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Abstract— By combining analytical and numerical simulation
techniques, this work develops a hybrid thermal simulator,
NUMANA, which can effectively deal with complicated material
structures, to estimate the temperature profile of a 3-D IC.
Compared with a commercial tool, ANSYS, its maximum relative
error is only 1.84%. Compared with a well known linear system
solver, SuperLU [1], it can achieve orders of magnitude speedup.

I. Introduction

As the semiconductor industry strives to maintain the trend

of Moore’s Law, the 3-D IC design scheme is one way to

achieve the interconnect density, manufacturing yields and cost

targets. Moreover, it provides the flexibility for mixed signal

design, the suitability for circuits operating on different supply

voltages and the capability for heterogeneous integration.

However, the operating temperature of 3-D ICs dramatically

increases because of the high power density and the ill of heat

dissipation capability. To verify the thermal reliability, thermal

analyzers are needed for different physical design stages.
Thermal simulation techniques can be categorized into

numerical and analytical methods. With the finite difference

method (FDM), numerical methods spatially mesh a die into

numerous control volumes, and each control volume is mod-

eled as an equivalent thermal sub-circuit. Then, an equivalent

thermal network is built, and the modified nodal analysis

(MNA) method can be used to build its system equations.
However, to obtain accurate temperature distribution, direct

solvers are runtime and memory inefficient since they require

solving a huge MNA system with millions of unknowns.

Therefore, several methods [2]–[7] have been developed to

reduce the runtime and the memory usage. Since the detail

thermal characteristics in control volumes can be taken into

account, numerical methods are able to handle complex ma-

terial structures. Therefore, although [2]–[7] are for 2-D ICs,

they also provide the flexibility for 3-D ICs.
Different from the numerical methods [2]–[7], analytical

thermal simulation methods [8], [9] construct the closed-form

representation for spatial bases and apply them to explicitly

approximate and fast evaluate the temperature distribution.

Comparing with numerical methods, analytical methods gain

the fundamental benefit that no MNA system needs to be

solved. However, the assumption of homogeneous-material

structure is required. This is a severe limitation for their

applications on design stages of general 3-D ICs since the
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material structure of general 3-D ICs should not be viewed

as a homogeneous medium. Though Huang and Lee [9] have

extended their generalized integral transform based thermal

simulator (GIT) to the structures of wire bonded, microbump-

3D package or contactless-interconnection 3-D ICs, the mate-

rial in a layer still needs to be homogeneous.
To take the advantages of both numerical and analytical

methods, a hybrid thermal simulator, NUMANA, which finds

out a practical scheme for combining numerical and analytical

frameworks, will be developed for general structures of 3-D

ICs. The major advantages of NUMANA are

1) From the aspect of simulation frameworks, NUMANA

not only can handle complex material structures by using

the FDM modeling technique, but also can avoid dealing

with the large scale MNA system by adopting the analyt-

ical based approach to be the simulation kernel. Hence,

NUMANA not only can be as flexible as numerical

methods, but also can be as fast as analytical approaches.

2) From the aspect of practical applications, since no

MNA system needs to be solved, NUMANA can ef-

ficiently update temperature variations corresponding to

the modified material structure induced by reallocating

TSVs/TTSVs, microbumps or wires.

This paper is organized as follows. Section II states the

problem formulation, and the FDM based thermal modeling

technique and GIT [9] are reviewed in section III. Then, NU-

MANA is detailed in section IV. Finally, experimental results

and conclusion are given in sections V and VI, respectively.

II. Problem Formulation

The physical model of a 3-D IC is exhibited in Fig. 1.(a).

The primary heat flow path consists of heat spreader, heat sink

and package. The secondary heat flow path is composed of I/O

pads, the package substrate and PCB. Due to the small sidewall

area, the lateral boundary surfaces are assumed to be adiabatic.

Metal layers contain wires and dielectric material. Front/back

side metal layers contain front/back side metal pads and wires.

