
Capturing Vulnerability Variations for Register Files

Javier Carretero, Enric Herrero, Matteo Monchiero, Tanausú Ramı́rez, Xavier Vera

Intel Barcelona Research Center, Intel Labs

E-mail: {javier.carretero.casado, enric.herrero, matteo.monchiero,tanausu.ramirez, xavier.vera}@intel.com

Abstract—Soft error rates are estimated based on worst-case
architectural vulnerability factor (AVF). Therefore, it makes
tracking real-time accurate AVF very attractive to computer
designers: more accurate AVF numbers will allow turning on
more features at runtime while keeping the promised SDC and
DUE rates. This paper presents a hardware mechanism based
on linear regressions to estimate the AVF (SDC and DUE) of the
register file for out-of-order cores. Our results show that we are
able to have a high correlation factor at low cost.

I. INTRODUCTION

The exponential growth rate of on-chip transistors, the lower

voltages, and the shrinking feature size make current proces-

sors vulnerable to transient faults caused by alpha particles

and neutrons [1]. Since these transient errors occur due to

an incorrect charge or discharge of an intermediate capacitive

node, they do not cause permanent failure in the hardware and

hence are termed soft errors (SER) in the literature.

The FIT rate caused by soft errors of a chip or its com-

ponents can be measured via accelerated beam tests, which

require a functioning chip. A more flexible approach that

allows correcting the design to address any possible reliability

issue is modeling the FIT rate. The model measures the faults

that result in an error through the Architectural Vulnerability

Factor (AVF) [2]. The AVF of a hardware structure is the

probability that a fault at any place in the component will

result in an erroneous behavior in the executed program.

Interestingly, FIT and AVF vary over time. For instance,

lower voltage increases the soft error rate, while different

programs may use resources differently and have different

AVF. Therefore, dynamically tracking the AVF instead of

using worst-case upper bounds would allow trading reliability

for power and performance, while still meeting the FIT re-

quirements. For instance, based on the observed FIT rate, one

can switch lockstep modes, or parity and ECC mechanisms on

and off, or even turn on and off more cores if there is enough

available FIT budget.

Previous works have studied how to predict AVF at runtime

by correlating different metrics like IPC, number of cache

misses, TLB misses, etc, with simulated AVF [3], [4], [5],

[6]. These solutions are based on linear regressions and

boosted regression trees that run the analysis with more than

200 different variables and pick the most important 10-20

variables. These works show that predictions can get very

accurate.

However, previous works do not consider the register files.

In this paper, we propose a methodology based on linear

regressions to effectively estimate the AVF of register files at

runtime in order to guide processor configuration. In summary,

the main contributions of this work are:

• AVF prediction for register file: we propose a method-

ology based on linear regressions to predict the AVF for

register files.

• Choice of metrics: we show how linear regressions

based on common performance metrics do not work and

identify few simple parameters that can easily predict the

AVF.

• Extensive training and validation: previous works used

only the SPEC programs. We show how training and val-

idating against SPEC programs is not enough in terms of

AVF variability. Instead, we use more than 1000 different

programs to show the applicability of our methodology.

The rest of the paper is structured as follows: Section II

reviews the methodology to calculate AVF. Section III reviews

our methodology to estimate AVF of register files based on

linear regressions. Section IV discusses the different results

and configurations, and demonstrates the efficiency of our

approach. Section V reviews some relevant related work. We

summarize our main conclusions in Section VI.

II. BACKGROUND AND EXPERIMENT SETUP

In this section we review how the impact of soft errors is

modeled in modern processors.

A. FIT, SER and AVF

Mukherjee et al. [2] introduced the concept of AVF, which

is defined as the probability that a bit flip at any place in a

processor component will result in an erroneous behavior in

the executed program.

Using AVF, we can calculate the FIT (i) for a processor

component i (e.g., functional units) as follows:

FIT (i) = RawErrorRate× TV F ×#bitsi ×AV Fi (1)

As a consequence of the complexity of the AVF calculation

and its dependency on applications, current FIT and AVF

analysis are pessimistic. This implies that in many scenarios,

systems are overprotected, wasting resources and power.

B. Runtime AVF Calculation

Runtime AVF calculation can be used to decide if we are

meeting the FIT (and AVF) limits at runtime, instead of using

the worst-case FIT and AVF scenarios. This opens the door for

many runtime reconfigurations; for instance, if the current FIT

is very low, one could opt to turn on more cores. Contrary, if978-3-9815370-0-0/DATE13/ c©2013 EDAA

the FIT rate is too high, one could decide to turn on an error

protection scheme or shut down a core.

