
Supervisor Synthesis for Controller Upgrades
Johannes Kloos

MPI-SWS, Germany
Rupak Majumdar

MPI-SWS, Germany

Abstract—During the life cycle of a cyber-physical system, it
is sometimes necessary to upgrade a working controller with
a new, but unverified, one which provides better performance
or additional functionality. To make sure that system invariants
are not broken because of bugs in the new controller, an
architecture is used in which both controllers are implemented
on the platform, and a supervisor process checks that the actions
of the new controller keep the system within its safe states. If
an invariant may be violated, the supervisor switches over to
the old controller that ensures correct behavior, but possibly
degraded performance. A key question in the design of such
supervisors is the switching strategy: when should the supervisor
reinstate the new controller after it has switched to the old one?
In general, one would prefer to use the new controller as much as
possible, provided it does not violate safety. However, arbitrarily
switching back to the new controller can cause the system to
become unstable, even when each controller in isolation ensures
stability. We provide a supervisor synthesis procedure that uses
a simple counting strategy for the supervisor. Our synthesized
supervisor ensures that switching between the controllers ensures
stability of the system, while maintaining its safety properties and
providing a lower bound on the use of the new controller. We
prove the correctness of the strategy and show on an example
that it can provide close to optimal use of the new controller
against many disturbance scenarios.

I. INTRODUCTION

Software controllers for physical systems lie at the core
of many safety-critical systems. Such controllers are hard
to design reliably, and are often the major portion of the
development cost. Thus, once a controller has been validated
(usually through extensive simulations as well as production
performance), engineers are reluctant to change the code.
Unfortunately, controllers may have to be updated as part of
the design life cycle, e.g., to use a new implementation that
has better performance, to accommodate a new architectural
feature, or to use a new component that provides additional
functionality [5], [8]. While the new controller may already
be tested under nominal conditions to guarantee asymptotic
stability, it may not be possible to verify its operation under all
disturbance scenarios. Thus, it is often the case that while both
controllers ensure stability of the plant on their own, under
some disturbance scenarios, the new controller may produce
trajectories that violate some additional safety properties of
the system.

One way to make use of the new controller while ensuring
safety is to keep both controllers around, and provide two
modes of operations: regular operation using the new con-
troller and degraded operation using the old controller. An

978-3-9815370-0-0/DATE13/ c©2013 EDAA

obvious strategy is to switch from the new controller to the
old controller the first time the new controller is about to
violate the safety property, and from then on, use the old
controller. However, this would mean that the system runs in
degraded mode from this point on. A better strategy would be
to switch back to the new controller when possible, so that
the benefits of the new controller are available to the system.
The problem of generating a switching strategy is not trivial:
even if each controller ensures stability, it is well known that
switching between them arbitrarily can cause the resulting
system to be unstable (see, e.g., [12], as well as Figure 1
below). In this paper, we study the synthesis of supervisors
that ensure stability, safety, as well as maximize the use of
the new controller.

Let us be more precise. The input to the controller upgrade
problem consists of two controllers Cold and Cnew for a physi-
cal plant modeled as a continuous-time dynamical system, and
an invariant I on the system states that must be maintained.
Each controller, by itself, is guaranteed to ensure that the
controlled system is stable (that is, converges to the reference
behavior). Additionally, under the action of controller Cold ,
the system is guaranteed to ensure the invariant I . We want
to design a supervisor that switches between the controllers
to ensure that the switched control system is asymptotically
stable and maintains invariant I , but also maximizes the long-
run average use of Cnew .

While there are general theoretical approaches to find
optimal supervisors (e.g., using mean-payoff parity games
[3], ensuring stability and safety using appropriate parity
constraints [2]), they are at least as hard as the verification
problem for controllers. Thus, these approaches may not
be computationally feasible. Instead, we restrict attention to
restricted classes of supervisor strategies and look for sufficient
conditions.

