpenMP tasking
extensions represent a powerful abstraction to capture this form
of parallelism. However, efficiently supporting it on cluster-based
embedded SoCs is not easy, because the fine-grained parallel
workload present in embedded applications can not tolerate high
memory and run-time overheads. In this paper we present our
design of the runtime support layer to OpenMP tasking for
an embedded shared memory cluster, identifying key aspects to
achieving performance and discussing important architectural
support to removing major bottlenecks.

I. INTRODUCTION

The multi-core design paradigm has been succesfully
adopted since 2005 to attack the technology walls hindering
Moore’s law predictions and is currently in the many-core era,
where hundreds of simple processing units (PU) are integrated
on a single chip. To overcome the scalability bottlenecks
encountered when interconnecting such a large amount of
PUs, some recent embedded many-core accelerators leverage
tightly-coupled clusters as a building block. Examples are
Plurality’s HyperCore Architecture Line (HAL) processors [1],
ST Microelectronics STHORM [2], or massively data-parallel
architectures such as GP-GPUs [3]. These products consider a
hierarchical design, where PUs are grouped into small-medium
sized subsystems (clusters) sharing high-performance local
interconnection and memory, while scaling to larger system
sizes is enabled by replicating clusters and interconnecting
them with a scalable medium like a NoC.

While similar architectures can theoretically achieve
tremendous Gops/watt targets, the burden of extracting this
peak performance is nowadays mostly demanded to the soft-
ware layer. Efficient programming abstractions (programming
models, compilers, runtime systems) are paramount to achiev-
ing efficient exploitation of many-cores. In particular, modern
embedded applications are increasing in complexity and often
expose high degree of parallelism which is irregular in nature
and/or dynamically generated. The tasking execution model
represents a powerful abstraction to exploiting this kind of
parallelism, as it enables asynchronous, dynamic creation of
units of work in a simple and straightforward manner. Notable
examples of this programming paradigm include Cilk [4],
Apple Grand Central Dispatch [5], Intel Carbon [6] or the
current OpenMP specification [7].

The tasking abstraction provides a powerful conceptual
framework to exploit irregular parallelism in target applica-
tions, but its practical implementation requires sophisticated
runtime system support, which typically implies important
space and time overheads. The applicability of the approach
is thus often limited to applications exhibiting units of work
which are coarse-grained enough to amortize these overheads.
While this is often the case for general-purpose systems and
associated workloads, things are different when considering
embedded many-core accelerators. Miminizing runtime over-
heads is thus a primary challenge to enjoy the benefits of

tasking on these systems.
In this paper we describe the design of an optimized runtime

environment supporting the OpenMP tasking model on an
embedded shared-memory cluster. We identify the key aspects
critical to performance and explore architectural (HW) support
to minimizing the effect of major bottlenecks implied by the
execution model. We validate our work on a cycle accurate
virtual platform simulating the target cluster and the proposed
architectural variants, discussing in details how our optimiza-
tions make tasking a suitable programming abstraction also in
presence of very fine-grained workloads.

The paper is structured as follows. We discuss related work
in Sec. II and the target architectural template in Sec. III. The
design and implementation of OpenMP tasking is described in
Sec. IV. Finally, we validate our approach and characterize the
performance of our implementation in Sec. V, then summarize
our main findings and discuss future work in Sec. VI.

II. RELATED WORK

The tasking (a.k.a. work-queue) programming model is
a well known paradigm in the domain of general-purpose
computing and in last decade it has been successfully adopted
on several multi-core architectures. Cilk [4], Intel Carbon
[6], Apple Grand Central Dispatch [5] and OpenMP [7]
are successful technologies embodying this model. Recently,
some attempts were made to explore its applicability also
to heterogeneous systems (i.e., CPU + GPU). The most
representative example in this sense is the Fusion series from
AMD [8], where a centralized queue system coupled to a
task-based programming model enables distributed dispatching
of work units between a generic (x86) CPU and a GPU-
like accelerator. Programming effort is anyhow significant,
since task execution and data transfers must be manually
orchestrated using OpenCL.

Currently, there are several freely available open source
implementation of the OpenMP 3.x specifications [9], [10],
[11]. The GCC-OpenMP (GOMP) framework [11] implements
tasking on top of pthreads. The overheads implied by such a
layer are significant, as evidenced by many researchers [9][10].