In order to take a decision at time A, we need to answer

the question “what is the AVF at time A?”. Biswas et al. [8]

proposed the quantized AVF (Q-AVF) approach: instead of

using instantaneous AVF (which can introduce too much

fluctuation to lead reconfigurations) or the regular average

AVF (which would lose the fine-grained variation in AVF), Q-

AVF averages the AVF over short intervals (quantums), such

as thousand or few millions of cycles.

C. Linear Regressions

Our goal is to correlate at runtime the given Q-AVF of

register files with microarchitectural events. The classical

linear regression model for Q-AVF uses first order monomials.

It yields a set of weights βi, one for each predictor event fi:

AV F β0 + β1f1 + β2f2 + . . .+ βkfk (2)

It also yields a coefficient of variations R2, which mea-

sures how well the generated function fits the observed data

(larger R2 indicates a better fit, with 1 taken to mean perfect

correlation).

D. Experiment Setup

We have conducted experiments with a processor that re-

sembles the Intel R©CoreTMMicro-Architecture. The particular

processor is a 6-way processor (micro-ops), with an instruction

cache and first level cache of 32KB, and a second level cache

with 512KB. The register files have 160 physical registers,

whereas the ROB has 128 entries and the issue queue 32.

To obtain the correlations, we will use three different set

of benchmarks. We will start using the well known set of

SPEC CPU 2000 benchmarks to describe our proposal. For

each benchmark, we pick the most representative simpoint [9].

When assessing our methodology, we will use two different

larger set of benchmarks. Out of 6000 different traces, we

create two different sets:

• Training set. We randomly pick 500 traces represent-

ing different kind of benchmarks (it includes SPEC

CPU2000, productivity, kernels, office, multimedia,

server and workstation applications).

• Test set. In this case, we randomly pick another 500

traces that represent the same kind of benchmarks as the

training set, although they belong to different programs.

Linear regressions analysis have been performed with the R

software [10].

III. AVF PREDICTION OF REGISTER FILES

This section reviews our proposal for an efficient mecha-

nism to perform runtime AVF prediction of the register file.

For the set of experiments shown in this section, we take the

whole SPEC2000 suite. We run 10 million instructions, and

use a small quantum size of 1024 cycles. We will discuss more

results for more configurations in the evaluation section.

�

���

���

���

���

���

���

��	

��

���

�

� �
�
�

�
�

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

�

�

�

�
�
�

�
�
�

�
�
�

�

�������� �� ��!�" #$%&�"

' ()**+,-./)0

1��! 2!��3

Fig. 1. Correlation factor of Q-AVF of physical registers with Q-AVF of the
whole integer register file

A. Tracking Microarchitectural Events

We start by analyzing how well the Q-AVF of the register

files correlate with microarchitectural events. For the rest of

the section we will run the discussion for the integer register

file, and later summarize the results for the floating point (FP)

register file.

The set of architectural and microarchitectural events con-

sidered is similar to previous works [6], [8]; it includes:

1) Number of executed and committed uops

2) Cache hits and misses to first and second level cache

3) Branch miss-predictions

4) Number of committed load, store, integer and FP in-

structions

5) Number of stalls at different pipeline stages

6) Utilization of the issue queue and ROB

The results show a very poor correlation between the Q-AVF

of the register files with the different events. For instance, if we

combine all events we obtain a correlation factor R2 = 0.35
for the integer register file.

B. Tracking Physical Registers

Programs written for a particular instruction set specify

operations based on the architectural (or logical) registers;

however, out-of-order processors use larger physical register

files and renaming mechanisms that hold many copies of a

logical register allowing out-of-order execution of instructions.

The Q-AVF of the register file of an out-of-order processor

is the Q-AVF of all physical registers. Therefore, we first check

if there is a small subset of physical registers that contribute

most of the Q-AVF of the whole register file. We show the

results in Figure 1. Each point n in the chart represents the

correlation factor R2 when correlating the Q-AVF of the whole

register file with the Q-AVF of registers up to register number

n. We analyzed two different implementations of the free list:

(i) as a list, and (ii) as stack. We highlight with two circles

the points where R2 = 0.9 is achieved. As one can see, we

would need to consider between 70-90 registers to correlate

�

Fig. 2. Q-AVF (in terms of number of vulnerable cycles) distribution for
RAX vs LastRead_Entry event

with reasonable accuracy the Q-AVF of the whole register file,

which is impractical.

