
Towards Performance Analysis of SDFGs Mapped
to Shared-Bus Architectures Using Model-Checking

Maher Fakih∗, Kim Grüttner∗, Martin Fränzle† and Achim Rettberg†
∗OFFIS Institute for Information Technology, Germany

†Carl von Ossietzky University, Germany

Abstract—The timing predictability of embedded systems with
hard real-time requirements is fundamental for guaranteeing
their safe usage. With the emergence of multicore platforms
this task became very challenging. In this paper, a model-
checking based approach will be described which allows us to
guarantee timing bounds of multiple Synchronous Data Flow
Graphs (SDFG) running on shared-bus multicore architectures.
Our approach utilizes Timed Automata (TA) as a common
semantic model to represent software components (SDF actors)
and hardware components of the multicore platform. These TA
are explored using the UPPAAL model-checker for providing the
timing guarantees. Our approach shows a significant precision
improvement compared with the worst-case bounds estimated
based on maximal delay for every bus access. Furthermore,
scalability is examined to demonstrate analysis feasibility for
small parallel systems.

I. INTRODUCTION

Multicores are becoming standard in the area of embedded
systems. Due to their significantly increased performance
and decreased energy consumption, they offer an appealing
alternative to traditional architectures. This fact, together with
the growing computational demand of real-time applications
(in automotive, avionics, and multimedia), stresses the need
for methods to prove the timing predictability of software ap-
plications running on such architectures for guaranteeing their
safe usage in a real-time domain. Yet the timing prediction of
multicore platforms with hard real-time requirements is very
challenging. The high contention on shared resources such as
busses and caches makes the static timing analysis of such
platforms very hard. To cope with this challenge, predictable
by construction platforms with predictable arbitration proto-
cols have been suggested. In general, predictability is coupled
with performance degradation.

There are mainly two performance analysis approaches
for embedded applications: simulative and formal methods.
Because exhaustive simulation is never complete and might not
cover all interesting corner cases, a formal approach is needed
to estimate safe upper bounds on the application execution
time. In this approach, a mathematical (static) analysis is
performed on a formal representation of both the software and
the hardware. This analysis takes into consideration all possi-
ble inputs and combinations of the running applications with
all different hardware states of the proposed platform. Since
multicore architectures are composed of concurrent compo-
nents and their synchronization depends on timing constraints,

formal models like timed automata and model-checkers like
UPPAAL [1] are very suitable to capture and verify the behav-
ior of these systems. Model-checking techniques are capable of
verifying the performance properties of a system with vigor, in
contrast to simulative approaches. Furthermore, for unmet tim-
ing properties counter examples are provided. Unfortunately,
these techniques are not scalable when analyzing full featured
multicore systems (with cache, preemption and shared bus)
on which general applications are run. In this paper, we limit
the application being analyzed to the Synchronous Dataflow
Flow (SDF) [2] Model of Computation (MoC). SDF semantics
support the clean separation between task computation and
communication time which makes it easier to predict timing
effects of global memory accesses. Furthermore, we consider
a simple multicore architecture where each core has its own
instruction and data memory and is called a “tile”. Tiles are
connected through an “unpredictable” shared bus and message
passing between them is realized through memory-mapped I/O
on a shared memory. We claim the following contributions:

1) We utilize model-checking to find the timing bounds
of multiple (hard real-time) SDF-based applications
mapped to a multicore platform considering variable
access delays due to the contention on the bus.

2) We evaluate our approach and show that it allows a
better scalability than the approach in [3]. At the same
time, it gives more precise guarantees on hard real-time
SDFGs than a pessimistic analysis method [4].

This paper is structured as follows: In Section II we discuss
the related work mainly addressing the performance analysis
of synchronous dataflow graphs (SDFGs) on multicores. Next,
we describe the considered system model. Section IV describes
our proposed performance analysis method. Afterwards, the
method is evaluated in terms of scalability and in comparison
to a pessimistic analysis method. Finally, the last Section
concludes the paper and gives an outlook on future work.

