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Abstract—We propose a methodology for reachability analysis of
nonlinear analog circuits to verify safety properties. Our iterative
reachable set reduction algorithm initially considers the entire state space
as reachable. Our algorithm iteratively determines which regions in the
state space are unreachable and removes those unreachable regions from
the over approximated reachable set. We use the State Partitioning Tree
(SPT) algorithm to recursively partition the reachable set into convex
polytopes. We determine the reachability of adjacent neighbor polytopes
by analyzing the direction of state space trajectories at the common
faces between two adjacent polytopes. We model the direction of the
trajectories as a reachability decision function that we solve using a
sound root counting method. We are faithful to the nonlinearities of the
system. We demonstrate the memory efficiency of our algorithm through
computation of the reachable set of Van der Pol oscillation circuit.

I. INTRODUCTION

Formal verification of analog circuits is a lofty, but highly desirable
goal. Some strides have been taken in analog verification research.
However, since many of these techniques linearize and discretize
analog circuit behavior, their practical applicability remains limited.
A major challenge in formal analog verification is proving the safety
properties of the system. Safety is an indication that the systems
operation would always remain inside the safe regions within the
state space.

Reachability analysis is a solution to the safety verification prob-
lem. Reachability analysis focuses on computing the reachable set of
the system. The reachable set is the union of all possible trajectories
generated by the system from every initial state for all input signals.
To prove safety, we must show that the reachable set of the system
does not intersect with any unsafe set. Generally, computing the
reachable set of the nonlinear analog circuit is computationally
undecidable [2]. Over the last decade, many researchers have been
investigating the reachability problem [17], [1], [6], [4], [7], [13].
A common problem in previous works toward reachability analysis
is memory explosion due to the inefficiency of the data structure in-
volved in modeling the state space [6]. Importantly, these methods do
not directly handle nonlinear systems, but use linearization or interval
arithmetic to model nonlinearities. Both these modeling techniques
result in introduction of large and often unrealistic approximation
errors.

Although computation of the exact reachable set is undecidable
[2], it is possible to prove the safety of a system by computing an
over approximation of the reachable set [1]. Therefore, in a safe
system, there is a feasible trajectory from the initial set of states to
an erroneous or undesirable set of states (specified by the user). If
the over approximated reachable set is safe, we can conclude that the
exact reachable set is safe as well. However, if the over approximated
reachable set intersects with the unsafe regions, we cannot determine
the safety of the system. Over approximation introduces its own errors
to the analysis. Hence, minimizing the approximation error while
maintaining computational efficiency is a challenge.

In this paper, we propose a methodology for reachability analysis
of nonlinear analog circuits. Our method reduces the approximation
error and is computationally efficient. Our technique can be applied
to general nonlinear systems while providing a precise analysis for
handling polynomial nonlinear systems. Our algorithm is faithful to
the nonlinear nature of the system and does not linearize the system
at any point. Consequently, it provides a tightly over approximated
reachable set that is close to the exact reachable set. Most of the
previous techniques compute reachability starting with the initial state

and iteratively growing the reachable set [6], [7]. That approach is
called forward reachability analysis [6]. In contrast, we start with an
over approximation that constitutes the entire reachable space of the
system. We compute the boundaries of the reachable set by iteratively
determining which regions in the over approximated reachable set are
unreachable. Next, we remove those regions from the reachable set to
reduce its size. We call our method iterative reachable set reduction.

Our algorithm works as follows. Initially, the entire state space
is marked as the reachable set. Then we compute and refine the
boundaries of the reachable set from the outside. At every iteration,
our algorithm recursively partitions the reachable space into convex
polytopes. For a given polytope, an adjacent polytope is one that
shares a face with it. We determine if every polytope is reachable from
its adjacent reachable polytopes. If we determine that a polytope is
not reachable from any of its adjacent neighbor polytopes, then that
polytope is marked as unreachable. We remove those unreachable
polytopes from the reachable set to refine the over approximated
reachable set.

A polytope is reachable if there is a feasible trajectory toward it
from any of its adjacent reachable polytopes. Therefore, we examine
the direction of state space trajectories over the common face of every
adjacent neighbor polytope. The direction of a state space trajectory
is modeled as a multi-variable reachability decision function whose
domain is the common face between the two adjacent polytopes.
We call a function existentially positive if there exists a point
in its domain where the sign of the function is positive1. If the
reachability decision function is existentially positive on the common
face between the target and its adjacent polytope, we determine
that the target polytope is reachable. If none of the corresponding
reachability decision functions are existentially positive, we declare
the target polytope unreachable.