The cited works target general-purpose computing, using
lightweight threading libraries to ensure portability and ef-
ficiency. However, embedded platforms are typically more
resource-constrained than general-purpose systems, thus re-
quiring different design choices for the implementation of
tasking. For example, Ayguadé et al.[12] consider tasks with
a duration of 10µs (which considering their 1.67 GHz cores
and assuming a CPI of 1 translates in 16K cycles). Similarly,
Kumar et al. [6] consider an average of 5K clock cycles
for fine-grained tasks. Agathos et al. [9] can afford a 4MB
stack for their threads. Clearly, all these numbers need to
be significantly scaled down when considering embedded
applications and the hardware they run on.

To the best of our knowledge, we are the first to implement
OpenMP tasks on an embedded shared memory cluster.

III. ARCHITECTURE

The reference architecture is inspired by the tightly-coupled
clusters in ST Microelectronics STHORM [2]. In Figure 1
we show a simplified block diagram of a cluster composed978-3-9815370-0-0/DATE13/ c© 2013 EDAA

SHARED L1 TCDM

B
A

N
K

 0

SLAVE

PORT

LOGARITHMIC INTERCONNECT (MoT)

B
A

N
K

 1

SLAVE

PORT

B
A

N
K

 N

SLAVE

PORT

te
st-a

n
d

-se
t

se
m

a
p

h
o

re
s

SLAVE

PORT
L2/L3

BRIDGE

CORE 0

MAST

PORT

I$

CORE M

MAST

PORT

I$

Fig. 1. On-chip shared memory cluster template

SWITCH SWITCH

SWITCHSWITCH

MEM

CTRL

MAIN MEMORY

TCDM 2

TCDM 1
TCDM 0

MAIN

MEMORY

0x00000

0x40000

0x80000

0xc0000

Fig. 2. Multi-cluster architecture and global address space

P3P2P1P0

M
7

M
6

M
5

M
4

M
3

M
2

M
1

M
0

lev 1

lev 2

lev 3

lev 1

lev 2

R
o

u
tin

g
 tre

e
A

rb
tre

e

Cores

Mem
banks

Fig. 3. Mesh of trees 4x8

of (up to) 16 RISC-32 processors connected through a low-
latency, high bandwidth logarithmic interconnect similar to
the ones proposed by Plurality LTD [1] or Rahimi [13]. The
logarithmic interconnect is built as a parametric, fully combi-
national Mesh-of-Trees (MoT) (see Figure 3). Processors com-
municate through a fast multi-banked, multi-ported Tightly-
Coupled Data Memory (TCDM), which is configured as a
shared, software-managed scratchpad memory. The number of
ports and banks is a multiple of the number of processors
to increase bandwidth. In case there are no bank conflicts,
concurrent accesses by multiple cores to the TCDM are served
simultanously by the MoT. Bank conflicts result in a higher
latency, due to contention, which is resolved based on round-
robin arbitration. The crossing latency of the MoT is one clock
cycle, and word interleaving enables fast concurrent accesses
to adjacent memory locations. As a consequence, conflict-free
TCDM accesses have two-cycle latency. The interconnection
supports read-broadcast: when multiple processors read the
same memory location at the same time all the requests are
serviced in two cycles.

The L1 scratchpad (TCDM) has limited size of 256KB, thus
program code and most of the data are typically stored in larger
L2 or L3 memory, while the content of the TCDM is manually
updated to the most referenced subset of data at any time.
A cluster thus features a L2/L3 bridge for communication
with the outer world. In this work we consider a two-level
memory system, with an off-cluster main memory, and we
assume a global address space. Scaling to larger system sizes
with this architectural template is achieved by interconnecting
several clusters through a NoC as shown in Figure 2 (see [2]).
However, in this paper we consider a single cluster and leave
exploration of multi-cluster for future work.

Synchronization among the processors is achieved through
a segment of the local TCDM address space featuring test-
and-set semantics. As we will explain in Section IV, the way
the test-and-set memory is physically implemented has a big
impact on the performance of our tasking support. In the
following we will thus describe different implementations.