Microbump layers contain microbumps and dielectric material,

and TSVs/TTSVs pass through silicon substrates. Devices are

distributed in the junction region of active layers and are

modeled as power sources. Interconnection components are

also treated as power sources because the self-heating effect.
Generally, the steady-state temperature distribution, T (r), is

more concerned in physical design engines, and T (r) can be

governed by heat transfer equations as

∇· (κ(r)∇T (r)) = −p(r), (1)
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Fig. 1. Physical model and schematic plots of the FDM based thermal modeling technique for a 3-D IC. (a) Physical model of a TSV-based 3-D IC. (b)
Mesh structure of layers. (c) The equivalent thermal resistance sub-circuit of an interior control volume.

subject to the boundary condition

κ(rbs )
∂T (rbs )

∂�nbs

+ hbs (rbs )T (rbs ) = fbs (rbs ). (2)

Here, r = (x, y, z) is an arbitrary position on the chip, κ(r)

is the distribution of thermal conductivities (W/m ·°C), and

p(r) is the power density function of heat sources (W/m3).

bs is any specific boundary surface of the chip, hbs (rbs ) is the

distribution of heat transfer coefficients on bs, ∂/∂�nbs is the

differentiation along the outward direction normalized to bs,

and fbs (rbs ) is an arbitrary function on bs.

III. Review of PreviousWorks

A. FDM Based Thermal Modeling Technique
As shown in Fig. 1.(b), each layer is meshed separately to

avoid control volumes crossing different layers. Mesh steps
along the z-direction in different layers are different, and
the chip is uniformly meshed along the x- and y-directions
with different steps. After that, applying the FDM to (1), an
equivalent thermal resistance network can be built. An interior
control volume is not adjacent to any boundary surfaces, and a
boundary control volume is adjacent to at least one boundary
surface. Fig. 1.(c) shows the thermal model of an interior
control volume, Vm,n,l. m, n and l are indices of Vm,n,l in x-, y-
and z-directions, respectively. Using the modeling technique
in [2], each thermal conductance can be calculated as
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Here, Δxm,n,l, Δym,n,l and Δzm,n,l are mesh steps of Vm,n,l
in x-, y- and z-directions, respectively. ΔAxy=Δxm,n,lΔym,n,l,

ΔAyz=Δym,n,lΔzm,n,l and ΔAxz=Δxm,n,lΔzm,n,l. κ
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m,n,l are weighted average thermal conduc-

tivities for heterogeneous materials from the central of Vm,n,l
to its relative borders, respectively. pm,n,l is the power of heat

sources in Vm,n,l. By applying the continuity of heat flow on

control-volume borders [10], we have
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where ‘||’ is the operator for calculating the equivalent

conductance of two conductances connected in series.

Equations for boundary control volumes are similar with

interior control volumes. Detail models can be referred to [2].

Mapping the control volumes from the triple-index system

(Vm,n,l) into a single-index system (Vi) and stamping related

conductances to the system matrix, the temperature distribu-

tion can be obtained by solving the following MNA system.

GT = p. (3)

Here, T is the temperature vector, and T[i] is the temperature

of Vi. G is the thermal conductance matrix. p is the power

vector for representing equivalent power values of the control

volumes, and p[i] is the equivalent power of Vi.

B. GIT: Generalized Integral Transform based Thermal Sim-
ulator

Given a homogeneous-materials 3-D IC1, GIT first builds

the closed-form expression of lateral bases ϕib (x, y)’s in x- and

y-directions. Using these lateral bases, GIT constructs several

one-dimensional (1-D) thermal problems for calculating the

projected function T z
ib

(z) along the z-direction corresponding

to each ϕib (x, y). Using the FDM modeling technique, each

1-D thermal problem has a tri-diagonal thermal conductance

matrix. Hence, each T z
ib

(zl), which is the value of T z
ib

(z) at

the center position zl in the z-axis of l-th discretization along

the z-direction, can be solved by the linear-time Thomas algo-

rithm. Finally, with representing the steady-state temperature

distribution of the homogeneous-materials 3-D IC, Th(x, y, z),

as
∑

ib T z
ib

(z)ϕib (x, y), 2D-STL and 2D-LTS FFT algorithms are

utilized to evaluate the temperature distribution of T (x, y, zl) at

each zl. The computational cost of GIT is O(MNL log2 BxBy).