In particular, we consider counting supervisors that do not
depend on the exact sequence of controller actions and system
states to determine when to switch, but only on the number
of steps since the last switch. We show how to construct
a counting strategy of the supervisor that ensures that the
supervised system is globally asymptotically stable and does
not violate the invariant, while giving a lower bound on
the long-run average use of Cnew . Our strategy is based on
average dwell time arguments for switched control systems
[12], [21]. We consider two versions of counting strategies: a
non-adaptive version, which only counts the number of steps
Cold is run since the last switch, and an adaptive version,
which counts steps for both Cold and Cnew . Both strategies

0 50 100 150 200 250 300 350 400 450 500
−300

−200

−100

0

100

200
System state using naive switching

−10

−5

0

5

10
System state using the safe controller

−10

−5

0

5

10
System state using the nice controller

Fig. 1. Behavior of the running example: naive switching causes instability

are simple to implement using a finite state counter.
We have implemented the approach on top of Simulink, and

we show experimentally on a standard benchmark example
that it leads to almost optimal use of the new controller in
a variety of settings, while maintaining asymptotic stability
and the safety property by design. Further, we show that
the simple counting strategies achieve performance close to
manually constructed optimal strategies.

Related Work. Supervisor synthesis for discrete systems was
studied extensively, both from a discrete event systems per-
spective [17], [10], as well as from an automata-theoretic
synthesis perspective [16], [15], [20]. Control of timed and
hybrid systems have been studied in various contexts [15], [9],
[13], [19], although algorithmic results are usually intractable
or undecidable. D’Souza et al. [6], [7] introduced the notion
of conflict-tolerant features to allow synthesis of a supervisor
that switches between different controllers while maximizing,
in a certain sense, the use of each controller. These methods
address invariance properties, but not global asymptotic sta-
bility.

The systems we consider are a special case of switching
systems. It is well-known that introducing switching into a
stable dynamical system can generate instability [12]. Early
work in the analysis of switching systems considered the cases
where the number of switches or the inter-switch time was
bounded. We base our synthesis on a general result of Vu
et al. [21] about input-to-state stability for general switching
systems.

II. PRELIMINARIES

We recall the background on dynamical systems, and use
standard control-theoretic notation (see, e.g., [11]). For two
vectors v, w ∈ Rn, we write v · w for the standard scalar
product. For a differentiable function f , we write ∇f for its
gradient.

Dynamical Systems For the purpose of this paper, a time-
varying dynamical system with input or general dynamical
system is given by a differential equation ẋ = ft0(t, x, u),
where ft0 : R≥t0 × RN × RK → RN . If ẋ = f(x, u), the

system is called time-invariant. If f is linear, the system is
linear.

The solution of a differential equation for a general dy-
namical system is given by φt0 : R≥t0 × RN × S → RN ,
where S ⊆ (R≥t0 → RK) describes the set of input signals,
containing the constant 0 signal, such that:
• φ(t0, x0, u) = x0 for all u ∈ S,
•
(
∂
∂tφ
)

(t, x0, u) = f(t, φ(t, x0, u), u(t)) for t ≥ t0.
We assume the existence and uniqueness of solutions of
each differential equation, this is guaranteed under standard
assumptions on f [11]. For simplicity of notation, we assume
that t0 = 0, and omit all mentions of t0.

Let U ⊆ RN . A dynamical system is called safe with respect
to U if its solution φ satisfies: if x0 ∈ U then for all t ≥ 0
and u ∈ S, φ(t, x0, u) ∈ U .

We will use the notion of stability as the fundamental
correctness property of dynamical systems, in the form of
input-to-state stability (ISS, in short). Let ẋ = f(t, x, u) be
a general dynamic system and φ its solution. Then the system
is called input-to-state stable (ISS) if there is a KL function
β and a K function γ such that for all t ≥ 0, x0 ∈ RN and
u ∈ S, we have |φ(t, x0, u)| ≤ β(|x0|, t)+γ(sup0≤τ≤t |u(τ)|)
(see [11], Definition 4.7, also for definitions of classes K, K∞,
and KL).