IV. DESIGN AND IMPLEMENTATION

OpenMP 3.0 introduces a task-centric model of execution.
The new task construct can be used to dynamically generate
units of parallel work that can be executed by every thread in
a parallel team. When a thread encounters the task construct,
it prepares a task descriptor consisting of the code to be
executed, plus a data environment inherited from the enclosing
structured block. shared data items point to the variables
with the same name in the enclosing region. New storage is
created for private and firstprivate data items, and
the latter are initialized with the value of the original variables
at the moment of task creation. The execution of the task can
be immediate or deferred until later by inserting the descriptor
in a work queue from which any thread in the team can extract
it. This decision can be taken at runtime depending on resource
availability and/or on the scheduling policy implemented (e.g.,

breadth-first, work-first [10]). However, a programmer can
enforce a particular task to be immediately executed by using
the if clause. When the conditional expression evaluates to
false the encountering thread suspends the current task region
and switches to the new task. On termination it resumes
the previous task. Specifications also enable work-unit based
synchronization. The taskwait directive forces the current
thread to wait for the completion of every tasks generated
from the current task region. Task scheduling points (TSP)
specify places in a program where the encountering thread
may suspend execution of the current task and start execution
of a new task or resume a previously suspended task.

Figure 5 shows our layered approach to designing the
primitives for the tasking constructs. These constructs are

TASK SCHEDULING

POINT

#pragma omp

taskwait

CREATE_TASK REGISTER_TASK

OpenMP tasking API

WORK QUEUE implementa!on

HAVE_CHILDRENTRYFETCH_TASK NOTIFY_END

POP_AND_EXEC

#pragma omp

task

CREATE_AND_PUSH

#pragma omp

task if(FALSE)

CREATE_AND_PUSH WAIT

Fig. 5. Design of tasking support

depicted in the top layer blocks (in black). To manage OpenMP
tasks we rely on a main work queue where units of work can
be pushed to and popped from (bottom layer block). The gap
between OpenMP directives and the work queue is bridged by
an intermediate runtime layer (gray blocks), which operates
on the queue through a set of basic primitives (white blocks)
to implement the semantics of the tasking constructs.

A. Design of the work queue

Our design relies on a centralized queue with breadth-first,
LIFO scheduling. Tasks are tracked through descriptors which
identify their associated task regions and which are stored in
the work queue. The two basic operations on the queue are
task insertion and extraction. Inserting a task has two effects:
i) creating a new descriptor for it, and ii) registering it as a
child of the executing task (its parent). We formalize these
semantics as a primitive that we call CREATE_TASK.

Extracting a task from the work queue retrieves its descriptor
for execution. To this aim we consider a TRYFETCH_TASK
primitive, which returns the task descriptor in case of suc-
cessful extraction, or a NULL pointer if the work queue
is empty. Task extraction should only return the descriptor
to the caller, not detach it from the work queue until the
task has completed execution. This is necessary for correctly

Fig. 4. Design of task scheduling loop

supporting synchronization (taskwait). We thus designed a
separate NOTIFY_END primitive to dispose of the descriptor,
which acts as an epilogue to task execution.
Note that since the TRYFETCH_TASK primitive does not
remove the task descriptor from the work queue, it is necessary
to mark it as running to avoid multiple extractions of the same
descriptor. Thus, the CREATE_TASK inserts a waiting task in
the work queue and the TRYFETCH_TASK changes its status
to running. NOTIFY_END marks it as ended.
To support undeferred tasks (e.g., whose if condition is eval-
uated to false) we introduce a REGISTER_TASK primitive
which inserts a descriptor marked as running.
Finally, the HAVE_CHILDREN primitive allows to determine
if a task has children not yet assigned to a thread (i.e., in the
waiting state). As we will explain in the next section, this is
necessary to implement task switching capability in presence
of a taskwait.

B. Design of the runtime layer

Let us consider the simple example of the task construct in
the code snippet of Figure 4. The parallel directive creates
a team of worker threads, then only one of them executes the
single block. This thread acts as a work producer, since it
is the only one encountering the task construct. The control
flow for the rest of the threads falls through the parallel region
to the implied barrier at its end.

The most important part of the implementation of the
tasking execution model is Task Scheduling Points (TSP).
Parallel threads are allowed to switch from one task to another:

1) at task constructs;
2) at implicit and explicit barriers;
3) at the end of the current task;
4) at taskwait constructs;
The first point prevents system oversubscription in cases

where a thread is required to generate a very high number of
tasks (e.g., the task directive is nested inside a loop with a
huge number of iterations). Placing a TSP on a task construct
allows the producer thread to switch to executing some of the
tasks already in the queue. Task creation is resumed once the
queue has been depleted to a certain level.