M, N and L are numbers of mesh steps in x-, y- and z-

directions, respectively. Bx and By are numbers of the lateral

bases in x- and y-directions, respectively.
1Each layer of a “homogeneous-materials 3-D IC” has an effective thermal

conductivity, and effective thermal conductivities in different layers can be
different.



Fig. 2. Execution flow of the basic kernel of NUMANA.

IV. NUMANA

Instead of using submicrometer-scale resolution for metal

wires, compact thermal models facilitate an efficient full-chip

thermal analysis by appropriately modeling effective thermal

conductivities for inhomogeneous materials. Though adopting

compact thermal models does not give the exact result, it still

provides the average on-chip thermal behavior.

Inspired by the above concept, the basic idea of NUMANA

is that: Since compact thermal models can provide the average

thermal behavior of chip, they can be used to supply a

reasonable nominal temperature distribution. Then, NUMANA

finds a mechanism to correct temperature variations between

compact and FDM based thermal models for a real 3-D IC.

The basic kernel of NUMANA is detailed in section IV-A and

is enhanced by using the multi-point expansion technique in

section IV-B.

A. Basic Kernel

The execution flow of the basic kernel of NUMANA is

shown in Fig. 2. According to the chip geometry, ther-

mal parameters of package, design information such as

TSVs/microbumps included DEF and LEF files, and power

consumption of macros/gates and interconnection components

of a given real 3-D IC, NUMANA first chooses appropriate

homogeneous thermal conductivities to build a homogeneous-

materials 3-D IC and constructs its spatial bases for repre-

senting the temperature distribution. After that, using the FDM

based modeling technique, NUMANA constructs thermal con-

ductance matrices for the real 3-D IC and the homogeneous-

materials 3-D IC. Then, NUMANA extracts their difference

matrix by subtracting these two thermal conductance matri-

ces. Finally, using GIT as the simulation kernel, NUMANA

performs a recursive analytical-based calculation technique for

the steady-state temperature distribution of the real 3-D IC.

A.1. Calculation Formula Construction

Using the FDM based modeling technique, the MNA system

shown in (3) of a real 3-D IC can be built. G can be decom-

posed as Gh+ΔG. Here, Gh is the thermal conductance matrix

of a homogeneous-materials 3-D IC having the same stacked-

layer structure as the real 3-D IC and having appropriately

chosen thermal conductivities in different layers. Substituting

G = Gh + ΔG into (3), the temperature distribution of a real

3-D IC can be calculated as

T = (Gh + ΔG)−1p = (I +G−1
h ΔG)−1G−1

h p. (4)

Two theorems for developing NUMANA are stated as follows.

Due to lack of space their proofs are omitted.

Theorem 1: Decomposing G as Gh + ΔG, T can be ex-

pressed as

T =
∞∑

q=0

(−1)q
(
G−1

h ΔG
)q

G−1
h p, (5)

where Gh is constructed by setting the suitable thermal con-

ductivity, κhl , for each Vzl , and each κhl satisfies

κhl > κmaxl/2, for 1 ≤ l ≤ L. (6)

Here, l and L are the index and the number of discretization

levels in z-direction, respectively. zl is the central position of

z-axis of the l-th discretization level along the z-direction, and

Vzl is the set of all lateral control volumes with their central

position in the z-axis being equal to zl. κhl is the selected

thermal conductivity in Vzl , and κmaxl is the maximum thermal

conductivity among Vzl . �
Theorem 2: The convergent rate of (5) is dominated by the

maximum absolute eigenvalue of G−1
h
ΔG, σmax

(
G−1

h
ΔG
)
, and

σmax

(
G−1

h
ΔG
)

is bounded by

σmax

(
G−1

h ΔG
)
≤ σmax

(
G
−1

h

)
max

i=1 to K
(max (α [i] ,β [i])) , (7)

where K =MNL, Gh is the normalized matrix with its i j-th
entry being Gh[i][ j]/Gh[i][i], and

α[i] =
∑K

k�i (|ΔG[i][k]| − ΔG[i][k])∑K
j�i Gh[i][ j]

,

β [i] =
∑K

k�i (|ΔG[i][k]| + ΔG[i][k])∑K
j�i Gh[i][ j]

.