II. RELATED WORK

A. Model-checking

Lv et al. [5] presented an approach based on model-
checking (UPPAAL) combined with abstract cache interpre-
tation to estimate WCET of non-sharing code programs on a
shared-bus multicore platform. Gustavsson et al. [3] moved
further and tried to extend the former work [5] concen-
trating on modeling code sharing programs and enhancing
the hardware architecture with additional data cache but978-3-9815370-0-0/DATE13/ c© 2013 EDAA

without the consideration of bus contentions. In their work,
they considered general tasks modeled at assembly level
and analyzed these when mapped to an architecture where
every core has its private L1 cache and all cores share an
L2 cache without sharing a bus. Yet, the instruction level
granularity of the modeled tasks lead to scalability problems
even with a platform of four cores, on which four (very
simple) tasks run and communicate through a shared buffer.
Despite the advantage of the former two approaches being
applicable to any code generated/written for any domain, the
fine granularity of the code-level or instruction-level impedes
the scalability of the model-checking technique. In this work
we intended to limit the application to an SDF MoC and limit
the hardware architecture by removing caches, in order to
reason about the scalability of a model-checking-based method
for the performance analysis of SDFGs. In [6] an approach
which combines model-checking with real-time analysis was
presented to extend the scalability of worst-case response time
analysis in multi-cores. Tasks are composed of superblocks
where ressource access phases can be identified. In this paper,
we concentrate on SDF based applications with their specific
properties and constraints. It is possible to use the abstraction
techniques from [6] to analyze SDF applications. Dong et
al. [7] presented a timed automata-based approach to verify
the impact of execution platform and application mapping on
the schedulability (meeting hard real-time requirements). The
granularity of the application is considered at the task level.
With tasks and processors having their own timed automata,
the approach scales up to 103 tasks mapped to 3 cores. Yet,
the communication model is missing in this approach.

B. Performance Analysis of SDFGs

Bhattacharyya et al. [2] proposed to analyze performance
of a single SDFG mapped to a multi-processor system by
decomposing it into a homogeneous SDFG (HSDFG). This
could result in an exponential number of actors in the HSDFG
compared to the SDFG. This in turn may lead to performance
problems for the analysis methods. Ghamarian [8] presented
novel methods to calculate performance metrics for single
SDF applications which avoid translating SDFGs to HSDFGs.
Nevertheless, resource sharing and other architecture proper-
ties were not considered. Moone [9] analyzed the mapping
of SDFGs on a multiprocessor platform with limited resource
sharing. The interconnect makes use of a network-on-chip that
supports network connections with guaranteed communica-
tion services allowing them to easily derive conservatively
estimated bounds on the performance metrics of SDFGs.
Kumar [10] presented a probabilistic technique to estimate the
performance of SDFGs sharing resources on a multi-processor
system. Although this analysis was made taking into account
the blocking time due to resource sharing, the estimation
approach was aimed at analyzing soft real-time systems rather
than those of hard real-time requirements. The work presented
in [11] introduces an approach based on state-space explo-
ration to verify the hard real-time performance of applications
modeled with SDFGs that are mapped to a platform with

shared resources. In contrast to this paper, it does however not
consider a shared communication resource. Schabbir et al. [4]
presented a design flow to generate multiprocessor platforms
for multiple SDFGs. The performance analysis for hard real-
time tasks is based on calculating the worst-case waiting time
on resources as the sum of all tasks’ execution times which
can access this resource. This is a safe but obviously a very
pessimistic approach as we will show in Section V-B.
To the best of our knowledge, our proposed methodology is
novel in two regards w.r.t. above approaches: 1) it utilizes
model-checking for the timing validation of multiple hard real-
time SDFGs on a multicore platform and 2) it considers the
contention on a shared communication medium with flexible
arbitration protocols such as First Come First Serve (FCFS),
providing more flexible analysis than above approaches, which
analyzed SDFGs on interconnects with predictable protocols
(such as Time Division Multiple Access (TDMA)).