To keep the implementation of task scheduling as simple
as possible we deal with this issue in the following man-
ner. Upon encountering a task directive, threads calls the
CREATE_AND_PUSH runtime function, depicted on the left
part of Figure 4. Here, the caller first checks for the number
of tasks already in the queue. If this number exceeds a given
threshold the thread does not insert the task in the queue, but

it immediately executes it instead. Note that this can not be
implemented through a simple jump to the task block code.
Executing a task without creating a descriptor and connecting
it to the others will in fact result in ignoring its existence,
which may lead to incorrect functioning of the taskwait
directive due to bad internal representation of the task hier-
archy. Thus we create and insert in the queue a descriptor
for a running task through the REGISTER_TASK primitive.
Similarly, we signal task execution termination through a call
to NOTIFY_END.

This same solution is adopted when an undeferred task
is explicitly generated by the user through the if(FALSE)
clause. In all the other cases, a call to CREATE_AND_PUSH
will result in regular creation of a team descriptor and insertion
in the queue (CREATE_TASK). After that, the producer thread
signals the presence of work in the queue by releasing a
barrier lock on which consumer threads wait.

This brings us to the second TSP. As explained before,
threads not executing the single block are trapped on the
barrier implied at the end of the region. This is implemented
through a call to the POP_AND_EXEC function (central part of
Figure 4). Here, threads first check for the presence of tasks in
the queue. If there are tasks available the encountering thread
initiates an execution sequence. First, the task descriptor is ex-
tracted from the queue with the TRYFETCH_TASK primitive.
Then, the associated task code is executed. Finally, notification
of task completion is signaled through the NOTIFY_END
primitive. If the queue is empty, the encountering thread busy
waits on the barrier lock (note that this lock is initialized
as busy at system startup). When the lock is released by a
producer pushing a task in the queue, the current thread checks
for the presence of tasks in the queue and for the number of
threads waiting on the lock (annotated in a counter). If all
threads are on the lock and there are no tasks in the queue, this
indicates that the end of the parallel region has been reached.
Otherwise, there may still be work left to do, so the thread
jumps back to the scheduling loop.

Note that upon task termination we execute again an itera-
tion of the scheduling loop, thus implementing the third TSP.

Finally, a TSP is also implied at a taskwait construct.
However, in this specific case the Task Scheduling Constraint
only allows to switch execution to a task that was directly
created by the current one to prevent deadlocks. We implement
this semantics in the WAIT runtime function. Each task keeps
track of its children. The HAVE_CHILDREN primitive allows
to fetch the descriptor of a child task in the waiting state. If a
valid task descriptor is returned, the thread can be rescheduled

on that task. Otherwise, all the children are in the running
state and the thread will have to stay idle waiting for their
completion. In this case, the last terminating child notifies the
parent through the NOTIFY_END primitive.

C. Implementation details

Task descriptors are interconnected within two co-existing
data structures; a queue and a tree. The queue contains the
descriptors of all the tasks in the waiting state for the current
parallel region and it is implemented as a doubly-linked list.
Similarly, to build the tree representation, each descriptor
handles a reference to a doubly-linked list of children, i.e.,
the set of tasks that it has previously created, being either in
the waiting or running state. Each descriptor also traces the
parent task. Upon task creation, the corresponding descriptor
is inserted into the work queue by updating the connections
in the queue and in the tree data structures.

Consistency between the two representations is enforced by
making their updates atomic through a work queue lock. Each
of the insertion/removal primitives protects the critical sections
that update the descriptor with this lock. We have manually
optimized the assembly for the primitives to minimize the
duration of critical sections.

To ensure fast access to task descriptors, we store them in
L1 memory. However, the number of tasks co-existing in the
system can become very high, thus we need a mechanism to
avoid memory oversubscription. We implemented a custom
allocator which uses a fixed number (1024) of statically
reserved bins in a region of the TCDM. The task_malloc
and task_free retrieve and dispose memory for a new
descriptor using a LIFO list of free bins. Concurrent write
accesses to the list are protected by a lock (task malloc lock).
There are four main types of locks in our tasking support
framework. Besides task malloc lock and work queue lock,
the barrier lock is used inside the task scheduling loop for
idle threads to wait for available tasks and the taskwait lock
is used by a task to wait for termination of its children.

Note that there is one work queue lock and one bar-
rier lock for each parallel region in the system, while there is a
taskwait lock for every task in the system. In fact, the number
of locks used at any time can be high. As a consequence, the
single-ported test-and-set (TAS) memory may easily become
a bottleneck if multiple threads are concurrently performing
any form of synchronization.