C. Tracking Architectural Registers

Due to the cost of tracking a large number of physical

registers, we considered the possibility of tracking the archi-

tectural registers (notice that for an out-of-order processor, the

vulnerability of an architectural register is the vulnerability

of all physical registers that have renamed it). We started by

answering the following question: can we correlate the Q-AVF

of the integer register file with the Q-AVF of few architectural

registers?

Unlike physical registers, we need very few architectural

registers to correlate the Q-AVF of the integer register file.

Our experiments showed that just tracking RAX, RCX, RDX,

RSP, RDI, and TMP0 gives a correlation factor R2 = 0.90.

Once we had a positive answer, the next step was trying to

correlate the Q-AVF of an architectural register with some

events. First, we tried with the microarchitectural events

described earlier. Results were not very encouraging; for

instance, if we consider all events, we get a correlation factor

R2 = 0.54 for RAX, or R2 = 0.19 for RSP.

We also tried to calculate the time of last read

(LastRead_Entry) for every architectural register (which

is the max(LastRead_Entry) of all physical registers that

rename the architectural register). The results were also very

fuzzy; we show in Figure 2 the Q-AVF distribution versus

LastRead_Entry for RAX.

D. Tracking Architectural Registers: Histograms

In order to compute the vulnerability of one architectural

register of an out-of-order processor we need to track the vul-

nerability of the physical registers that rename it. We tracked

an histogram of the vulnerability cycles for the different

renames of architectural registers. We show in Figure 3 the

histogram for RAX. As one can see, the vulnerability cycles

for all different renames are much clustered, with most of the

renames being vulnerable between 0 to 5 cycles.

Therefore, we explored the possibility of correlating the

histogram with the vulnerability for the different architectural

�

Fig. 3. Histogram for the vulnerability cycles of all physical registers that
rename RAX

registers. Later we will discuss how we could implement this

in hardware.

We have tried with different bins (ranges) for the histogram.

We observed that having just two bins was not giving very

good results. Therefore, we moved to four bins. After trying

different configurations, we observed that for short-lived archi-

tectural registers (like RAX, RDX, etc) bins defined by 0 to 50

cycles, 50 to 75 cycles, 75 to 100 cycles, and larger than 100

cycles worked pretty well. We obtained R2 = 0.94 for RAX

and R2 = 0.85 for RDX. For longer-lived registers (registers

that may hold values for longer periods of time), like RSP,

we used different intervals that reflect their behavior.

Now, with all pieces in place, we can try to answer the last

question: can we use the bins for the different architectural

registers to correlate the Q-AVF of the whole register file? We

ran the correlations using the bins from the registers discussed

earlier in Section III-C: RAX, RCX, RDX, RSP, RDI, and

TMP0. The results showed that we can correlate the Q-AVF

of the integer register file with R2 = 0.90.

E. Implementation

One option is to use two counters for each physical register,

a write and a read counter, and one counter per bin. Write

counter is set once it is written. Read counter is set every

time the register is read. At commit time, once the physical

register is released, we first calculate the distance between the

write and the read counter. Then, we check which architectural

register was renaming (this information is available in the ROB

entry), and increment the counter of the corresponding bin. At

the end of the quantum, we would read the bin counters and

use them to correlate the Q-AVF of the register file.

Sampling. One possible optimization consists in tracking

only few registers instead of all 160 physical registers. We

explored different options:

• Random configurations (only for potential analysis); at

commit time, we randomly decide if the register write

and read time are considered.

• Fixed registers; we randomly select few registers that are

the only ones sampled for the whole execution. We tried

5 (5R) and 10 (10R) registers.

4

456

457

458

459

45:

45;

45<

45=

45>

6

>4? =4? ;4? 74? @@ :? @@ 7?

699A 67=A >;A 87A 64A =A :A 8A

B

6479 C6DE :67D

6479D

Fig. 4. Impact on the correlation factor of the number of physical registers
tracked

We show the results in Figure 4; for the random configurations,

we also show the approximate number of registers that are

sampled. We first can observe that for the considered quantum

(1K cycles), sampling randomly 90% of the register commits

still gives good results, with R2 higher than 0.8. However,

quality of the correlation drops as we decrease the number of

sampled committed registers. It is also interesting to see that

random sampling gives better results that fixed sampling; for

instance, randomly sampling 3% of the registers that commit

is better that just sampling always the same 5 registers. This is

reasonable, since the random selection of the registers allows

tracking higher variability.