To determine whether a function is existentially positive on its
domain, we check whether that function has any roots in that domain.
Current root finding algorithms are known to be numerically unstable
[15]. However, in our context, we would like to determine the
existence of a root in a domain rather than finding the location of
the root. Hence it is sufficient to count the roots without actually
finding them. We employ a root counting method based on Sturms
theorem [14] for nonlinear polynomial systems. Although the root
counting method provides precise analysis for polynomial nonlinear
circuits, in the case of general nonlinear circuits, it is not applicable.
In the general case, we use root finding methods (like the Newton-
Raphson method or the Quasi-Newton method [15]) to determine
whether the function is existentially positive. By using root counting
for polynomial nonlinear systems, we provide an accurate solution
for proving reachability without linearizing the system at any point.
The polytopes that represent the partitions of the state space get
progressively smaller with every iteration. The over approximation
error of the reachable set is non-increasing and becomes smaller.

Typical implementations of polytope partitioning suffer from
memory-related efficiency issues. We circumvent these problems by
using the Space Partitioning Tree (SPT) data structures to model
the state space. SPT is the generalized Binary Space Partitioning
Tree (BSPT) in higher dimensions[22]. Previously, BSPT has been
used in computer graphics [22], CAD, and verification [1]. We use

1Existential positivity is defined over a ball in Rn space. A function can
be existentially positive and negative over a ball at the same time.
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SPT for recursive partitioning of the state space and as a data
structure for storing and accessing geometric objects. Partitioning of
the state space into polytopes results in generation of many polytopes
for modeling the state space. SPT models polytopes in the state
space using hyperplane division instead of modeling each polytope
individually. Consequently, the complexity order of the number of
generated polytopes becomes polynomial. Also, SPT is very efficient
at enumerating adjacent polytopes [22] and extracting the boundaries
of the reachable set [5]. Those properties make SPT a suitable
underlying data structure for our reachability algorithm.

Our major contributions are as follows.
• We propose the iterative reachable set reduction algorithm, for

reachability analysis of analog circuit systems. Our algorithm
iteratively reduces the volume of the reachable set in an outside-
in manner and converges quickly on a result.

• Our algorithm can be used to verify nonlinear analog circuits.
We are faithful to the nonlinearities of the system. Our algorithm
is accurate and does not introduce any linearization error into
the reachable set.

• Our algorithm utilizes Space Partitioning Trees (SPT) to effi-
ciently model the state space partitioning. Due to usage of SPT,
our algorithm is more memory efficient as compared to the state-
of-the-art.

Since our over approximations are conservative abstractions of the
reachable set, our algorithm will never declare an unsafe state as safe,
but it might declare safe state as unsafe. We prove this soundness
of our algorithm. Our algorithm will always converge to the exact
reachable set, or an over approximation of it. We demonstrate
empirically that the algorithm converges in a few iterations to a tight
approximation. We compute the reachable set of a nonlinear Van
der Pol oscillation circuit, a standard circuit used in this analysis.
To increase the confidence in our results, we run several transient
simulations using a numerical simulator to approximately delineate
and illustrate the reachable set. The transient simulations closely
follow the output of our algorithm.

The rest of this paper is organized as follows. Section II describes
the preliminaries and background on the reachability problem. We
describe our algorithm in detail in Section III. Section IV contains
the experimental results for our algorithm. Finally, we review the
related work and conclude in Section V.

II. PRELIMINARIES

We now define the terminology that we use for modeling nonlinear
systems. We also present some background on the reachability
problem and its definition.

A. Model for Nonlinear Analog Circuits

A nonlinear circuit is modeled as a set of ordinary differential
equations (ODEs) through modified nodal analysis (MNA) [15] of
the circuit’s netlist. Let f denote the nonlinear function governing
the dynamics of the circuit, and t ∈ [0,∞). Let S ⊆ Rn denote the
continuous state space of the circuit. Let U ⊆ Rm denote the input
space of the circuit. x denotes the state variables, and u denotes the
input variables of the circuit. x(t) denotes the state of the circuit at
time t. The initial state of the circuit is x(0). Therefore, a nonlinear
analog circuit is described by:

f(x(t), ẋ(t),u(t)) = 0 (1)

B. Reachability Analysis and Safety Definition

A trajectory of the circuit in the time interval [t1 t2] is the path
taken by the circuit from state x(t1) to state x(t2). For a given
state x(t1) and input u(t1), the differential constraints in Equation 1
determine the trajectory of the circuit in the interval t ∈ [t1 t2]. A
state trajectory derived from an action trajectory for some initial state
x(t1) at time t = t1 is defined by:

x(t) = x(t1) +

∫ t

t1

f(x(t′),u(t′))dt′ (2)

The reachable set is the set of all states that are reachable from
the initial set of states for all possible trajectories (paths), for all
admissible input signals U .