= busy

wai!ng

= single

read

= single

write = wake

T

T

TAS

ARCH 1
T

T

T

TAS

ARCH 2

T

T

= polling
= thread

(SIGNAL)

T = thread (WAIT)

T= sleep

T

T

T

T

T

TAS T

T T
ARCH 3

Fig. 6. Different architectural configurations (ARCH) of the TAS memory

To address this issue we consider the following architectural
variants (shown in Figure 6). We refer to the implementation
with single-ported, single-banked TAS memory as ARCH 1
and consider it as a baseline for the other solutions. Any
wait operation in this architecture is always implemented
with busy-waiting (see leftmost part of the figure). As the
number of locks increases, the concurrent traffic overloads the
TAS port. However, in many cases the conflict is created by
contention for the memory port, not for a lock. This issue can
be mitigated by considering an architectural modification to
increment the number of ports and banks of the TAS memory.

In this variant (referred to as ARCH 2) the TAS segment has
16 banks/ports and thus, similar to the data TCDM segment,
can serve concurrent accesses to different locks in parallel.

In both ARCH 1 and ARCH 2 all of the wait operations
are implemented with busy-waiting on the lock until the corre-
sponding signal operation FREEs it. While ARCH 2 solves the
issue of sequentialization of accesses to distinct locks, it does
not remove the polling activity of multiple cores, which creates
congestion. While work queue lock and task malloc lock are
used to implement critical sections protecting atomic queue
updates, barrier lock and taskwait lock implement a different
synchronization pattern, where one thread (or more) is waiting
for another one (or more) to notify verification of a specific
event. Thus, while in the first case a busy-waiting implemen-
tation is to be preferred (short duration of the critical section),
in the second case we could rather consider an alternative
idle/wake mechanism where threads that find a busy lock enter
a sleep state and will be awaken after the lock has been set to
FREE. We refer to this architectural variant as ARCH 3.

V. EXPERIMENTS

To validate our design we performed an extensive set of
experiments using a SystemC-based virtual platform modeling
the tightly-coupled cluster described in Section III [14]. Table
I summarizes the main architectural parameters, a typical setup
for the considered platform template (see [2]).

TABLE I

ARM v6 cores 16 TCDM banks 16
I$ size 1 KB TCDM latency ≥ 2 cycles
I$ line 4 words TCDM size 256 KB
thit = 1 cycle L3 latency ≥ 60 cycles
tmiss ≥ 59 cycles L3 size 256 MB

We implemented the tasking support on top of a runtime [15]
optimized for the target platform. We present three types of
experiments:

1) cost characterization of the main tasking constructs;
2) parallelization speedup for varying task granularity and

comparison with other tasking implementations;
3) parallelization speedup for two real programs: the

Strassen matrix multiplication benchmark and the FAST
corner detection application.

A. Tasking cost characterization

We measured the cost of the OpenMP tasking services
presented in Section IV (top layer of Figure 5, in black). We
create 16 threads, one per processor, then force one single
thread to produce 256 tasks. The tasks are composed of
ALU instructions only, to exclude memory effects from the
measurement (each task consists of 500 ALU operations).

Figure 7 shows the results for these measurements for each
of the three architectural variants discussed in the previous
section. There is one additional bar per plot, labeled IDEAL,
which shows the cost for executing the corresponding runtime
operation on a single core, while the rest of the cores is
idling (thus no interference of any kind takes place). These
experiments are run under architectural variant ARCH 1.

A first observation is that the cost for tasking in the IDEAL
case is between 70 and 130 clock cycles. The optimized
assembly routines allow a low cost for these services.

Figure 7 (a) shows the cost for creating a task with the task
directive. Contributions include time for creating the descriptor
(task malloc) and initializing it (desc init), work queue lock
acquisition (lock) and release (unlock), plus update of the
internal work queue data structures (update wq). Results
for ARCH 1 show that the duration of the lock and the
unlock phases are greatly impacted by high contention for
the single-ported TAS memory, as well as task descriptor
creation and initialization (in which some locks are accessed).
When moving to ARCH 2 most of this effect disappears

0

20

40

60

80

100

120

140

160

180

200

TSP

(barrier)

unlock

update wq

lock

0

20

40

60

80

100

120

140

160

#pragma omp

task if(FALSE)

post

desc init

0

10

20

30

40

50

60

70

80

90

100

TSP

(taskwait)

unlock

update wq

lock

0

50

100

150

200

250

300

350

400

#pragma omp

task
task_malloc

desc init

lock

update wq

unlock

a b c d

Fig. 7. Breakdown of the time spent in high-level OpenMP services

as expected. ARCH 3 further improves the results, since
the polling traffic for threads waiting on the barrier lock is
removed, thus reaching the IDEAL performance.