III. SYSTEM MODEL DEFINITION

All the definitions and terms of the system model are based
on the X-Chart based synthesis process defined and described
in [12]. We decided to use a formal notation (inspired from [2,
13]) to describe in a precise and unambiguous way, the main
modeling primitives and decisions of the synthesis process.
This synthesis process takes as first input a set of behavior
models, each implemented in the SDF MoC. The second input
comprises resource constraints on the target architecture. The
output is a model of performance (MoP) that serves as input
for our performance analysis.

A. Model of Computation (MoC)

An SDF graph (SDFG) is a directed graph which typ-
ically consists of nodes (called actors) modeling func-
tions/computations and arcs modeling the data flow. In
SDFGs a static number of data samples (tokens) are con-
sumed/produced each time an actor executes (fires). An actor
can be a consumer, a producer or a transporter actor. Fig. 1
depicts the SDFG of a JPEG encoder (cf. [4]). While the
producer (get MB) and consumer (VLC) actors respectively
either produce or consume tokens, a transporter actor (CC,
DCT) does both. The JPEG encoder SDFG consists of four
actors: a macroblock sampling (get MB) which parses an
input BMP file and sends 3 macro-blocks (each 16x16 pixels)
to a color conversion (CC) actor. The CC actor can fire if 128
pixels are available on its input edge and sends 64 pixels to
the discrete cosine transform (DCT) actor which in turn sends
with each firing 64 pixels to the variable length coding (VLC)
actor. We describe the formal semantics of SDFGs as follows:

Definition 1: (Port) A Port is a tuple P = (Dir,Rate)
where Dir ∈ {I,O} defines whether P is an input or an
output port, and the function Rate : P → N>0 assigns a
rate to each port. This rate specifies the number of tokens

Figure 1. SDFG of a JPEG encoder

consumed/produced by every port when the corresponding
actor fires.

Definition 2: (Actor) An actor is a tuple A = (P, F)
consisting of a finite set P of ports P , and F a label,
representing the functionality of the actor.

Definition 3: (SDFG) An SDFG is a triple
SDFG = (A,D, Ts) consisting of a finite set A of
actors A, a finite set D of dependency edges D, and a token
size attribute Ts (in bits). An edge D is represented as a triple
D = (Src,Dst,Del) where the source (Src) of a dependency
edge is an output port of some actor, the destination (Dst) is
an input port of some actor, and Del ∈ N0 is the number of
initial tokens (also called delay) of an edge. All ports of all
actors are connected to exactly one edge, and all edges are
connected to ports of some actor.

Definition 4: (Repetition vector) A repetition vector of an
SDFG is defined as the vector specifying the number of
times every actor in the SDFG has to be executed such
that the initial state of the graph is obtained. Formally, a
repetition vector of an SDFG is a function γ : A → N0

so that for every edge (p, q) ∈ D from a ∈ A to b ∈ A,
Rate(p) × γ(a) = Rate(q) × γ(b). A repetition vector γ
is called non-trivial if and only if for all a ∈ A : γ(a) > 0.
In this paper, we use the term repetition vector to express the
smallest non-trivial repetition vector.

B. Model of Architecture (MoA)

Fig. 2 depicts our proposed architecture template. The
tile is made up of a processing element (PE) which has
a configurable bus connection. In addition, every PE has
two local disjoint memories: an instruction (IM) and a data
memory (DM). An interconnect such as a bus is used to
connect the tiles to shared memory blocks in order to allow
communication using shared memory. This enables SDFGs
mapped to different tiles to communicate via buffers mapped
to this shared memory. Only explicit communication (message
passing) between actors will be visible on the interconnect and
the shared memory. We assume constant access time for any
memory block in the shared memory (as in [5]). Furthermore,
we assume the architecture to be synchronous so that no
possible delays due to different clock cycles of architecture
components are considered.