�
From Theorem 1, the Q-th order approximation of T is

T ≈ TQ def
= m0 +

Q∑
q=1

mq, (8)

where m0 = G−1
h

p, mq = G−1
h

bq−1, and bq−1 = −ΔGmq−1.

Here,each mq can be calculated by using the same G−1
h

, and

TQ can be computed recursively. To efficiently compute TQ,

NUMANA develops a recursive analytical-based calculation

technique for solving each mq.

A.2. Recursive Analytical-based Temperature Calculation

The key idea of the recursive analytical-based temperature

calculation is conducted by the following observation. Since

Gh is a thermal conductance matrix of a homogeneous-

materials 3-D IC, m0 and mq’s can be viewed as the temper-

ature vectors for a homogeneous-materials 3-D IC by treating

entries of p and bq−1’s as heat sources in the corresponding

control volumes. Since GIT supports such physical model and

can analytically solve the solution, it is suitable for calculating

m0 and mq’s.



Procedure T = NUMANA-SP (p, κ, �κh, ε)
Input: p: power distribution vector,

κ: thermal conductivity set of a real 3-D IC,
�κh: selected homogeneous thermal conductivity vector,
ε: threshold.

Output: T: Estimated temperature distribution.

1 Begin
2 Construct spatial bases and 1-D MNA system of GIT(·) by using �κh;
3 Construct ΔG by using �κ and �κh;
4 m0 ← GIT(p);

5 T0 ← m0;
6 q ← 1;

7 While max
{∣∣∣mq−1[i]/Tq−1[i]

∣∣∣} > ε
8 bq−1 ← −ΔGmq−1;
9 mq ← GIT(bq−1);

10 Tq ← Tq−1 +mq;
11 q ← q + 1;

12 T ← Tq−1;
13 End

Fig. 3. NUMANA-SP: Basic kernel of NUMANA.

The basic kernel of NUMANA is shown in Fig. 3. Since this

procedure only utilizes one homogeneous-materials, we call

it NUMANA-SP (single-point expansion). Given �κh, first, the

spatial bases and 1-D MNA system of GIT(·) are constructed.

Here, �κh = [κh1
, · · · , κhL ]T . ΔG is constructed by utilizing

�κh and κ (the thermal conductivity set of control volumes

of the real 3-D IC). After that, the recursive analytical-

based temperature calculation stated in Lines 4∼11 repeatedly

computes m0 and each mq until each absolute ratio of the i-
th entry of mq−1 and Tq−1, max{∣∣∣mq−1[i]/Tq−1[i]

∣∣∣}, is less than

the threshold ε. According to section III-B, the complexity for

solving TQ is O
(
(Q + 1)MNL log2 BxBy

)
.

Choosing appropriate values of �κh for construing ΔG is im-

portant, because it leads to the different convergent properties

of (8). As indicated by Theorem 2, an appropriate selection of

�κh should try to minimize absolute values of entries in ΔG.

Notice that large differences between thermal conductivities

in the real 3-D IC and �κh will result in large absolute values

of entries in ΔG. Therefore, the minimization of absolute

values of entries in ΔG can be adequately approximated by

minimizing the differences between thermal conductivities in

control volumes and the corresponding entries in �κh. To ensure

a fast convergent rate for a large portion of temperatures, the

minimization process should take into account the statistic

information of thermal conductivities in control volumes. With

the above discussions, each κhl can be appropriately selected

by solving the convex optimization problem as

minimize
∑g=N l

g

g=1
Probg

(
κlg − κhl

)2
, (9)

subject to κmaxl/2 − κhl ≤ 0. (10)

Here, κlg’s are the effective thermal conductivities for construct-

ing conductances of control volumes in Vzl . N l
g is the number

of different conductances of control volumes in Vzl . Probg is

the occurrence probability of κlg.
This optimization problem can be solved as

κhl = max

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
g=N l

g∑
g=1

Probgκ
l
g,
(κmaxl

2

)+⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (11)

Here, (κmaxl/2)+ is a value that is slightly larger than κmaxl/2.
With (11), the temperatures in the large portion of control

volumes can be well approximated by a low truncation order.