We also explored different quantum sizes. It is interesting

to see that as we increase the quantum size, the impact of

sampling less registers is minimized. This is due to the fact

that although we sample less registers, we are able to track

enough variability of renames for all the architectural registers

due to the larger quantum sizes. For instance, for a quantum

size of 1024K cycles, just sampling 5 registers we can have

a correlation factor R2 = 0.83. Sampling only one physical

register yields an R2 = 0.85 for quantums of 4 million cycles,

and R2 = 0.91 for 8 million cycles quantums (not shown in

the Figure).

F. FP Register File

We obtained similar results for the FP register file. Registers

MM0, MM1, MM2, MM3 and FTMP0 correlate with the Q-AVF

of the FP register file with R2 = 0.92. When using the 4 bins

with the same ranges described for the integer register file, the

correlation that we get is R2 = 0.93.

Regarding the impact of sampling for a quantum size of

1024 cycles, sampling one physical register gives R2 = 0.39,

which raises to 0.46 when sampling two registers. Consistent

with the integer register file, we need to sample 60% of the

physical registers to obtain R2 = 0.91.

IV. ACCURACY OF PREDICTION

We have shown how our model is able to predict the Q-AVF

for the register files. Now, we will examine the conclusions

that we obtained with the SPEC2000 benchmarks and small

quantums for other workloads and larger quantum sizes. Then,

we will discuss the methodology used for training our model.

Finally, we will test our model and demonstrate that we can

predict the vulnerability of other workloads.

For the set of experiments shown in this section, we will

use three different set of benchmarks. We will use again the

whole SPEC2000 suite, but this time we will run 300 million

instructions since we will use larger quantums. We will also

use the training and test sets described in Section II-D; for

every of the 500 traces we will run 20 million instructions.

A. Variability for Large Quantums

The main purpose behind Q-AVF prediction is leading

reconfigurations. Context switch for client systems is between

10-16ms, whereas it is about 100ms for servers. If we assume a

processor running at 2GHz, it means that for clients, we have

a context switch about every 20 million cycles. We believe

that using large quantum sizes in the range of 10-20 millions

cycles gives the best tradeoffs. While the variability in Q-AVF

is still large enough and opens the door for reconfigurations,

the implementation is rather simplified: for instance, sampling

just one physical register is enough, and we need to calculate

just one equation that involves 24 variables (4 bins for each of

the 6 architectural registers). Therefore, we chose 16 million

cycles quantums.

B. Predicting Larger Set of Benchmarks

In this section, we examine whether the results we obtained

for the SPEC2000 and small quantums still works for larger

data sets and larger quantums. We will run the discussion for

the integer register file and later we will summarize the results

for the FP register file.

Accuracy of binning. We start evaluating the accuracy of

the bins that we chose in Section III-D. At this moment,

to remove any source of inaccuracy, we sample all physical

registers and we measure the actual read and write times.

Recall that for this configuration, we obtained R2 = 0.90. For

the SPEC2000 programs, now we obtain R2 = 0.93, whereas

for the training set, we obtain R2 = 0.81.

As we can see, the accuracy when using only the SPEC2000

is not impacted by the larger quantum size (it is even slightly

better). However, using a larger set of programs introduces

more variability, and whereas the results are still good, the

accuracy of the correlation drops. We have tried other bin

ranges, but the results were very similar, with R2 ranging

between 0.80 and 0.83. The same bins for the SPEC2000

programs yielded R2 in the range 0.89-0.93.

Sampling. We continue evaluating the impact of sampling.

For 16 million cycles quantums, we obtained R2 = 0.91 for

the SPEC2000 programs. However, when running the training

set, the correlation is very poor, just R2 = 0.21; in many

cases, we have observed that the register we chose to sample

was assigned to an architectural register that was not renamed

during the quantum, and therefore, we could not obtain any

kind of information about the vulnerability of the register file.