Definition 5: (Tile) A tile is a tuple T = (PE,Mp) with
processing element PE = (PEtype, f) where PEtype is
the type of the processor and f is its clock frequency, and
Mp = (mi,md) where mi,md ∈ N>0 are the instruction and
data memory sizes (in bits) respectively.

Figure 2. Proposed Platform

Definition 6: (Execution Platform) An execution platform
EP = (T , B,MS) consists of a finite set T of tiles, a shared
bus B = (bb, AP) with bb being the bandwidth in bits/cycle,
AP is the arbitration protocol (FCFS, TDMA, Round-Robin)
andMS a finite set of shared memories, each of them having
specific size ms in bits.

C. System Synthesis

The system synthesis includes the processes of binding and
scheduling the behavioral model on the defined architecture.
Mapping the SDFG on our MoA is defined as follows:

Definition 7: (Mapping) If A is the set of actors of all
SDFGs, D the set of all edges, T the set of tiles of the platform
configuration, MS the set of all shared memories, MP the
set of all private memories, then a mapping can be defined as
a tuple M = (α, β) with

1) the function α : A → T mapping every actor to a tile
(multiple actors can be assigned to one tile)

2) the function β : D → MP ∪MS mapping every edge
of the SDFG either to a private memory of the tile or
to a shared memory.

An edge mapped to a private or to a shared memory represents
a consumer-producer FIFO buffer in an actual implementation
[2]. The following three definitions allow us to express the
scheduling behavior of multiple SDFGs mapped to the tiles:

Definition 8: (Static-order schedule) For an SDFG with
repetition vector γ, a static-order schedule SO is an ordered
list of the actors (to be executed on some tile), where every
actor a is included in this list γ(a) times.

Definition 9: (Scheduling Function) Let SO be the set of
all SO schedules for all SDFGs considered in the system. A
scheduling function is a function S : T → so, which assigns
to every tile t ∈ T a subset so ⊆ SO.

Definition 10: (Scheduler) A scheduler is a triple
S = (so, F,HS) where so ⊆ SO is the set of different
SDFGs schedules assigned to one tile, F represents the
functionality (code) of the scheduler and HS is the
hierarchical scheduling, defining the order (priority) of
execution of independent lists of different SDFGs assigned
to one tile according to an arbitration strategy (Static-Order,
Round-Robin, TDMA).
We assume that all SDFGs running in the system are known
at design time. Furthermore, while the actors execution order
is fixed, the consumer-producer synchronization is performed
at run-time depending on the buffer state [2]. A producer actor
writes data into a FIFO buffer and blocks if that buffer is full,
while a consumer actor blocks when the buffer is empty.

An important performance metric of SDFG that will be
evaluated in Section V is the period, defined in this paper as
the time needed for one static order schedule of an SDFG to be
completed. Fig. 3 shows two SDFGs for a JPEG encoder and
a Sobel filter (left) and a 4-tiles platform (right). One possible
synthesis would be realized by:

1) Mapping actors with the same color to corresponding
colored tile for e.g. DCT and GY are mapped to Tile-3.

Figure 3. Mapping of JPEG encoder and Sobel Filter on a 4-tiles platform

2) Mapping each edge of both SDFGs to a FIFO buffer
in the shared memory, which can be accessed through
the bus (the buffer sizes are annotated on the middle of
every edge with an italic/red number).

3) Calculating a static order schedule for JPEG encoder:
(get MB)(CC)6(DCT)6(V LC)6 and one for the So-
bel filter: (get P ixel)(GX)(GY)(ABS), where the
exponent indicates how often the actor is executed in
the schedule.

4) Choosing static-order strategy for the hierarchical
scheduling with priority(JPEG)>priority(Sobel).