A general dynamical system is called globally asymptot-
ically stable (GAS) if there is a KL function β such that
|φ(t, x0, 0)| ≤ β(|x0|, t). It can be given as the special case
of ISS where S = {0}. For linear systems, ISS and GAS are
in fact equivalent ([11], Lemma 4.6).

A function V : RN → R is called an ISS Lyapunov function
for f : RN ×RK → RN if there are K∞ functions α1, α2 and
K functions α3, χ such that

1) α1(|x|) ≤ V (x) ≤ α2(|x|) for all x ∈ RN ,
2) |x| ≥ χ(|u|) =⇒ (∇V)(x) · f(x, u) ≤ −α3(|x|) for

all x ∈ RN , u ∈ RK .
A time-invariant dynamical system ẋ = f(x, u) is ISS if and
only if there exists an ISS Lyapunov function for f [18]. A
similar approach is possible for GAS.

When modeling control problems, it is common to model
the system in two parts, the plant and the controller. For
controlled systems, the input to the system is split up into
two parts, the controller input u and the disturbance input w.
The system is then given via ẋ = f(t, x, u, w), u = g(t, x),
where f : R+ ×RN ×RK ×RL → RN models the behavior
of the plant and g : R+ × RN → RK models the controller.
The dynamical system defined by ẋ = f(t, x, u, w) is called
the open-loop system.

The general dynamical system given by ẋ =
f(t, x, g(t, x), w) is called the closed-loop system. Note
that for control systems, it is often useful to extend the
definition of safety such that U ⊆ RN × RK , and demand
that (φ(t, x0, w), g(t, φ(t, x0, w)) ∈ U .

Switching Sampled-data Systems Given an index set P , a
family fp : RN × RK → RN for p ∈ P that are locally
Lipschitz in both arguments, and a function σ : R+ → P , the

Safe

Controller

Supervisor

Nice

Controller

Plant x

u

u

u

0

1

Fig. 2. System structure

switched system ẋ = fσ(x, u) is defined as ẋ = fσ(t)(x, u)
(compare [21], Section 2). Similarly, one may define a
switched control system by fixing a plant model f : RN ×
RK × RL → Rn and a family of controllers gp : RN → RK
for p ∈ P , with the dynamics ẋ(t) = f(x, gσ(t)(x(t)), w(t))
(closed-loop system for a switched control system). By abuse
of notation, we write ẋ = f(x, u, w), u = gσ(x).

Finally, a sampled-data system (see [4]) consists of a
controlled dynamical system ẋ = f(x, u, w) and a discrete
controller, given as a function g : S × RN → S × RK . Let
τs > 0 denote a sample time. Then the function S : (R+ →
RN) → (N → RN) defined as S(x)(k) = x(kτs) describes
the ideal sampler, and H : (N → RN) → (R+ → RN)
the zero-order hold, H(x)(t) = x(k) for k ∈ N such that
kτs ≤ x < (k+1)τs. Then the sampled-data system denoted as
ẋ = f(x, u, w), u = g(x) is given by the controlled dynamical
system ẋ = f(x, u, w), u = H ◦ g ◦ S.

For all these classes of systems, the notions of safety, GAS,
ISS and Lyapunov function carry over from the case of general
dynamical systems.
Stability of Switched Systems One common approach to
guarantee stability for switched systems uses the notion of av-
erage dwell-time. A switching signal σ has average dwell-time
τa if there exists an N◦ > 0 such that Nσ(t1, t2) ≤ N◦+ t2−t1

τa
for all 0 ≤ t1 ≤ t2, where Nσ(t1, t2) gives the number of
switches in the interval [t1, t2]. The following result from [21]
uses average dwell time to prove stability.