Figures 7 (b), (c) and (d) report similar cost results respec-
tively for i) a Task Scheduling Point occurring on implicit
and explicit barriers ii) creating an undeferred task (annotated
with a if(FALSE) clause) iii) a Task Scheduling Point
occurring on a taskwait. Similar conclusions hold for the
benefits of ARCH 2 and ARCH 3 over ARCH 1. Note that
for undeferred tasks we need not acquire a lock since the
descriptor is in a local variable, which also removes the need
for task_malloc/free. The post cost refers to switching
execution back to the calling context.

B. Task granularity impact on speedup

Figure 8(a) shows how different task granularities affect
speedup for each of the three architectures. For this characteri-
zation we consider a synthetic benchmark consisting of a loop
with a parameterizable number of iterations (GR) and whose
body contains one dummy ALU (MOV) instruction.
We consider the same setup of the previous experiment, with
16 threads, where only one is responsible for the creation of
256 tasks while the remaining 15 can immediately start to
execute them (the producer thread can also join task execution
after creating them all). We perform experiments for task
granularities (GR) varying in the range between 1 and 15K. To
obtain the speedup we compare the total execution time for the
256 tasks on a single thread with the parallel execution time.
The theoretical maximum speedup (16×) is depicted by the
UPPER curve, while the LOWER curve shows a lower bound
to the speedup (i.e., below this value we have slowdown).

The figure shows that the LOWER value is reached for
values of GR ≈80, while the UPPER bound is asymp-
totically reached for granularities of ≈5000. Note that the
actual maximum speedup is lower than 16×, because one
processor acts as a task producer and does not take part to the
actual parallel execution. This limits the maximum speedup
achieved in slightly more than 15×. In this region we do not
appreciate significant difference among the architectures. For
finer tasks, however, the performance of different architectures
differentiate. Figure 8 (b) “zooms in” the finer task region,
plotting the relative speedups referred to the ARCH 3 for
a given granularity. The numbers on top report the absolute
values for the speedup of ARCH 3. A considerable speedup
(20 to 30%) is achieved when switching from ARCH 1 to
ARCH 2, at any granularity. Switching to ARCH 3 further
improves performance, up to +30% speedup (for GR≈ 10).

In summary, these experiments identify 80 ALU instructions
as the minimum task granularity to achieve any speedup in
our implementation and 5000 to reach the upper bound. Note
that tasks in real applications are likely to have more than 80
instructions, including memory accesses, here not modeled.

We also compared our tasking support with GCC-OpenMP
[11] and OMPi [9]. Experiments were performed on a Intel
i7 quad-core machine @3.4GHz, featuring HyperThreading
technology. Since the target machine only has four cores, for

fair comparison we repeat the experiment on an instance of
our cluster with the same number of PUs. In addition we also
compare HyperThreading (8 threads) with our runtime running
on 8 PUs. The results for this experiment are shown in Figure
8(c). Solid lines refer to the experiment with four cores, dashed
lines refer to the experiment with 8 cores. The results show that
ARCH 3 asymptotically reaches the maximum speedup (4×)
for GR≈5000, outperforming both GOMP and OMPi which
reach their peak values for GR≈100000. Similar conclusion
applies when 8 threads are considered. Note that, since our
synthetic tasks are made of ALU instructions, HyperThreading
only achieves 6×. Results prove that we achieve peak speedup
for tasks ≈ 20× finer-grained than both GOMP and OMPi.

C. Real Benchmarks

In this section we analyze our runtime on two real programs:
Strassen matrix multiplication and FAST corner detection.

1) Strassen: The Strassen algorithm for matrix multipli-
cation exposes high degrees of parallelism and consequently
allows parallelization with tasks of different granularities. The
algorithm is naturally structured in three stages: in Stage 1
ten sums are computed. Similarly, Stage 2 consists of seven
multiplications, and Stage 3 consists of four sets of sums
and subtractions. Each of these operations can be mapped
entirely onto a coarse-grained task (our COARSE scheme). In
alternative, the loops from which their computation takes place
can be parallelized to obtain finer tasks (our FINE scheme).