D. Model of Performance (MoP)

In order to be able to verify that the performance of
the SDFG stays within given bounds, we must keep track
of all possible timing delays of all mapped SDFGs to the
multicore platform. To achieve this, a MoP is extracted from
the synthesis process which includes only the SW/HW com-
ponents where the timing delay is critical. From the hardware
abstraction point of view, we consider a Transaction Level
Model (TLM) [14] abstraction for the communication. This
means that the application layer issues read/write transactions
on the bus, abstracting away from the communication protocol
(see CAAM model [14]). After synthesis, the following system
components can be annotated with execution times/delays: the
scheduler that implements the static order schedule within an
SDFG and the hierarchical scheduling across different SDFGs,
the actors, the tiles, the bus and the shared memories. A new
component (communication driver) is introduced into our sys-
tem, which is responsible of implementing the communication
between actors mapped to a tile with other components such as
the private memory and the shared memory. In addition, when
an actor blocks on a buffer, this driver implements a polling
mechanism. If A is the set of actors, S the set of schedulers,
D the set of edges, C the set of communication drivers, B
the bus, MS the set of shared memories, and MP the set of
private memories, when considering the performance of the
synthesized model, the following delay functions are defined:
• ∆A : A×T → N>0×N>0 which provides an execution

time interval [BCET,WCET] for each actor represent-
ing the cycles needed to execute the actor behavior on
the corresponding tile. This delay can be estimated using
a static analyzer tool.

• ∆S : S × T → N>0 × N>0, ∆C : C × T → N>0 × N>0

assigns in analogy to ∆A to every scheduler and commu-

nication driver a delay interval, which can be estimated
using a static analyzer tool depending on the code of both
components and the platform properties.

• ∆D : D×MP ∪MS → N>0 assigns to each communi-
cating edge d ∈ D mapped to a communication primitive
a delay which depends on the number and size of the
tokens being transported on the edge and the bandwidth
of the corresponding communication medium. We assume
that the delay on the edge mapped to a private memory is
included in the interval calculated by the static analyzer
tool for the actors. Likewise, the shared memory access
delay is included in the delay of the bus needed to serve
a message passing communication.

Now, we can abstractly represent every tile by the actors
mapped to it, the scheduler, a communication driver, each with
their delay as defined before, and its private memory. Each of
the private memories in the tiles and the shared memories
can be abstracted in a set of (private/shared) FIFO buffers
with corresponding sizes depending on the rate of the edges
mapped to them and the schedule (each edge is mapped to
exactly one FIFO buffer). Note that although no delays are
explicitly modeled on the private and shared buffers, these
buffers are still considered in the MoP because of their effect
on the synchronization which in turn affects the performance.

IV. PERFORMANCE ANALYSIS OF SDFGS

The components of the MoP identified in the last Section
can be formalized using the timed automata semantics of
UPPAAL1. The composition can be described as follows:

System = ExecutionPlatform || qi=1 SDFGi

SDFGi = r
j=1 Consumerj || sk=1 Producerk || tl=1 Transporterl

ExecutionPlatform= u
m=1 Tilem|| Bus || vo=1SharedFIFOo

Tilei= Scheduleri||CommunicationDriveri||wp=1 PrivateFIFOp

where || means parallel composition of timed automata in
UPPAAL, q is the number of SDFGs, r, s, t represent the
number of actors (distinguished according to their type), u
is the number of tiles, v is the number of shared FIFO, and
w is the number of private FIFO buffers. The edges in the
SDFG with the port-to-port bindings, the mapping decisions,
and system configuration parameters (e.g. WCET and buffer
sizes) were implemented as global variables in UPPAAL.
Fig. 4 depicts the interactions between the timed automata
of different components of the MoP. The scheduler starts and
activates the actors mapped to a tile according to a scheduling
mechanism (in this paper static order between and among
SDFGs). When an actor needs to communicate with another
actor it issues a Read/Write signal to the communication
driver which realizes the communication with the bus and
the private FIFO buffers depending on the mapping. The
bus arbitrates different requests from different tiles according
to a specific arbitration mechanism (in this paper FCFS)
and issues a communication to the specific buffer. If the
communication is successful then a FinishSharedFIFO signal