Theorem 1: ([21], Thm. 3.1) Consider the switched system
ẋ = fσ(x, u) with P finite. Suppose that for every p ∈ P ,
there exist positive definite functions Vp, as well as a class
K∞ function γ and numbers λ◦ > 0, µ ≥ 1 such that for all
ξ ∈ RN , η ∈ RK and p ∈ P , we have
• ∇Vp(ξ) · fp(ξ, η) ≤ −λ◦Vp(ξ) + γ(|η|),
• For all q ∈ P , Vp(ξ) ≤ µVq(ξ).

Let σ be a switching signal having average dwell-time τa. If
τa > (lnµ)/λ◦, the switched system is input-to-state stable.

III. PROBLEM DEFINITION

Fig. 2 shows a full system consisting of the plant ẋ =
f(x, u) with x ∈ RN , u ∈ RK , two continuous-time con-
trollers gj : RN → RK for j = 0, 1, and a sampled-time
supervisor gs : RN × RK × RK → {0, 1} that selects which
controller to use. The system evolves according to

ẋ = f(x, uj) u0 = g0(x) u1 = g1(x) (1)
j+ = gs(x, u0, u1, j)

where j+ denotes the value of j in the next sample point. Fix
the sample time to be τs, that is, the supervisor can switch
between controllers at integer multiples of τs.

We assume that each controller g0, g1 ensures the closed
loop system is ISS. Additionally, we assume that the closed
loop system with controller g0 is safe with respect to a safety
property U . We call g0 the safe controller. We call g1 the
nice controller. In the following, let P = {0, 1}, where 0
corresponds to the safe controller, and 1 to the nice controller.

The switched system and the supervisor together define
a switching sequence σ(t). For a switching sequence σ(t),
define the utility function as

u(σ) = lim inf
T→∞

1

T

∫ T

0

σ(t)dt

Intuitively, the utility describes the fraction of time the nice
controller is in use.

The supervisor synthesis problem asks to design the su-
pervisor gs such that the closed loop system (1) is globally
asymptotically stable (for systems without input) or input-to-
state stable (for systems with input) and satisfies the safety
property U , and moreover, the utility u(σ) is maximal.

As shown in [13], it is possible to generate gs effectively
so that the property U is guaranteed to always hold in the
resulting switched system. Furthermore, the supervisor may
be generated in such a way that j+ = 1 is chosen if doing
so will not, within a certain time period, allow the trajectory
of the switched system to violate U . This construction does
not consider stability requirements, and may, in fact, lead to
situations similar to that in Fig. 1, as will be demonstrated
momentarily.

As a running example, consider the following system, with
x, u ∈ R2:

ẋ = f(x, u) =

(
0 1
−1 0

)
x+ u

g0(x) = − 1

100
x g1(x) =

(
− 1

100 1
1/2 − 1

100

)
x.

We find that the closed-loop systems with both controllers
are stable with Lyapunov functions V0(x) = x21 + x22 and
V1(x) = x21 + 4x22, respectively.

Now, let τs = π/4 and assume a safety constraint that states
that when x2 = 0 and u = (u(1), u(2)), u(2) ≥ 0 must hold.
This safety constraint is equivalent to forcing a switch to the
safe controller whenever the state crosses the positive x axis
during the next time step (i.e., a switch is forced at time nτs
when the trajectory would cross the positive x axis at a time
between nτs and (n+1)τs). The corresponding set of states in
which a switch to the safe controller is forced can be explicitly
calculated as {x | x1 ≥ 0, 2x1 ≥ x2 ≥ 0} using the time
discretization of the system with step size τs. Simulating this
system shows that it fails to stabilize, as shown in Fig. 1.

IV. SWITCHING STRATEGIES

A. Average Switching Time Game
One solution to ensure safety and stability is to modify the

supervisor so that average dwell times are guaranteed. For

the running example, one finds that an average dwell time τa
larger than roughly 50 ln 2 ≈ 34.657 will do, using Theorem
1. Since switching occurs only at time quanta, it makes sense
to consider τa/τs instead, which works out to τa/τs > 4 ·
50(ln 2)/π ≈ 44.127. In the following, τa/τs = 45 is assumed
for this example.