Procedure T = NUMANA-MP(p,κ,N, ε, ε′)
Input: p: power distribution vector,

κ: thermal conductivity set of a real 3-D IC,
N: maximum expanding point number,

ε, ε′: threshold.
Output: T: Estimated temperature distribution.

1 Begin
2 Compile CDFl (κ) of thermal conductivity for each layer;

3 Select expanding point as �κ(1)
h

;

4 [T,R] = RGIT(p,κ,�κ(1)
h
, ε′);

5 ε′ ← c · ε′;
6 n ← 1;
7 While (n ≤ N & !Conv)

8 Select expanding point as �κ(n)
h

;

9
[
T(n),R(n)

]
= RGIT(p,κ,�κ(n)

h
, ε′);

10 [T,R,Conv] ← Point-wise best result extractor (T,T(n),R,R(n), ε);
11 n ← n + 1;
12 End

Fig. 4. Procedure of NUMANA-MP.

Procedure [T,R] = RGIT(p, κ, �κh, ε′)
Input: p: power distribution vector,

κ: thermal conductivity set of a real 3-D IC,
�κh: selected homogeneous thermal conductivity vector,
ε′: threshold.

Output: T: Estimated temperature distribution,
R: Estimated point-wise ratio of redundancy.

1 Begin
2 Construct spatial bases and 1-D MNA system of GIT(·) by using �κh;
3 Construct ΔG by using �κh and κ;
4 m0 ← GIT(p);

5 T0 ← m0;
6 q ← 1;

7 While ‖mq−1‖2/‖Tq−1‖2 > ε
′

8 bq−1 ← −ΔGmq−1;
9 mq ← GIT(bq−1);

10 Tq ← Tq−1 +mq;
11 q ← q + 1;
12 For all i
13 R[i] ← ∣∣∣mq−1[i]/Tq−1[i]

∣∣∣;
14 T ← Tq−1;
15 End

Fig. 5. Procedure of RGIT.

However, the control volumes with large differences of thermal

conductivities have a low convergent rate, and the maximum

error usually occurs in those control volumes. The multi-point

expansion technique will be adopted for amending this issue.

B. Multi-Point Expansion (NUMANA-MP)

As variations of thermal conductivities in a layer are quite

large, NUMANA-SP might need dozens of truncation orders

to approximate the temperature profile because some entries

of ΔG and bq’s would be large. To reduce truncation orders,

we can appropriately build several different homogeneous-

materials 3-D ICs (i.e. multi-point expansion) to ease the

effects of large thermal conductivity variations. We name it

NUMANA-MP (multi-point expansion).

The procedure of NUMANA-MP is shown in Fig. 4.

NUMANA-MP first estimates the cumulative distribution

function CDFl(κ) of thermal conductivities for each Vzl , and

a suitable expanding-point vector �κ(1)

h
is chosen by using (11).

Next, a recursive analytical temperature calculation proce-

dure (RGIT) shown in Fig. 5 is executed. RGIT is similar

to NUMANA-SP except that RGIT records the redundancy

ratio R[i] =
∣∣∣mq−1[i]/Tq−1[i]