Rx(0)(U) =
⋃

x∈x(0)

⋃
u∈U

⋃
t∈[0,+∞)

R(x, u, t) (3)

where R(x, u, t) is the state trajectory from state x. Rx(0) denotes
the reachable set from the initial set x(0) for all u ∈ U.

The over approximated reachable set Rx(0) is defined as a set
that satisfies Rx(0) ⊆ Rx(0) ⊂ S. Given the state space of an
analog circuit S, we want to verify safety properties. We define safety
properties by specified sets of unsafe regions in the state space Runsafe.
A safety property is satisfied if there is no possible trajectory from
any of the initial states toward Runsafe. We conclude that the safety
property has been satisfied when

Rx(0) ∩Runsafe = ∅ (4)

On the other hand, Rx(0) ∩ Runsafe 6= ∅ is not necessarily an
indication of safety violation. This is an implication that we cannot
yet determine the safety of the circuit.

III. ITERATIVE REACHABLE SET REDUCTION ALGORITHM

The objective of reachability analysis is to determine if there exists
a trajectory from the set of initial states that eventually reaches the set
of unsafe states under the circuit’s differential regime. Our algorithm
achieves this objective by iteratively identifying unreachable states.
To identify the unreachable regions, we will recursively partition the
over approximated reachable set Rx into convex polytopes.

Our iterative reachable set reduction algorithm consists of four
major components: i) the main iterative reachable set reduction
loop, ii) the state space partitioning algorithm, iii) a process for
determining the reachability of adjacent neighbor regions, and iv) an
SPT data structure for state space modeling. Figure 1 illustrates the
important phases of our algorithm that are described in the following
subsections.

The inputs to our algorithm are i) the state space of a nonlinear
analog circuit, along with ii) the governing differential equations, iii)
the set of initial states in the state space, and iv) the set of unsafe
states.

Let S ⊆ Rd be the continuous state space of an analog circuit
where d is the number of the state variables. Let Rx(0) ⊆ S be the
reachable set of the circuit from the initial set x(0), and R ⊆ S be
an over approximation of Rx, so Rx ⊆ Rx. We assume the state
space is bounded. That assumption is not limiting, because the target
of our algorithm is an analog circuit. For example, a user can define
the voltage variable to be bounded by [−Vcc,+Vcc], where Vcc is the
value of the voltage source, and so on. We assume that any region
outside those bounds is unreachable, and we consider region inside
the bounds to be the state space of the circuit.

A. Iterative Reachable Set Reduction

In this section, we describe the primary loop of our algorithm, the
iterative reachable set reduction. Algorithm 1 shows that this loop
will recursively remove the unreachable regions from the reachable
state space.

We model the partitioned regions as convex polytopes which are
identified through intersections of hyperplanes. At every iteration,
we analyze the polytopes that are at the boundaries of the reachable
set. This implies that those polytopes share boundaries with some
unreachable set. For every generated polytope Pi, if Pi is adjacent to
some unreachable set, then we analyze the reachability of Pi from its
neighbors. We analyze the reachability of the polytope by checking
the direction of state space trajectories of adjacent partitions in the
reachable set. If we prove there is no feasible trajectory from any of
the adjacent reachable regions toward the polytope Pi, we determine
that Pi is unreachable and we remove it from the reachable set
Rx. Otherwise, we recursively partition the Pi to further refine the
reachable set.
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Fig. 1: Overview of the iterative reachable set reduction algorithm. The exterior loop is the iterative reachable set reduction algorithm. For
each polytope, our algorithm partitions it. Then, for each new partitions, our algorithm decides on the reachability of those partitions from
the reachable set. The parts of our algorithm that use SPT for computation are marked with SPT labels.

Algorithm 1 Iterative reachable set reduction algorithm
Data: Circuit S, Initial States I, Iteration bound n

Queue Q ;
ReachableSet Rx ;
Q.push(Rx) ;
while ¬ Q.empty() do

Polytope P ← Q.pop() ;
if P is adjacent to an unreachable region or iteration < n then

iteration ← iteration+1 ;
partition(P) ;
foreach Pj in P.getChildren() do

Determine the reachability of Pj from its adjacent neighbors;
if Pj is reachable then

Q.push( Pj ) ;

end

end
end

end

In Algorithm 1, we create a queue of reachable polytopes. For
each of those polytopes Pi, if Pi is at the boundary of reachable
set, we further divide Pi to get a finer partition. Next, for each of
the sub partitions of Pi (called Pi’s children) we determine if they
are reachable from the reachable set. We enqueue any of those sub
partitions that are reachable and discard other sub partitions to get
a more accurate over approximation. This process continues until a
predefined number of polytope division n is reached; at that point,
the algorithm terminates. In our algorithm, the volume of polytopes
rapidly get smaller and our algorithm converges to an approximated
reachable set very fast.