Since the switching time from the nice controller to the safe
controller is forced upon the supervisor, while the converse
direction is decided by the supervisor, it is natural to represent
the choice of switching times as an infinite game. For the
description of the game, the following definition is needed:

Definition 1: Let a and s be sequences of natural numbers
that have the same length (finite or infinite).

1) The sequence ra,s is given by (ra,s)n :=
∑n−1
i=1 ai+ si.

If a and s are clear from the context, r is used instead
of ra,s.

2) The induced switch sequence σa,s is given by

σa,s(t) =

{
0 ∃i ∈ N : t/τs ∈ [(ra,s)i + ai, (ra,s)i+1)

1 otherwise

The average switching time game is an infinite game with
two players, the supervisor and the adversary, who choose
positive natural numbers denoting time points to switch from
the nice controller to the safe one (for the adversary), and
points to switch back (for the supervisor). Two values are
given initially, namely τa > 0 and a natural number N◦ ≥ 1.
The states of the game are pairs of finite sequences (a, s),
indicating the history of switching intervals by the adversary
(a) and the supervisor (s). The initial state is ([], []). When
|a| = |s|, the adversary picks a new point k > 0 and the new
state is (a · k, s). Then, the supervisor picks k′ > 0, and the
new state is (a·k, s·k′), where · denotes appending an element
to a sequence. The winning condition W for the supervisor is
given as the set of all (finite and infinite) sequences that have
average dwell-time τa.

It is easy to show that there is a winning strategy of the
supervisor, which waits “long enough” in the old controller.
This strategy can even ignore the moves of the adversary.

Proposition 1: Given a safe and a nice controller that are
both ISS, the strategy choosing si = 2

⌈
τa
τs

⌉
− 1 for all i ∈ N

is a winning strategy for N◦ ≥ 2.
Lemma 1: Let a nice and a safe controller be given that are

both ISS. If the switching intervals chosen by the adversary
have a finite average, i.e., a = limn→∞

∑n
i=1

ai

n exists, the
maximal achievable utility is bounded: For every supervisor-
chosen switching interval sequence s, u(σa,s) ≤ aτs

2τa
.

In case the adversary always picks a constant k ∈ N, there is a
supervisor strategy that bounds the utility by kτs

max{2τa,(k+1)τs} .
Note that, in particular, for k = 1 and τa/τs ∈ N, the above
strategy achieves the optimal utility.

B. An Adaptive Strategy

Proposition 1 shows the supervisor can win blindly, i.e.,
by ignoring the adversary’s moves. Such a strategy can be

0 10 20 30 40 50 60 70 80 90 100
−12

−10

−8

−6

−4

−2

0

2

4

6

8

10
On−line strategy, N0=2

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

10
On−line strategy, N0=3

Fig. 3. Globally asymptotically stable switching for the running example:
Example runs

conservative. We now give an adaptive winning strategy, that
considers the sequence a.

Consider the strategy that, in the n-th step, chooses

sn = min{t ∈ N|t ≥ 1, σ[a1,...,an,1],[s1,...,sn−1,t,R]

has average dwell-time τa}

for a given N◦ and R as above. Call this strategy the online
strategy.

Proposition 2: Given a safe and a nice controller that are
both ISS, the optimistic online strategy is well-defined and a
winning strategy for N◦ ≥ 2.

Note that this strategy can be given in an equivalent,
efficiently computable, form as follows. Define ρ := τa

τs
, c :=

(1−N◦)ρ+ max{0, ρ− e}, and assume that N◦ ≥ 2.
Theorem 2: Given an adversary sequence a, construct two

sequences u,v as follows: u0 = 0, un = max{un−1 + 2ρ−
an − vn−1, ρ + c}, vn = max{1, dune}. Then v = s, where
s is generated by the on-line strategy.

Note that each un is bounded by R = 2d τaτs e − 1 as in
Proposition 1. This implies the following corollary.

Corollary 1: The on-line strategy can be implemented us-
ing finite memory, and each step runs in constant time.