∣∣∣ for each control volume i and

computes
∥∥∥mq−1

∥∥∥
2
/
∥∥∥Tq−1

∥∥∥
2
. If
∥∥∥mq−1

∥∥∥
2
/
∥∥∥Tq−1

∥∥∥
2

is equal or

less than a threshold ε′, it means that the truncation order is



large enough for the most control volumes.
After obtaining the estimated temperature profile and redun-

dancy ratios, ε′ is loosened by c · ε′ for the rest expanding-

point vectors because NUMANA-MP tries to avoid spending

too much time on those convergent control volumes by the

first expanding-point vector. Then, NUMANA-MP processes

the rest expanding-point vectors. To ensure efficient simula-

tions, a chosen expanding-point vector must differ from those

expanding-point vectors that we have picked. NUMANA-MP

sets that the difference between the thermal conductivities

of different expanding-point vectors in Vzl must be larger

than α · κmaxl (α<1). As each �κ(n)

h
is well picked (i.e., a

new homogeneous-materials 3-D IC is built.), NUMANA-

MP executes RGIT and the point-wise best result extractor
to output the temperature profile.

The point-wise best result extractor compares the values of

R[i] got by different expanding-point vectors with R(n)[i], and

replaces T[i] with T(n)[i] if R(n)[i] is less than R[i]. As all

control volumes are compared, it checks whether any existing

R[i]’s are larger than ε. T is converged if no one is larger than

ε. Otherwise, NUMANA-MP selects another expanding-point

vector and continues the simulation procedure.

V. Experimental Results

MUMANA is implemented in C++ language and tested

on Intel Xeon Processor E5620 2.4-GHz CPU with 96GB

RAM. Thermal conductivities (W/m·K) of silicon, copper,

microbump and oxide are 148, 406, 60 and 0.83 under 27°C,

respectively. The physical model of stacked-layer 3-D IC is

shown in Fig. 1.(a). The material of TSV is copper. The routing

density of each interconnect layer is 0.4∼0.6, and the diameter

of micro solder bump is 30μm. The heat transfer coefficients

of primary and secondary heat flow path, hbp
s
(�rbp

s
) and hbs

s (�rbs
s )

are 42829.81W/m2·K and 2000W/m2·K. The number of lateral

spatial bases is 32 × 32 for executing GIT(·). c is 100, and α
is 0.05 for NUMANA-MP. Maximum relative error emax and

average relative error eavg are used as measures of difference

between estimated and exact thermal profiles.

emax = max
∀v∈V

(∣∣∣∣
(
Tref

v − Test
v

)
/Tref

v

∣∣∣∣
)
, (12)

eavg =
1

N

∑
∀v∈V

∣∣∣∣
(
Tref

v − Test
v

)
/Tref

v

∣∣∣∣ , (13)

where V is the control volume set, N is the number of control

volumes, Tref
v (°C) is the temperature of v-th control volume

obtained by a reference solver, and Test
v (°C) is the temperature

of v-th control volume obtained by a estimated method.
A. Accuracy Verification

To verify the accuracy of NUMANA, NUMANA-SP is used

to simulate a three stacked-layer 3-D IC, and its result is

compared with that of ANSYS. The diameter of TSV is 45μm,

and 200 TSVs are distributed between each two stacked layers.

To execute ANSYS, first, the geometry of 3-D IC is built to

fit the form of ANSYS. After building the thermal model,

ANSYS spatially discretizes the model. As the mesh procedure

is done, boundary conditions are set, heat sources are inserted,

and the temperature distribution is calculated by ANSYS.
The test chip is discretized to 32, 32, 14 steps along x-, y-

and z-directions, respectively, for NUMANA-SP. Hence, the

(a) (b)

Fig. 6. Temperature profiles of a three stacked-layer chip by (a) ANSYS
and (b) NUMANA-SP.

control-volume number is 32× 32× 14. In aspect of accuracy,

the temperature profile got by NUMANA, plotted in Fig. 6.(b),

conforms to the result got by ANSYS, shown in Fig. 6.(a). Its

maximum relative error is 1.84%, and its average relative error

is 0.54%. In aspect of simulation speed, ANSYS spent half a

day to estimate the temperature profile but NUMANA only

took 0.15 second to estimate the temperature profile.