For the COARSE scheme, Stage 3 was further split in
two tasks, separated by a taskwait construct to enforce a
data dependence. Thus, the maximum speedups achievable are
equal to the number of tasks in each stage (respectively 10×,
7× and 4×). For the FINE scheme, each task processes two
rows of the sub-matrix in every sum/multiplication. Increasing
the size of the matrices affects both the number of tasks (the
number of rows increases) and the size of the single task (the
number of columns increases). Ideally, this scheme extracts
the maximum parallelism, with a theoretical speedup of 16×.

We consider square matrices N × N , with N ∈
{8, 16, 32, 64, 128}. We do not consider larger matrices for
two reasons: i) they would not fit into the TCDM and we do
not want delays due to data transfers from/to the main memory
to affect our observations; and ii) the considered matrix sizes
are, in our opinion, representative of fine-grained tasks from
the class of applications/systems we are targeting.

Figure 9 shows how the speedups for the two tasking
strategies scale in the different architectures, as we increase
the size of matrices and for each stage.

0

4

8

12

8 16 32 64 128 8 16 32 64 128 8 16 32 64 128

0

4

8

12

16

8

1
6

3
2

6
4

1
2

8 8

1
6

3
2

6
4

1
2

8 8

1
6

3
2

6
4

1
2

8

ARCH 1

ARCH 2

ARCH 3

STAGE 1

STAGE 2 STAGE 3

F
in

e
 g

ra
in

N

(Matrix size = NxN)

C
o

a
rs

e
G

ra
in

Fig. 9. Speedup of Strassen Algorithm

Ideal speedups are also reported in dotted black lines.
Obviously the speedup increases with matrix size, since the
overhead of tasking becomes less significant as the the actual
workload grows. This is the reason why in Stage 2 (more

0.07 0.2 1.6 7.7 13.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 500 1000

Task granularity GR

Rela!ve speedup

ARCH 1 ARCH 2 ARCH 3

0

2

4

6

8

10

12

14

16

1 10 100 500 1k 5k 7.5k 10k 15k

Task granularity GR (Number of ALU OPs in loop)

Speedup
UPPER

ARCH 1

ARCH 2

ARCH 3

LOWER

0

1

2

3

4

5

6

7

8

9

1 100 5k 15k 100k 1,5M 5M 1G

Task granularity GR

GOMP (4T) OMPI (4T) ARCH3 (4T)

GOMP (8T) OMPI (8T) ARCH3 (8T)

Speedup

comparison

Fig. 8. Parallelization speedup for increasing task granularity (a,b) and against existing OpenMP runtimes (c)

computation) we reach near-ideal speedup for small matrices
(32x32 for the COARSE scheme, 64x64 for the FINE scheme).
However, the FINE strategy does not always allocate enough
work to amortize the overheads, and this is the reason why
Stages 1 and 3 do not scale beyond 7× and 4×, respectively.

As shown in the charts, considering different architectures
does not significantly affect performance for Stages 1 and 2.
This is due to the regular nature of the parallel workload,
which does not require synchronization. Stage 3, on the
contrary, uses a taskwait construct to separate the two sub-
stages, thus showing the benefits of ARCH 3.

2) FAST: The FAST [16] algorithm compares the intensity
value of each point p of the input image with all the sixteen
points on the circle of radius 3 and center p. p is classified as
a corner if there exists a set of contiguous pixels within the
circle that are all brighter (minimum) or darker (maximum)
than p (with a tolerance threshold). The number of contiguous
pixels and the threshold value are both algorithm parameters;
typical values are respectively 9 and 20.

Given an N*M input image, the algorithm generates an out-
put vector whose size is N*M*3, containing the coordinates of
the corner points and a score. The latter is used in a subsequent
non-maxima suppression stage, which merges multiple pixels
belonging to the same corner. Finally, a keypoint detection
pass detects relevant features.

The core kernel performs most of the computation and
it exhibit data-parallelism at the pixel level. By estimating
the number of instructions in the main loop body we can
easily determine a minimum number of iterations to achieve
near-ideal speedup by checking the chart in Figure 8. We
eventually design our tasks to process an entire image row to
achieve this goal. We perform experiments increasing the size
N×N of input images, with N ∈ {64, 128, 256, 512}, thus the
granularity of tasks doubles with the input size. However, due
to the limited size of the TCDM it is not possible to store the
whole dataset therein. We thus split the image into stripes,
and process them one after the other. We adopt a double
buffering technique to overlap computation and DMA transfers
from the global memory. Table II shows the speedup of the
parallelized algorithm compared to the sequential version for
different image sizes. A considerable speedup is achieved even
for small images (11× for a 64x64 image, with each task only
processing 64 pixels) and the speedup reaches 91% of the
theoretical 16× for N ≥ 256.