V. EXPERIMENTAL ANALYSIS

In this section, the switching technique is applied to two
systems, the running example described above, and a bicycle
steering controller. Both systems were implemented in Mat-
lab/Simulink for experimentation.

A. The running example

For the running example, Fig. 1 shows that each controller
by itself achieves global asymptotic stability. Moreover, the
safe controller achieves system safety by itself but the nice
controller may be unsafe. Naive switching can ensure safety
but can make the system unstable. Recall that the conditions

from Theorem 1 imply that ρ ≥ 45 guarantees global asymp-
totic stability of the switched system. The results using the
online strategy are visualized in Fig. 3. Switching without
average dwell-time guarantee technically achieves safety (for
the given safety condition). Periodic switching occurs, with
a utility value of 0.754. However, the resulting system is
not stable. Switching with the on-line strategy for N◦ = 2
and ρ = 45 achieves safety, global asymptotic stability, and
periodic switching, with a utility value of 0.06283.

Is the achieved utility value acceptable, especially since
the (unstable) switching strategy that only considers safety
achieves a utility that is larger by an order of magnitude?
We consider the following aspect of the question: Among
switching strategies that have the same average dwell time
guarantee, how much improvement is possible? In this specific
example, it is possible to answer the question precisely by
making use of the exact knowledge of the solution of the
dynamical system. For this purpose, it is important to note
that the structure of the system implies that if the system runs
7 steps with the nice controller, it will definitely be forced
to switch to the safe controller. This can be seen from the
discretization of the system.

To answer the first question, one may find an upper bound
for u(σ) using Lemma 1: u(σ) ≤ aτa

2τs
= a

2ρ <
7

2·45 = 0.07.
Thus, in absolute terms, the utility achieved by the on-line
strategy cannot be increased by a significant amount for the
given value of ρ. In relative terms, the on-line strategy achieves
about 80% of the theoretical limit for the utility value with the
given average dwell time bound.

B. The bicycle steering controller

The second example concerns the control of a bicycle. The
example is taken from [1] and the controllers come from [14].
The second reference provides two controllers, a LQR (Linear
Quadratic Regulator) controller and a fixed-point controller. In
practice, due to quantization error and related problems, the
LQR controller will not control the system as precisely as the
fixed-point controller, while at the same time requiring more
involved calculations. Therefore, the fixed-point controller is
to be used preferentially to the LQR controller.

The plant model is given as

ẋ =

(
0 g

h
1 0

)
x+

(
u+ w

0

)
where g = 9.81 and h = 1.5 (SI units). The LQR controller is
given by g1(x) = −5.2236x1−13.1428x2, and the fixed-point
controller by g2(x) = −10x1 − 16x2.

The safety condition chosen for this example is that the
torque that can be applied to the system is limited, in particu-
lar, |u| ≤ 100 (i.e., U = {(x, u)||u| ≤ 100}. Note that in this
case, the extended notion of safety, including the controller
inputs in the state, is used. An easy calculation shows that,
with regard to this condition, the LQR controller is safe in a
larger set of states than the fixed-point controller. Therefore,
we implement both controllers and a switching supervisor to
make use of the larger safe set. The stabilization goal is to

0 1 2 3 4 5 6 7 8 9 10
−70

−60

−50

−40

−30

−20

−10

0
Control

Fig. 4. Behavior of the control values in the bicycle model: undisturbed
case. Only one switching event occurred; it corresponds to the point in time
where the control value has a strong negative spike. The state of the plant has
been omitted for brevity.

ensure that the system still stabilizes in the presence of small
disturbances. This can be formulated as an ISS problem: The
system should be input-to-state stable, where the disturbances
are considered as the inputs.