To determine the reachability of each sub partitions, we analyze the
direction of the state space trajectories toward those sub partitions.
The polytope is reachable under either of two conditions: i) the
polytope is part of the initial state, or ii) there exists a trajectory from

at least one of the polytope’s reachable adjacent neighbors toward it.
In those cases, we conclude that the polytope is reachable.

B. Partitioning the Reachable Set into Convex Polytopes
We partition the continuous space of analog circuits to obtain

a discrete model for the state space. Our algorithm partitions the
reachable state space into convex polytopes. The partitioning is based
on the direction of state trajectories at the center of each polytope.
Let d denote the dimension of the system.

Algorithm 2 Partitioning the polytope
Data: Circuit S, Convex Polytope P

c = center point of P ;
v = S.state space trajectory at (c) ;
u1, . . . , ud = GramSchmidt(S, v) ;
i1, . . . , id = Compute intersections of u1, . . . , ud hyperplanes with P ;
P1, . . . , P2d

= Polytopes defined by i1, . . . , id points and P ;
return P1, . . . , P2d

;

Algorithm 2 shows an overview of our partitioning algorithm for
a given polytope P . Initially, the entire state space constitutes the
first polytope. At every subsequent iteration, we recursively divide
the polytope by partitioning it using hyperplanes. We compute those
hyperplanes using a vector basis that is orthogonal to the state space
trajectory at the center of the polytope. Let c be the center of
convex polytope P . Let v be the trajectory vector of the system
at c (Figure 2.a). Using Gram-Schmidt orthonormalization process
[8], [20], we construct an orthogonal basis vector set u such that
{u1, . . . , ud : ui.uj = 0,∀1 ≤ i, j ≤ d, i 6= j, v ∈ u} (Figure
2.b). Vectors u1, . . . , ud form a set of d hyperplanes that divides the
polytope P into 2d convex polytopes P1, . . . , P2d (Figure 2.c). Ac-
cordingly, our algorithm computes the intersection of each hyperplane
with the faces of the polytope P . Then we compute the polytopes



generated by the intersection of those hyperplanes and the polytope
P . For example, in Figure 2.c, the new polytope P1 is defined by
the sequence of points < c, i4, q5, q1, i1 > and so on. For recursively
partitioning the state space, we utilize space partitioning tree (SPT)
algorithm. SPT divides the state space into convex polytopes defined
by intersection of hyperplanes. SPT algorithm allows an efficient
storing and accessing of the polytopes in polynomial time [22].

c c c

u1
u2

q1

q2

q3

q4

q5

v1

i1 i2

i3
i4

P1

P2

P3

P4

Fig. 2: Partitioning a polytope based on state space trajectories.

C. Determining the Reachability of Adjacent Polytopes
After generating a new polytope, we determine whether that

polytope is reachable from the adjacent reachable polytopes. To
determine the reachability between adjacent polytopes, we evaluate
the direction of trajectories at the common faces of the polytope
and adjacent polytopes from the reachable set. If we can prove that
for all common faces with the reachable set, there is no trajectory
from the reachable set toward that polytope, we can deduce that
polytope is unreachable and remove it from the reachable set. As
shown in Figure 3, in 2-dimensions, the shared faces between two
adjacent polytope R1 and R2 is the line from p1 to p2. Therefore
for checking reachability of R1 from its adjacent reachable neighbor
R2, we should check if there is any trajectory from R2 to R1 at
the common face between two polytopes. We need to find at least a
single trajectory from R2 that goes toward R1. We reformulate this
as an analytical reachability decision function.

R1

R2

p1

p2

Fig. 3: Determining reachability of two adjacent polytopes.