B. Robustness and Efficiency Demonstration

SuperLU (version V4.3) [1] is a well known matrix solving

tool. It provides an efficient method (we name it SuperLU-

Direct) to decompose symmetric positive definite matrix and

directly solve matrix equations. In addition, it also provides

a generalized minimal residual method (GMRES) solver (we

name it SuperLU-GMRES) with an incomplete LU factoriza-

tion pre-conditioner [1], which is faster than directly solving

the problem. The stopping criterion of SuperLU-GMRES is set

to achieve the same accuracy level as NUMANA. To demon-

strate efficiency and robustness of NUMANA, NUMANA is

compared with SuperLU-Direct and SuperLU-GMRES. ε and

ε′ for NUMANA are 10−6 and 10−4, respectively.

B.1. Comparison between NUMANA and SuperLU with Dif-
ferent Amounts of TSVs

With different amounts of TSVs, the comparison between

NUMANA and SuperLU is shown in TABLE I. The reference

solver is SuperLU-Direct. Each test chip has five stacked layers

with different amounts of TSVs. The diameter of TSV is 6μm.

TSVs are placed randomly, and micro solder bumps are placed

uniformly. The control-volume number is 256×256×24. “Cell

Cnt.” is the number of cells, “TSV Cnt.” is the number of

TSVs, and “Power” is the chip power consumption.

From TABLE I, the maximum relative error of NUMANA

is less than 1.82%, and its average relative error is less

than 0.97%. Comparing with SuperLU-Direct and SuperLU-

GMRES, NUMANA-SP is at least 856× speedup and 18×
speedup, respectively. NUMANA-MP uses two expansion-

point vectors, and their truncation orders are shown in the

8-th column. As shown in the 7-th and 8-th columns, the

truncation number of NUMANA-MP is less than NUMANA-

SP. Hence, NUMANA-MP further saves the runtime and can

achieve at least 1162.8× speedup and 25.1× speedup over

SuperLU-Direct and SuperLU-GMRES, respectively.

TABLE I also shows that as the number of TSVs increases,

the relative errors and truncation orders of NUMANA de-

crease. The reason is as follows. Since the portions of the



TABLE I

Comparison between NUMANA and SuperLU [1] with different amounts of TSVs.

Test Tier Cell TSV Truncation order/ Maximum Average †Runtime NUMANA
Chip Cnt. Cnt. Cnt. Power #iteration Relative Error (%) Relative Error (%) (s) Speedup Ratio

(×106) (×103) (W) SuperLU NUMANA SuperLU NUMANA SuperLU NUMANA SuperLU NUMANA over -Direct over -GMRES
-GMRES SP MP -GMRES SP MP -GMRES SP MP -Direct -GMRES SP MP SP MP SP MP

chip 1 5 16.0 3.4 68.49 339 40 23,5 1.9094 1.7991 1.8142 1.5161 0.9472 0.9603 9860.86 212.84 11.52 8.48 856.0 1162.8 18.48 25.10

chip 2 5 15.5 6.8 66.37 294 32 19,4 1.6000 1.5590 1.5727 1.3017 0.7539 0.7626 9889.07 190.70 9.25 7.09 1069.1 1392.8 20.62 26.90

chip 3 5 15.0 9.8 64.37 298 24 14,4 1.2480 1.1556 1.1657 1.0003 0.5446 0.5505 9875.09 198.50 6.97 5.68 1416.8 1738.6 28.48 34.95

chip 4 5 14.5 13.3 62.21 325 17 11,3 0.9149 0.9114 0.9142 0.7017 0.3769 0.3784 9928.32 204.13 4.99 4.56 1989.6 2177.3 40.91 44.77

† The runtime does not include the execution time for parsing files.

TABLE II

Comparison between NUMANA and SuperLU [1] with different amounts of control volumes.