Choosing a sample time τs = 1ms, the set of states in which
the system could be safely run using the fixed-point controller
was under-approximated using a simulation-based approach,
with limited disturbances with ‖w‖∞ ≤ 10. The set of states
that will not evolve, within one millisecond, to an unsafe state,
is given by Σ := {x||x1 + 0.625x2 + 0.625| ≤ 5.62}. Using
Matlab, the Lyapunov functions for the closed-loop systems
were calculated as

V0(x) = xT ·
(

0.7277 −0.5
−0.6 0.5058

)
x

V1(x) = xT ·
(

0.523 −0.5
−0.6 0.4838

)
x

Thus, λ◦ ≈ 17.8516 and µ ≈ 2.60268, so τa > (lnµ)/λ◦ ≈
0.026739. We chose τa := 0.027, so ρ = τa/τs = 27. The
online strategy with N◦ = 2 achieves safety and stabilization.

Preliminary experimentation showed that the undisturbed
system (i.e., the case w = 0) would quickly enter a state where
the nice controller could be used perpetually (Fig. 4). So,
we considered the system with disturbance inputs that would
cause periodic switching. We fixed the disturbance signal to
be:

w(t) =

{
−20x1 ∃n ∈ N : nT ≤ t ≤ (n+ b)T

0 otherwise

with parameters b (duty cycle of the disturbance) and T
(period of the disturbance). The result for following parameter
combinations for b and T are reported below:

(1) b = 5%, T = 0.2, (2) b = 30%, T = 0.2
(3) b = 5%, T = 0.5, (4) b = 5%, T = 1.

These different values were chosen to detect the influence of
different time-scales and disturbance shapes on the system.
Combining Theorem 1 with the fact that a Lyapunov function
for a linear system is also an ISS Lyapunov function allows us
to conclude that the same average dwell time bound applied
in this case as well. In each experiment, the utility function
and the fraction of time where the system was outside Σ were
calculated, and it was recorded whether any safety conditions
were violated.

0 1 2 3 4 5 6 7 8 9 10

−120

−100

−80

−60

−40

−20

0

20

40

60

80

100

Control

0 1 2 3 4 5 6 7 8 9 10

−6

−4

−2

0

2

4

6

8

10

State

Fig. 5. Evolution of the bicycle example with disturbance: interesting case
(T = 0.2, b = 5%)

T b Utility Time fraction in Σ Efficiency
0.2 5% 82.27% 82.4% 99.85%
0.2 30% 82.27% 82.4% 99.85%
0.5 5% 71.07% 71.07% 99.99%
1 5% 71.4% 71.4% 99.99%

TABLE I
MEASUREMENT RESULTS FOR THE BICYCLE EXAMPLE – INTERESTING

CASES

A typical example of system behavior with the listed distur-
bances is shown in Fig. 5. In none of the experiments was any
safety violation detected. The other measurements are listed
in Table I. The utility column gives the measured utility value,
while “Time fraction in Σ” gives the fraction of time where
the system state was inside Σ, i.e., the amount of time that
the nice controller could be safely used. Finally, the efficiency
column gives the ratio between those columns in percent.

To estimate the maximal achievable utility value, we note
that the fraction of time spent in Σ forms a crude upper bound:
the system will only use the nice controller when the system
state is in Σ or has just left it, and return to using the nice
controller when the system state has re-entered Σ. Thus, the
ratio between measured utility value and the fraction of time
spent in Σ gives an estimate of the quality of the switching
strategy in terms of utilization of the nice controller.

As can be seen from Table I, for the example, the achieved
efficiency is very high (greater than 99% in all cases). Further-
more, in all cases where the system eventually settled on using
the nice controller, efficiency is actually 100%. Therefore, the
on-line strategy is highly efficient in this example.

That last observation motivates some further analysis: The
efficiency of the switching strategy goes up when the dif-
ference between time scales for disturbances and dwell-time
goes up. For disturbances that occur on a time-scale that is
significantly larger than ρ, the switching utility is roughly the
same as the fraction of time where the safety condition does
not enforce a switch to the safe controller, which forms a trivial
lower bound for the utility value. Also, very small values of

τa allow for practically trivial stabilization with switching and
actually occur in practice. Furthermore, if τa � τs, naive
switching still gives ISS! This allows for a trade-off with
regard to choosing the sample time: a smaller τs allows a
more precise under-approximation of the strongly safe state
set, but requires more CPU power and slightly more effort for
stabilization.