The direction of the trajectories over the bounded face of the poly-
tope is presented as a multi variable reachability decision function.
Let w be an orthogonal vector from the center of the p1, p2 face
toward R1. We use a cross product of the RHS of the circuit’s ODE
f ( Section II-A) with the w vector to determine the direction of
trajectories. For example, for a 2-dimensional system, the direction
of vector trajectories is defined by the following reachability decision
function Ξ:

Ξ(x, y) = f(x, y)× w = det

(
p2.x− p1.x f1 − p1.x
p2.y − p1.y f2 − p1.y

)
(5)

where p1 =< x1, y1 > and p2 =< x2, y2 >.
We define existential positivity of a function to determine if there

is any interval in which the function ξ is positive on its domain. The
existential positivity property for function ξ is defined as if there
exists any ball Bε(t) ∈ Dξ such that for some x ∈ Bε(t) we have
ξ(x) > 0, where Dξ denotes to domain of ξ.

The existence of a trajectory from R2 toward R1 is equivalent to
the existential positivity of the reachability decision function Ξ on

the function’s domain (line p1 to p2, i.e., D = {< x, y >: λp1 +
(1 − λ)p2 =< x, y >, λ ∈ [0, 1]}). Therefore, when Ξ(x, y) > 0,
the direction of the trajectories is toward R1 and Ξ(x, y) < 0 is an
indication of the direction of the trajectories toward R2.

To determine existential positivity of higher dimensional functions,
we transform them to lower dimensions. Therefore, we reduce
that function to a weaker form by transforming it from a single
d-dimensional function into d single-dimensional functions using
rotation transformation. At lower dimensions (like d = 1), we use a
root-counting method using the Sturm’s theorem [14] and root-finding
method using the Newton-Raphson algorithm [15] to determine the
existential positivity of the function. We call these single-dimensional
functions the basis functions of the reachability decision function.

The domain of the basis function becomes paraxial by applying
rotation transformation to the common faces between two adjacent
polytopes. Therefore except for only one axis, all other variables
are constant. By applying d rotation transformations to the decision
function for each axis, the reachability decision function is reduced to
d single-dimension basis functions. If all of those d single-dimension
functions are existentially positive on their basis domains (which
are the intervals obtained by rotating the domains of the decision
functions), we conclude that the reachability decision function is
existentially positive on its domain. For example, in two dimensions
the rotation transformation is as follows.[

Φ(x)
Φ(y)

]
=

[
Ξ1(x, y)
Ξ2(x, y)

]
×
[

cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

]
where Ξ1 and Ξ2 are the RHS of the system’s ODE, and θ is the
angle between the face and the axis. Φ(x) and Φ(y) are the basis
functions.

⇡
2 � ✓

✓p1 p2'

p2

Fig. 4: Determining existential positivity of the reachability decision
function. Our algorithm rotates the function θ degrees to align it to the
axis. Therefore, other variables become constant, and the reachability
decision function becomes a single-dimensional basis function.

For a single dimensional basis function, our algorithm uses two
different methods for determining its existential positivity. Existential
positivity for a function depends on whether the function has any
roots in its domain. If the root does not exist, it means that the
function is not changing signs on its interval. Therefore we evaluate
the basis function at the midpoint of the function’s domain. If
the function evaluates to positive, then we can conclude existential
positivity of the basis function. Otherwise, the basis function is
not existentially positive. We use two methods for determining the
existence of a root in the basis function.
• Root counting method. For polynomial systems, we count the

number of roots in any given domain using Sturm’s theorem
[14]. Sturm’s theorem defines the number of real roots of a
polynomial system in any interval using the changes in the signs
of the values of the Sturm’s sequence.
Therefore if the total number of roots of the basis function
in its domain is more than one, we deduce that the basis
function is existentially positive on its domain. The benefits of
root counting method is that it always returns an exact result.
However, Sturm’s theorem can only be applied to nonlinear
polynomial systems.

• Root finding method. Instead of counting the number of roots,
our algorithm computes the roots of the function. If our algo-



rithm is able to find at least one root in the domain of the basis
function, we conclude that the basis function is existentially
positive on its domain. Our algorithm uses the Newton-Raphson
[15] algorithm to find roots of nonlinear functions.

D. Modeling the State Space Using a Space Partitioning Tree (SPT)
We use a Space Partitioning Tree (SPT) algorithm to model and

store the polytopes generated in the state space. The space partitioning
tree algorithm is the general n-dimensional case of the binary space
partitioning algorithm used in [1], [22].

The polytopes are modeled in the SPT tree as shown in Figure
5. First, the entire state space is modeled as the root of tree. Then
we partition the root into 22 polytopes using two hyperplanes. Those
hyperplanes are added to the SPT to model the generated polytopes.
The tree is built and maintained on-the-fly during execution of the
reachability algorithm.