1UPPAAL 4.1.11 (rev. 5085), has been used in the experiments

Figure 4. MoP in UPPAAL with all interactions

is returned to the communication driver, which acknowledges
this by sending a FinishComm signal to the actor. If the target
buffer is blocked, it issues a FinishBlock signal that the bus
propagates to the communication driver which in turn waits
for some time before it retries the communication (polling).
Fig. 5 shows in detail the timed automaton template of a
transporter actor. The states of the actor alternate between
Idle, ReadAllPorts, WaitCommRead, Compute, WriteAllPorts,
WaitCommWrite and Finish. After receiving a runActor signal
from the scheduler, the actor reads on all its ports according
to their rates, and for every communication issues a read
signal to the communication driver. When the communication
of the last port is finished, an interval of BCET/WCET is
delayed (Compute state). Then the actor writes to all its ports
depending on their rates, and after writing to all ports, the
actor sends a finishActor signal indicating a single successful
execution.

A. Performance Analysis by verification

UPPAAL can verify whether a property holds for a given
network of timed automata or not. The verification properties
can be formalized in a subset of CTL (Computation Tree
Logic). By checking A [] not deadlock, we can verify
if our system is always deadlock free. We also take use of the
model-checker operator sup which searches for the supremum
of a variable or a clock value in the system. Likewise, we
could find the infimum by utilizing the inf operator.

To obtain the period of an SDFG, we need to implement an
observer automaton which traces the finishing time of the last
instance of the sink actor in the static order schedule of that
SDFG. We can now utilize the sup/inf operator to search
for the maximum/minimum delay between two consecutive
finishing instances of the sink actor which coincides with the
(worst/best case) period of the graph.

Figure 5. Template of SDF transporter actor

Table I
SCALABILITY RESULTS ANALYSIS TIME IN (S)

Actors Count 2 Tiles 4 Tiles 6 Tiles

8 0.50 34.60 > 1h(aborted)
16 1.79 36.70
32 11.90 277.90
36 102.50 1038.00
40 45.79 > 0.75h(aborted)
64 213.24
96 1050.10
100 > 1h(aborted)

V. EVALUATION

A. Scalability

In order to test the scalability of our method, we took the
JPEG encoder SDFG (see Fig. 1) and used its parameters
to instantiate the timed automata templates. We then varied
the number of JPEG SDFGs in the system and the number
of tiles. For every variation, we measured the analysis time
(on a Quad-core running at 2.4 GHz with 4 GB of RAM)
consumed, checking that the system does not deadlock. The
results achieved are shown in Tab. I and indicate a better
scalability than in [3]. Our approach scales up to 36 actors
mapped to 4-tiles and up to 96 actors on a 2-tiles platform.
The verification run was aborted by the tool with 6 tiles
and 8 actors after 1 hour of analysis, when the memory was
exhausted.

B. Accuracy

Our goal is to make a comparison between the output
of our analysis method with that of a pessimistic method
considered in [4]. In their work, the authors calculate the
worst-case waiting times for non-preemptive systems with
FCFS strategy by assuming that all other competing actors
mapped to this resource come to run before the waiting
actor. In our case, this means that for every tile (tile A)
access to the bus, it should be assumed that the actor with
the maximal communicating time on every other tile runs to
completion before tile A gets access to the bus. The authors
admit pessimistic results for large number of applications. We
will show in the following how pessimistic these estimations
can be. In order to do that, we will be using the system already
described in Fig. 3, consisting of two real-life SDFGs mapped
to a 4-tiles platform and configured with the parameters listed
in Tab. II. twcet (in cycles) is the WCET given by static
analyzer for every actor (values were adopted from [4]). tcom
(in cycles) is the communication time needed by every actor
firing to transport a number of tokens each of size 32 bits over
a bus with a bandwidth of 32 bits/cycle. First we configured
the timed automata templates to evaluate different mappings
and schedules of the considered SDFGs (see Tab. III). All
edges in all mappings were mapped to the shared memory in
order to achieve a high contention on the bus. To obtain the