We make the following conclusions. First, the online strat-
egy works well in stabilizing a practical system while ensuring
safety and high utility. Second, the utility value is close to
the achievable maximum when average dwell time is small
compared to either the time-scale on which disturbances
appear or the sample time.

REFERENCES

[1] K. Astrom and R. Murray. Feedback systems an introduction for
scientists and engineers. Princeton University Press, 2008.

[2] P. Bouyer, T. Brihaye, M. Jurdziński, R. Lazić, and M. Rutkowski.
Average-Price and Reachability-Price Games on Hybrid Automata with
Strong Resets. In FORMATS ’08, LNCS 5215, pages 63–77. Springer,
2008.

[3] K. Chatterjee, T. Henzinger, and M. Jurdzinski. Mean-Payoff Parity
Games. In LICS ’05, pages 178–187. IEEE, 2005.

[4] T. Chen and B. A. Francis. Optimal sampled-data control systems.
Springer, 1995.

[5] U. Drolia, Z. Wang, Y. Pant, and R. Mangharam. AutoPlug: An Auto-
motive Test-bed for Electronic Controller Unit Testing and Verification.
In IPSN ’11. IEEE, 2011.

[6] D. D’Souza and M. Gopinathan. Conflict-Tolerant Features. In CAV
’08, LNCS, pages 227–239. Springer, 2008.

[7] D. D’Souza, M. Gopinathan, S. Ramesh, and P. Sampath. Supervisory
control for real-time systems based on conflict-tolerant controllers. In
CASE ’09, pages 555–560. IEEE, 2009.

[8] K. Heckemann, M. Gesell, T. Pfister, K. Berns, K. Schneider, and
M. Trapp. Safe automotive software. In KES (4), LNCS 6884, pages
167–176. Springer, 2011.

[9] T. Henzinger, B. Horowitz, and R. Majumdar. Rectangular Hybrid
Games. In CONCUR’99 Concurrency Theory, LNCS 1664, pages 320–
335. Springer, 1999.

[10] R. Hill, J. Cury, M. de Queiroz, D. Tilbury, and S. Lafortune. Multi-
level hierarchical interface-based supervisory control. Automatica,
46(7):1152–1164, 2010.

[11] H. Khalil. Nonlinear Systems. Prentice Hall, 2002.
[12] D. Liberzon. Switching in Systems and Control. Birkhäuser, 2003.
[13] P. Mahdavinezhad, P. Gohari, and A. G. Aghdam. Supervisory Control

of Discrete-Event Systems with Output: Application to Hybrid Systems.
In ACC ’07, pages 4291–4296. IEEE, 2007.

[14] R. Majumdar, I. Saha, and M. Zamani. Synthesis of Minimal-Error
Control Software. In EMSOFT ’12. ACM, 2012.

[15] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete
controllers for timed systems. In STACS ’95, LNCS 900, pages 229–242.
Springer, 1995.

[16] A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive
module. In ICALP ’89, LNCS 372, pages 652–671. Springer, 1989.

[17] P. J. Ramadge and W. M. Wonham. Supervisory Control of a Class of
Discrete Event Processes. SIAM Journal on Control and Optimization,
25(1):206–230, 1987.

[18] E. Sontag and Y. Wang. On characterizations of the input-to-state
stability property. Systems and Control Letters, 24(5):351–359, 1995.

[19] P. Tabuada. Verification and Control of Hybrid Systems: A Symbolic
Approach. Springer, 2010.

[20] W. Thomas. On the synthesis of strategies in infinite games. In STACS
’95, LNCS 900, pages 1–13. Springer, 1995.

[21] L. Vu, D. Chatterjee, and D. Liberzon. Input-to-state stability of switched
systems and switching adaptive control. Automatica, 43(4):639–646,
2007.