P12

P12

P12

P12

L1

L2

L3

L4

P1234

P1234

P1234

P1234

P12

P12

P12

L1

L2

Fig. 5: State space partitioning using hyperplanes. The polytopes are
defined by the intersections of the hyperplanes in the state-space.

Let d denote the number of dimensions. We are constructing the
SPT in Rd space. At each iteration, we add d hyperplanes to the
tree to model the 2d convex polytopes. Each hyperplane can be
defined in O(d) memory. Therefore the memory complexity of our
algorithm is O(nd2) where n is the number of divisions that our
algorithm performs. SPT allows access of logarithmic complexity
to each polytope inside the state space while it utilize a moderately
small memory foot-print. SPT also facilitates an efficient enumeration
of adjacent polytopes to a region. Finally, SPT allows for fast
computation of boundary of reachable set without computing the
union of all reachable sets [5].

E. Sketch of Soundness Proof
To prove soundness of iterative reachable set reduction algorithm,

we show that if the region is unsafe, our algorithm will never declare
that the region is safe. On the other hand, if the region is safe, our
algorithm does not make any guarantees on it. We do not generate
any false positives. Let S ⊆ Rn denote the continuous state space
of the circuit. Let Rx(0) and Runsafe denote the initial set and unsafe
set of states respectively. A region is a set of states in S. An unsafe
region X is a region such that X ∈ Runsafe. The safe regions are in
S−X. Let the sequence < pi, pi+1, . . . , pj > denote the set of convex
polytopes in the state space such that pt and pt+1 are adjacent.

We use proof by contradiction. Given an unsafe region U ∈ Runsafe,
let us assume that our algorithm declares this unsafe region as safe.
Initially, the algorithm considers the entire set of states as reachable.
This includes the safe as well as unsafe states in the system. The
algorithm does not declare any unsafe region as safe. Hence, it is
initially sound. Let us say that in iteration i, the algorithm declares
(erroneously) that a region U is safe. In every subsequent iteration,
it will declare U as safe. Initially we assumed that the system was
unsafe. This implies that there is at least one trajectory from initial
state x0 ∈ Rx(0) to state xf ∈ U. Let us call this trajectory T . By
construction, T will cross some subsequence of adjacent polytopes
< p0, p1, . . . , pk > such that x0 ∈ p0 and xf ∈ pk. The polytope p0
is reachable because p0∩Rx(0) 6= ∅. Since the algorithm declared the
system safe, the polytope pk should be unreachable. Therefore, for
some 1 < j ≤ k our algorithm has determined that pj is reachable
but pj+1 is unreachable. This would mean that there is no trajectory
from pj toward pj+1. But T is a trajectory from p0 to p1 to . . .pj to
pj+1 to . . . to pk. Therefore there is a trajectory from pj to pj+1. This
is a contradiction. Hence the soundness of the algorithm is proved.

IV. EXPERIMENTAL RESULTS

We implemented the iterative reachable set reduction algorithm in
a prototype tool in the C++ language to evaluate its accuracy and
efficiency. We chose an Apple Macbook Pro laptop equipped with a
Core i7 processor and 8 GB memory as our computing platform. We
ran our algorithm over a Van der Pol oscillation circuit to compute
its reachable set. A Van der Pol oscillator is a nonconservative
oscillator with nonlinear damping. A Van der pol oscillator is a
fundamental example in nonlinear oscillation theory [12]. It has a
periodic solution that attracts every solution in the state space (except
the zero solution). It is governed by two dimensional equations.

ẋ = y (6)
ẏ = ε(1− x2)× y − x (7)

In our experiment, we let ε = 1, which was a medium value for ε
and resulted in a medium distortion in the oscillation. The state space
was defined as a bounded box S = [−10, 10]× [−10, 10] ⊂ R2. The
initial set was a box [−3.0,−2.8] × [3, 3.2] ⊂ S. Figure 6 shows
the reachable set of the Van der Pol oscillator circuit. The reachable
set is the grey region. The unreachable states are in white. Figure
6 also shows the hyperplanes and the polytopes that our algorithm
generated to compute the reachable set. As shown in the figure, our
algorithm rapidly removed huge portions of the state space that were
unreachable from the reachable set during the first few iterations.
Then our algorithm eventually converged on the more refined and
accurate reachable set. Our algorithm took 0.05 seconds to compute
the reachable set on our computing platform.