Table II
ACTORS EXECUTION TIMES IN CYCLES

getMB CC DCT VLC getPixel GX GY ABS

twcet 13220 4446 20950 5420 320 77 77 123
tcom 768 192 128 64 12 7 7 2

Table III
STATIC ORDER SCHEDULES EXPERIMENTED

Sched. Tile-1 Tile-2 Tile-3 Tile-4

S1 (getMB)(CC)6 (DCT)6(VLC)6 - -
(getPixel)(GX) (GY)(ABS)

S2 (getMB)(CC)6 (getPixel)(GX) - -
(DCT)6(VLC)6 (GY)(ABS)

S3 (getMB)(getPixel) (CC)6(GX) (DCT)6(GY) (VLC)6(ABS)

S4 (getPixel)(getMB) (GX)(CC)6 (GY)(DCT)6 (ABS)(VLC)6

worst case period duration (WCP) for an SDFG, the schedule
of the SDFG and the Worst Case Response Time (WCRT) of
every actor are needed. In Section IV-A we pointed out how
the WCP can be computed using our model-checking-based
approach. For the pessimistic method, we define the WCRT
for every actor as follows:

twcrt = twcet + tcom + (MNC × twait), (1)

where MNC is the Maximum Number of Communication
attempts that an actor (by one activation) can launch on the bus
in a given period. The waiting time twait of actor a mapped
to a tile m on every communication attempt is defined as:

twait =

n∑
i=0

AWCT i −AWCTm, (2)

where n is the number of tiles in the system, AWCTi is the
Actor with the Worst Communication Time (tcom) among the
actors mapped to tile i.

The MNC highly depends on the number of ports of the
actor and on the polling parameters (when blocking on shared
buffer). To achieve a fair comparison, we extracted for every
configuration in Tab. III the MNC of every actor with the
help of the model-checker and used it to calculate the WCRT
of every actor according to (1). This guarantees that both
methods work with the same MNC for every actor. For
every configuration, we calculated the WCP once using our
model-checking-based approach (MC WCP) and once with
the help of the pessimistic method (Pess. WCP). Except for S2
configuration of the JPEG encoder, where the WCP estimated
by our method gave only an improvement of 0.1%, all other
results in Tab. IV indicate significant accuracy improvements
over the pessimistic method. The minimal improvement in S2
is due to the fact that the waiting time (twait) of JPEG actors
mapped to Tile-1 by every bus access was minimal (12 cycles,
compared to the Sobel filter actors in S2 where twait was 768
cycles). Another factor was that the MNC of all actors in S2
was the smallest among all other configurations (ranging from
1 to 2 communication attempts on the bus, where as in S1 the
MNC of the actors ranged from 2 to 56 access attempts).

Table IV
WORST CASE PERIOD (WCP) RESULTS IN CYCLES

Sched. JPEG encoder Sobel Filter

MC. WCP Pess. WCP % Impr MC. WCP Pess. WCP % Impr

S1 178450 367112 106% 178671 370339 107%
S2 201292 201606 0.1% 1425 6793 377%
S3 151381 591450 291% 151512 471987 211%
S4 151448 607050 300% 150444 535491 256%

VI. CONCLUSION

In this paper, we have demonstrated the applicability of
our model-checking-based performance analysis method to
validation of hard real-time SDFGs mapped to a shared-
bus multicore platform. In terms of scalability, the proposed
method scales up to 36 actors mapped to 4-tiles and up to
96 actors on a 2-tiles platforms. In addition, our method
shows a significant reduction in the worst-case response time
prediction, compared to a pessimistic analysis method known
from literature. Future work will address improving our ap-
proach w.r.t. scalability by using a discrete-time model checker
(UPPAAL uses a dense time model), relaxing the MoC towards
dynamic data flow graphs, and relaxing architecture constraints
towards interrupts, cross-bar switches, and dedicated FIFO
channels.