TABLE I
R

2 CORRELATION FACTORS FOR DIFFERENT CONFIGURATIONS

Set 1: RAX, RCX, RDX, RSP, RDI, TMP0 Set 2: RAX, RCX, RDX, RSP, RDI, TMP0, RSI

100% PhR 1PhR 2PhR 3PhR 5PhR 100% PhR 1PhR 2PhR 3PhR 5PhR

SPEC2000 0.93 0.91 NoI NoI NoI 0.94 0.91 NoI NoI NoI

Training 0.81 0.21 0.60 0.63 0.65 0.81 0.21 0.72 0.76 0.79

(a) Integer Register File

4 BINS: MM0, MM1, MM2, MM3, FTMP0 8 BINS: MM0, MM1, MM2, MM3, FTMP0

100% PhR 1PhR 5PhR 10PhR 30PhR 100% PhR 1PhR 5PhR 10PhR 30PhR

SPEC2000 0.92 0.83 0.97 NoI NoI 0.98 0.96 NoI NoI NoI

Training 0.36 NoI NoI NoI NoI 0.80 0.15 0.55 0.58 0.74

(b) FP Register File

If we increase the number of sampled registers to 2,

correlation goes up to R2 = 0.60; with 3 registers, R2 = 0.63,

and with 5 registers, R2 = 0.65. Interestingly, we noticed that

when we track physical registers the vulnerability provided by

RSI that was not considered originally grows in importance.

Therefore, we add RSI on top of RAX, RCX, RDX, RSP,

RDI, and TMP0. With this new configuration, when we track

all physical registers we obtain R2 = 0.81 (we observe no

difference compared to previous case when RSI was not

considered). When we sample, we still obtain R2 = 0.21 when

sampling 1 physical register, but we increase R2 to 0.76 (from

0.63) for 3 physical registers, and R2 = 0.79 for 5 registers.

From now on, we will use this new configuration.

C. Summary of Results for the FP Register File.

In order to predict the vulnerability of the FP register file,

we only need to track 5 different architectural registers: MM0,

MM1, MM2, MM3 and FTMP0. This set of registers yields R2 =
0.95 for the SPEC2000 and R2 = 0.93 for the training set and

16 million cycles quantums.

Like the case of the integer register file, we also apply

four bins with same ranges. In that case, R2 is 0.92 for

the SPEC2000. However, the correlation is very low for the

training set, with R2 = 0.36. Our analysis shows that unlike

the integer registers, FP registers are used in bursts. Therefore,

the distance between reuses of registers like MM0 expands

across a large range. We opted to increase the resolution of

the histogram and moved to 8 bins, which gave better results

raising R2 to 0.80.

Finally, we assess how many registers we need to sample

(we assume the 8 bins configuration). Sampling one single

register is good enough for the SPEC2000 suite. However,

we need to sample 30 registers to obtain R2 = 0.74 for

the training suite, which we believe is good enough for our

purposes.

D. Discussion

We summarize all results for different analyzed configura-

tions in Table I. We use the term NoI (not of interest) for those

experiments that do not contribute any insight and therefore

were not run.

We have observed that the method we described in Sec-

tion III-A for small quantums works fine for larger quantums,

and we can obtain R2 = 0.79 when studying the integer

register file (0.74 for the FP) for our larger training set of

programs.

We have shown that the conclusions obtained for the

SPEC2000 programs cannot be automatically extended when

we consider a larger set of programs (and larger Q-AVF

variability). For instance, for the integer register file we need

to also track RSI, and instead of sampling a single register,

we need to sample at least 5.

For the FP register file changes are even more important;

compared to the results that are valid for the SPEC2000

benchmarks, when considering a larger set of benchmarks we

need to increase the number of bins and the number of sampled

register to deal with the bursty behavior of the FP programs.

E. Prediction Across Different Benchmark Sets

We further extend our evaluation and assess whether the

equations obtained from a set of benchmarks represent the

Q-AVF variations for other sets of benchmarks.

The first observation we make based on previous sections,

is that the equations obtained running the SPEC2000 suite are

not useful for larger set of benchmarks like the training set.

As a matter of fact, we even need to tune the methodology to

have a good self-correlation.

Next, we evaluate if the equations obtained self-correlating

the training set can be used to model the Q-AVF for the test

set. Figure 5 shows the measured and predicted Q-AVF for

the test benchmarks using the equations obtained with the

training benchmarks. For the integer register file, we sorted

the quantums based on the Q-AVF to better show the results

due to higher Q-AVF variability. Boxes represent the measured

Q-AVF, and crosses the predicted Q-AVF.

As one can see, the results are pretty good, especially if we

keep in mind that the idea is to guide reconfigurations. For

the integer (FP) register file, we observe an average error of

0.7% (0.4%), with the maximum error being 4.8% (6.0%).