The iterative reachable set reduction algorithm can be effectively
used for safety verification through computation of the reachable
set. In many real test cases, only a few iterations are required to
generate a coarse approximation of the reachable set and hence prove
safety. That makes our algorithm a suitable candidate for safety
verification. At any point during the execution, if we can prove
safety, our algorithm terminates. If after reaching a predefined number
of polytope partitioning, we have been unable to prove safety, our
algorithm terminates without deciding on the safety of the system.
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Fig. 6: Reachable set for the Van der Pol oscillator using our iterative
reachable set reduction algorithm. The reachable set is in grey and
the unreachable states are in white. The polytopes at the boundaries
of the reachable set shrink rapidly in volume.

To make Figure 6 more informative, we added a quiver plot
of the vector field (marked with arrows). We have also shown a
transient simulation from a sampled point in the initial set. The
transient trace was simulated using a numerical ODE solver (explicit
embedded Runge-Kutta Prince-Dormand (8,9) method available in
GNU-gsl-odeiv2 package) to delineate the reachable set. The circuit
was simulated for t = 20 with δt = 0.02 time steps.



Table I shows some statistics of the space partitioning tree. We
terminated the execution after 250 iterations. The SPT was built in
two dimensions on-the-fly during the execution of our algorithm. In
the end, the algorithm explored and divided 751 polytope out of
the possible 49 polytopes. The maximum depth of the tree was a
logarithmic order of the generated polytope. In the end, the boundary
of the reachable set consisted of 214 polytopes.

Statistical information obtained from the SPT Value
Number of generated polytopes 1000
Number of leaves in the tree 751
Number of reachable leaves in the tree 491
Number of generated hyperplanes 500
Maximum depth of the SPT 9
Average depth of the SPT 7.34
Volume of smallest polytope in the leaf 4.63e-4 †
Volume of biggest polytope in the leaf 26.40 †
Volume of biggest reachable polytope in the leaf 6.25 †
Average volume of a polytope in the leaf 0.53 †
Average volume of a reachable polytope in the leaf 0.14 †

TABLE I: Space partitioning tree statistics. During the execution
of the iterative reachable set reduction algorithms, most of the
generated polytopes are at the boundaries of the reachable set and
they rapidly get smaller in volume. † indicates that the number is a
two-dimensional volume.

Among the different components of our iterative reachable set
reduction algorithm, the component that allows for optimizations
is the partitioning technique. Hence, a change in the partitioning
algorithm significantly impacts the quality of results. Initially, we
used hyper-rectangle partitioning, where each polytope’s face was
aligned to the axes. Similar to [20], we observed that the hyperbox
data structure was causing a ”massive over approximation” of the
reachable state space. Also, we tried other methods for polytope
partitioning ,such as partitioning of each polytope into two polytopes
using the binary space partitioning tree (instead of d polytopes).
However, the results were unsatisfactory. With those observations,
we decided that polytope partitioning with d hyperplanes, resulting
in 2d polytopes at each iteration, is the optimum implementation of
our algorithm.

To evaluate the reachability determination between adjacent poly-
tope algorithm, we used a sampling-based method. To determine the
reachability of a polytope from its adjacent polytopes, our algorithm
incorporated a sampling scheme as follows. Our algorithm created
many sample points at the borders of the polytope and simulated
them for a δt time. Then our algorithm determined if the final
state of the simulation had ended up inside the polytope or in the
adjacent polytope. As a result, for 100 samples for each common
face of each polytope, there was no significant difference between the
sampling based reachability decision and our algorithm. However the
sampling-based method took significantly more time ( 4.48 seconds
) to compute the reachable set.

V. RELATED WORK AND CONCLUSION

Asarin et al. provide an introduction and formal definition for
reachability analysis [3]. Most of reachability analysis techniques
construct the reachable set from the initial set using forward reach-
ability analysis [6]. Several techniques have investigated the usage
of polytopes [6], [4], [9], zonotopes [7], or support functions [13].
Some reachability techniques are based on state space discretization
methods [11], [20], [21], [10]. Another technique in control theory
for verifying safety without actually computing the reachable set is
using barrier certificates [16], [19].

Another related technique to ours is the backward reasoning
technique [17]. Alur et. al. in their pivotal paper [1] proposed a
technique for reachability analysis of linear hybrid systems using
predicate abstraction. They propose to improve reachability analysis

through vector field analysis and binary space partitioning to opti-
mize predicate abstraction. Ratschan and She [18] propose recursive
backward reasoning for hyper-boxes. In comparison to their work,
we provide a more efficient partitioning algorithm using polytopes
and a sound method for computing reachability decisions between
adjacent polytopes for nonlinear analog systems.