TABLE II

Input dim 64x64 128x128 256x256 512x512 Ideal
Speedup 11,01 13,54 14,19 14,60 16

VI. CONCLUSION

Embedded systems are embracing the many-core paradigm.
Cluster-based designs are a promising solution to achieve
performance and scalability while meeting power budgets.
However, powerful programming abstractions are required to
use these machines effectively. In particular, modern em-
bedded applications call for paradigms to express dynamic

and irregular patterns of parallelism. The OpenMP tasking
model provides a convenient conceptual framework to exploit
this kind of parallelism. However, the fine-grained nature of
parallel tasks in embedded workloads calls for a design of the
runtime support which minimizes the cost of its implemen-
tation. We identified the key memory bottlenecks implied in
the tasking execution model and proposed an implementation
aimed at minimizing their impact, considering architectural
variants of a generic shared-memory cluster. Experiments per-
formed with both synthetic and real benchmarks demonstrate
that our lightweight support enables fine-grained tasking, thus
being suitable for the targeted class of embedded systems.
From an extensive characterization of the overheads of our
tasking support we derived guidelines to quickly size tasks in
applications, to achieve near-ideal speedups. In the future we
will consider new metrics in the experiments, namely memory
utilization and number of banking conflicts.

ACKNOWLEDGMENT

This work was supported by projects FP7 VIRTI-
CAL (288574) and JTI SMECY (ARTEMIS-2009-1-100230),
funded by the European Community.

REFERENCES

[1] Plurality Ltd. The HyperCore Processor Whitepaper.
http://www.warthman.com/projects-Plurality Architecture
Shared-Memory Synchronizer-Scheduler Load-Balancing
Task-Oriented-Programming Parallel-Cores.htm. April 2010.

[2] D. Melpignano et al. Platform 2012, a many-core computing accel-
erator for embedded SoCs: performance evaluation of visual analytics
applications Design Automation Conference, 2012, pp.1137-1142.

[3] NVIDIA. FERMI Series Whitepaper. http://www.nvidia.com/content/
PDF/fermi white papers/NVIDIA Fermi Compute Architecture
Whitepaper.pdf. 2009.

[4] R. D. Blumofe et al. Cilk: An efficient multithreaded runtime system. In
Journal of Parallel and Distributed Computing, pages 207–216, 1995.

[5] Apple, Inc. Grand Central Dispatch. https://developer.apple.com/
library/mac/#documentation/Performance/Reference/GCD libdispatch
Ref/Reference/reference.html. 2010.

[6] S. Kumar et al. Carbon: architectural support for fine-grained parallelism
on chip multiprocessors. SIGARCH Comput. Archit. News, 35:162–173,
June 2007.

[7] OpenMP Application Program Interface v.3.1. http://www.openmp.org/
mp-documents/OpenMP3.1.pdf. July 2011.

[8] AMD, Inc. Fusion Series Whitepaper. http://www.amd.com/us/
Documents/48423 fusion whitepaper WEB.pdf March 2010.

[9] S. Agathos et al. Design and Implementation of OpenMP Tasks in the
OMPi Compiler. In 15th Panhellenic Conference on Informatics, pages
265 –269, 2011.

[10] A. Duran et al. Evaluation of OpenMP task scheduling strategies. In
Proceedings of the 4th international conference on OpenMP in a new
era of parallelism, IWOMP’08, pages 100–110, Springer-Verlag, 2008.

[11] FSF - The GNU Project. GOMP - An OpenMP implementation for
GCC. http://gcc.gnu.org/projects/gomp/. 17 September 2011.

[12] E. Ayguadé et al. The Design of OpenMP Tasks. IEEE Trans. Parallel
Distrib. Syst., 20(3):404–418, Mar. 2009.

[13] A. Rahimi et al. A fully-synthesizable single-cycle interconnection
network for shared-L1 processor clusters. In DATE 2011.

[14] D. Bortolotti et al. Exploring Instruction caching strategies for tightly-
coupled shared-memory clusters, SoC, 2011.

[15] A. Marongiu et al. Fast and Lightweight Support for Nested Parallelism
on Cluster-Based Embedded Many-Cores In DATE 2012

[16] E. Rosten et al. Faster and better: A machine learning approach to corner
detection. IEEE Trans. Pattern Analysis and Machine Intelligence,
32:105–119, 2010.