FG

HG

IG

JG

KG

LFG

LHG

M
NO
P
Q

RSTUVSWX

YZ[\]^_]`a b`Z ca_[d[Z e[d]f_[Z g]h[

ijklmnVkl okTp

qr

sr

tr

ur

vr

wqr

wsr

wtr

wur

x
yz
{
|

}~���~��

���������� ��� �� �������� ����

��������� ����

(a) Integer register file (b) FP register file

Fig. 5. Q-AVF prediction in the out-of-order processor for quantum sizes of 16M cycles for the test benchmarks using the training set equations

V. RELATED WORK

Most studies estimate reliability in terms of architectural

vulnerability factor [2]. Most attempts are offline analysis with

complex simulators [11], [2], [12]. which are not suitable for

online real-time AVF estimation.

There has been some work on estimating the AVF in real

time [5], [6]. Walcott [6] et al. use linear regression to explore

the relationship between AVF of instruction queue, load store

queue and ROB and various microarchitecture level variables

such as structure occupancy, number of instructions executed,

etc. Duan et al. [3] propose using boosted regression trees as a

predictive model. Later, Biswas et al. [8] extend this work by

calculating and estimating vulnerability over short windows of

time, providing better opportunities for reconfigurations.

Soundararajan et al. [5] propose a method to estimate

AVF for the reorder buffer (ROB) in the processor. This

method determines the AVF by estimating the occupancy of

the instruction queue.

Fu et al. [4] explore program reliability/vulnerability phase

behavior. They also explore the AVF estimation for the issue

queue and the reorder buffer in an out-of-order processor.

VI. CONCLUSIONS

This paper describes a methodology based on linear re-

gressions to effectively estimate the AVF of register files at

runtime.

We reason our implementation based on small quantums

and using a small data set such as SPEC2000 benchmarks.

Later, we show the impact of quantum size. We also discuss

the impact of using a more diverse and larger data set to the

correlation accuracy, and identify the sources of inaccuracies.

Finally, we modified the implementation and trained our

model with more than 500 different programs from different

segments like productivity, data base, SPEC benchmarks,

multimedia, etc. We tested our model with another set of 500

different programs and show that the prediction is accurate.

ACKNOWLEDGMENTS

This work has been partially supported by the EC FET

TRAMS (Terascale Reliable Adaptive Memory Systems),

248789.

REFERENCES

[1] R. Baumann, “Soft errors in advanced computer systems,” in Proceed-

ings of IEEE Design and Test of Computers. Los Alamitos, CA, USA:
IEEE Computer Society, 2005, pp. 258–266.

[2] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin, “A
systematic methodology to compute the architectural vulnerability fac-
tors for a high-performance microprocessor,” in Proceedings of the 36th

International Symposium on Microarchitecture (MICRO). New York,
NY, USA: ACM Press, 2003.

[3] L. Duan, B. Li, and L. Peng, “Versatile prediction and fast estimation
of architectural vulnerability factor from processor performance met-
rics,” in Proceedings of International Symposium on High Performance

Computer Architecture (HPCA), 2009.
[4] X. Fu, J. Poe, T. Li, and J. Fortes, “Characterizing microarchitecture

soft error vulnerability phase behavior,” in Proceedings of International

Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS), 2006.
[5] N. Soundararajan, A. Parashar, and A. Sivasubramaniam, “Mechanisms

for bounding vulnerabilities of processor structures,” in Proceedings of

International Symposium on Computer Architecture (ISCA), 2007.
[6] K. Walcott, G. Humphreys, and S. Gurumurthi, “Dynamic prediction of

architectural vulnerability from microarchitectural state,” in Proceedings

of 34th International Symposium on Computer Architecture (ISCA),
2007.

[7] X. Vera, J. Abella, J. Carretero, and A. González, “Selective replication:
A lightweight technique for soft errors,” ACM Transactions on Computer

Systems (TOCS), vol. 27, pp. 8:1–8:30, January 2010.
[8] A. Biswas, N. Soundararajan, S. Mukherjee, and S. Gurumurthi, “Quan-

tized avf: A means of capturing vulnerability variations over small
windows of time,” in Proceedings of Workshop on Silicon Errors in

Logic -System Effects (SELSE), 2009.
[9] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically

characterizing large scale program behavior,” in Proceedings of Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), 2002.
[10] “R software project,” http://www.r-project.org/.
[11] X. Li, S. Adve, P. Bose, and J. Rivers, “Softarch: An architecture-

level tool for modeling and analyzing soft-errors,” in Proceedings of

International Conference on Dependable Systems and Networks (DSN),
2005.

[12] N. Wang, A. Mahesri, and S. Patel, “Examining ace analysis reliability
estimates using fault-injection,” in Proceedings of International Sympo-

sium on Computer Architecture (ISCA), 2007.