ACKNOWLEDGEMENT

This paper has been partially supported by the MotorBrain
ENIAC project under the grant (13N11480) of the German
Federal Ministry of Research and Education (BMBF).

REFERENCES
[1] J. Bengtsson and W. Yi, “Timed Automata: Semantics, Algorithms and

Tools,” in In Lecture Notes on Concurrency and Petri Nets. LNCS 3098.
Springer-Verlag, 2004, pp. 87–124.

[2] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors: Schedul-
ing and Synchronization, 1st ed. CRC Press, Mar. 2000.

[3] A. Gustavsson, A. Ermedahl, B. Lisper, and P. Pettersson, “Towards
WCET Analysis of Multicore Architectures Using UPPAAL,” 10th, pp.
101–112, 2011.

[4] A. Shabbir, A. Kumar, S. Stuijk, B. Mesman, and H. Corporaal, “CA-
MPSoC: An Automated Design Flow for Predictable Multi-processor
Architectures for Multiple Applications,” Journal of Systems Architec-
ture, vol. 56, no. 7, pp. 265–277, 2010.

[5] M. Lv, W. Yi, N. Guan, and G. Yu, “Combining Abstract Interpretation
with Model Checking for Timing Analysis of Multicore Software,” in
2010 31st IEEE Real-Time Systems Symposium, 2010, pp. 339–349.

[6] G. Giannopoulou, K. Lampka, N. Stoimenov, and L. Thiele, “Timed
model checking with abstractions: Towards worst-case response time
analysis in resource-sharing manycore systems,” in Proc. International
Conference on Embedded Software (EMSOFT). Tampere, Finland:
ACM, Oct 2012, pp. 63–72.

[7] C. Dong-il, C. Hyung, and M. Jan, “System-Level Verification of Multi-
Core Embedded Systems Using Timed-Automata,” C. Myung, Ed., Jul.
2008, pp. 9302–9307.

[8] A. Ghamarian, “Timing Analysis of Synchronous Data Flow Graphs,”
Ph.D. dissertation, Eindhoven University of Technology, 2008.

[9] A. Moonen, “Predictable Embedded Multiprocessor Architecture for
Streaming Applications,” Ph.D. dissertation, Eindhoven University of
Technology, 2009.

[10] A. Kumar, “Analysis, Design and Management of Multimedia Multipro-
cessor Systems,” Ph.D. dissertation, Ph. D. thesis, Eindhoven University
of Technology, 2009.

[11] Y. Yang, M. Geilen, T. Basten, S. Stuijk, and H. Corporaal, “Auto-
mated bottleneck-driven design-space exploration of media processing
systems,” in Proceedings of the Conference on Design, Automation and
Test in Europe, ser. DATE ’10. 3001 Leuven, Belgium, Belgium:
European Design and Automation Association, 2010, pp. 1041–1046.

[12] A. Gerstlauer, C. Haubelt, A. Pimentel, T. Stefanov, D. Gajski, and
J. Teich, “Electronic System-Level Synthesis Methodologies,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 28, no. 10, pp. 1517 –1530, Oct. 2009.

[13] S. Stuijk, Predictable Mapping of Streaming Applications on Multipro-
cessors. University Microfilms International, P. O. Box 1764, Ann
Arbor, MI, 48106, USA, 2007, vol. 68, no. 04.

[14] L. Cai and D. Gajski, “Transaction Level Modeling: an Overview,” in
First IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, 2003, Oct. 2003, pp. 19–24.