In conclusion, we propose an iterative reachable set reduction
algorithm to compute and refine the reachable set of nonlinear
analog circuits. Our algorithm recursively partitions the reachable
set into convex polytopes. We determine the reachability of adjacent
neighbor polytopes through analyzing the direction of the state space
trajectories at the common faces between two adjacent polytopes.
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[1] R. Alur, T. Dang, and F. Ivančić. Predicate abstraction for reachability
analysis of hybrid systems. ACM Transactions on Embedded Computing
Systems, 5(1):152–199, 2006.

[2] E. Asarin, V. P. Mysore, A. Pnueli, and G. Schneider. Low dimensional
hybrid systems – decidable, undecidable, don’t know. Information and
Computation, 211:138–159, Feb. 2012.

[3] E. Asarin, G. Schneider, and S. Yovine. Algorithmic analysis of
polygonal hybrid systems, part i: Reachability. Theor. Comput. Sci.,
379(1-2):231–265, July 2007.

[4] A. Chutinan and B. H. Krogh. Computational techniques for hybrid
system verification. Automatic Control, IEEE Transactions on, (1):1–
12, 2003.

[5] J. Comba and B. Naylor. Conversion of binary space partitioning trees
to boundary representation. In Proceedings of Theory and Practice of
Geometric Modeling, Jan. 1996.

[6] G. Frehse. PHAVer: Algorithmic verification of hybrid systems past
HyTech. International Journal on Software Tools for Technology
Transfer (STTT), 10(3):263–279, 2008.

[7] A. Girard. Reachability of uncertain linear systems using zonotopes.
Hybrid Systems: Computation and Control, pages 1–15, Jan. 2005.

[8] G. H. Golub and C. F. van der Loan. Matrix Computations. The Johns
Hopkins University Press, 3rd edition, 1996.

[9] M. Greenstreet and I. Mitchell. Reachability analysis using polygonal
projections. Hybrid Systems: Computation and Control, Jan. 1999.

[10] H. A. Hansen, G. Schneider, and M. Steffen. Reachability analysis
of non-linear planar autonomous systems. In FSEN’11: Proceedings
of the 4th IPM International Conference on Fundamentals of Software
Engineering. Springer-Verlag, Apr. 2011.

[11] W. Hartong, R. Klausen, and L. Hedrich. Formal verification for non-
linear analog systems: Approaches to model and equivalence checking.
Advanced Formal Verification, pages 205–245, 2004.

[12] H. K. Khalil. Nonlinear Systems. Prentice Hall, 3 edition, Dec. 2001.
[13] C. Le Guernic and A. Girard. Reachability analysis of linear systems

using support functions. Nonlinear Analysis: Hybrid Systems, 4(2):250–
262, May 2010.

[14] P. Pedersen. Multivariate Sturm theory. Applied algebra, algebraic
algorithms and error-correcting codes, Lecture Notes in Computer
Science, 539:318–332, 1991.

[15] L. T. Pillage, R. A. Rohrer, and C. Visweswariah. Electronic circuit
and system simulation methods. McGraw-Hill Professional Publishing,
1995.

[16] S. Prajna and A. Jadbabaie. Safety verification of hybrid systems using
barrier certificates. Hybrid Systems: Computation and Control, volume
2993 of Lecture Notes in Computer Science, pages 271–274, Feb. 2004.

[17] J. Preußig, O. Stursberg, and S. Kowalewski. Reachability Analysis
of a Class of Switched Continuous Systems by Integrating Rectangular
Approximation and Rectangular Analysis. In HSCC ’99: Proceedings
of the Second International Workshop on Hybrid Systems: Computation
and Control. Springer-Verlag, Mar. 1999.

[18] S. Ratschan and Z. She. Recursive and backward reasoning in the
verification of hybrid systems. In Proceedings of the 5th Int Conf on
Informatics, Jan. 2008.

[19] C. Sloth, G. J. Pappas, and R. Wisniewski. Compositional safety analysis
using barrier certificates. Proceedings of the 15th ACM international
conference on Hybrid Systems: Computation and Control - HSCC ’12,
pages 15–29, Jan. 2012.

[20] S. Steinhorst. Formal verification methodologies for nonlinear analog
circuits. PhD thesis, Universität Frankfurt a. M., 2010.

[21] S. Steinhorst and L. Hedrich. Model checking of analog systems using
an analog specification language. 2008 Design, Automation and Test in
Europe, pages 324–329, Mar. 2008.

[22] W. C. Thibault and B. F. Naylor. Set operations on polyhedra using
binary space partitioning trees. Proceedings of the 14th Annual Confer-
ence on Computer Graphics and Interactive Techniques - SIGGRAPH
’87, pages 153–162, Jan. 1987.