Test Control Truncation Order/ Maximum Average †Runtime NUMANA
Chip Volume #iteration Relative Error (%) Relative Error (%) (s) Speedup Ratio

Cnt. SuperLU NUMANA SuperLU NUMANA SuperLU NUMANA SuperLU NUMANA over -Direct over -GMRES
-GMRES SP MP -GMRES SP MP -GMRES SP MP -Direct -GMRES SP MP SP MP SP MP

98.3K 219 8 4,4 0.6013 0.5499 0.5499 0.4830 0.1324 0.1324 62.44 7.89 0.23 0.29 271.5 215.3 34.30 27.21
393.2K 286 24 15,4 1.4062 1.3612 1.3654 1.0561 0.6687 0.6726 842.93 44.36 2.00 1.69 421.5 498.2 22.18 26.25

Chip 1 1.6M 339 40 23,5 1.9094 1.7991 1.8142 1.5161 0.9472 0.9603 9860.86 212.84 11.52 8.48 856.0 1162.8 18.48 25.10
♣6.3M NA 41 24,4 NA 2.0109 2.0301 NA 1.0480 1.0608 NA NA 46.10 33.16 NA NA NA NA
♣25.2M NA 42 24,4 NA 2.1111 2.1333 NA 1.0791 1.0938 NA NA 191.57 135.02 NA NA NA NA

98.3K 199 5 3,3 0.6753 0.6529 0.6529 0.4771 0.1803 0.1803 62.58 7.44 0.15 0.24 417.2 260.8 49.60 31.00
393.2K 330 8 6,3 0.7095 0.6701 0.6703 0.5700 0.2614 0.2728 842.36 49.53 0.70 0.89 1203.4 946.5 70.76 55.65

Chip 4 1.6M 325 17 11,3 0.9149 0.9114 0.9142 0.7017 0.3769 0.3784 9928.32 204.13 4.99 4.56 1989.6 2177.3 40.91 44.77
♣6.3M NA 18 11,3 NA 1.0680 1.0721 NA 0.4172 0.4196 NA NA 20.63 17.94 NA NA NA NA
♣25.2M NA 18 11,3 NA 1.1463 1.1513 NA 0.4313 0.4342 NA NA 83.85 73.29 NA NA NA NA

† The runtime does not include the execution time for parsing files.
♣ The reference solution is the result of SuperLU-GMRES.

left-half side of thermal conductivity distribution of silicon

substrate and micro solder bump layers are decreased as the

number of TSVs increases, the number of non-zero entries of

ΔG is fewer, and their values would be smaller.

B.2. Comparison between NUMANA and SuperLU with Dif-
ferent Amounts of Control Volumes

With different amounts of control volumes, temperature

profiles of chip 1 and chip 4 are calculated by NUMANA

and SuperLU. The control-volume number is varied from

98.3K (64 × 64 × 24) to 25.2M (1024 × 1024 × 24), and

TABLE II shows the comparison. The reference solver is

SuperLU-Direct. However, the reference solution is obtained

by executing SuperLU-GMRES with 10, 000 iterations for the

cases of 6.3M and 25.2M control volumes since SuperLU-

Direct runs out of memory.

The maximum relative error of NUMANA is less than

2.1%, and its average relative error is less than 1.1%. The

4-th and 5-th columns of TABLE II reveal that the truncation

order is raised as the control-volume number increases. Since

more control volumes in a chip lead to more expressions of

composed materials, the thermal conductivity distribution of

each layer varies more wildly. The 3-rd column shows that

the iteration number of SuperLU-GMRES also increases as

the control-volume number increases.

The 14-th and 15-th columns show the runtime of

NUMANA-SP and NUMANA-MP. Since NUMANA-MP uses

multiple-point vectors to expand the system, it is more robust

than NUMANA-SP. Hence, as the control-volume number

increases, the runtime of NUMANA-MP is less than that of

NUMANA-SP. As shown in the 16-th and 17-th columns of

TABLE II, the speedup ratio of NUMANA over SuperLU-

Direct grows as the control-volume number increases. Finally,

the 18-th and 19-th columns show that NUMANA can be an

order of speedup over SuperLU-GMRES.

VI. Conclusion

NUMANA, an efficient thermal simulator for 3-D ICs, has

been developed. By combing both advantages of analytical

and numerical techniques, NUMANA can effectively estimate

the temperature profile of a 3-D IC even with complicated

material structures.
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