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ABSTRACT 
In the IC industry, chip design cycles are becoming more 
compressed, while designs themselves are growing in complexity. 
These trends necessitate efficient methods to handle late-stage 
engineering change orders (ECOs) to the functional specification, 
often in response to errors discovered after much of the 
implementation is finished. Past ECO synthesis algorithms have 
typically treated ECOs as functional errors and applied error 
diagnosis techniques to solve them. However, error diagnosis 
methods are primarily geared towards finding a single change, and 
moreover, tend to be computationally complex. In this paper, we 
propose a unique methodology that can systematically incorporate 
human intuition into the ECO process. Our methodology involves 
finding a set of directly substitutable points known as functional 
correspondences between the original implementation and the new 
specification by using name-preserving synthesis and user hints, to 
diminish the size of the ECO problem. On average, our approach 
can reduce the size of logic changes by 94% from those reported in 
current literature. We then incorporate our logic ECO changes into 
an incremental physical synthesis flow to demonstrate its usability 
in an industrial setting. Our ECO synthesis methodology is 
evaluated on high-performance industrial designs. Results indicate 
that post-ECO worst negative slack (WNS) improved 14% and 
total negative slack (TNS) improved 46% over pre-ECO.  
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1. INTRODUCTION 
In IC design, ECO synthesis refers to the process of realizing late-
stage functional changes to a design, by directly and minimally 
modifying the implementation, instead of re-invoking the entire 
design process from scratch.  As a result, design cost is reduced and 
design stability is maintained. Producing a high-quality 
implementation of a high-performance design is a painstaking 
process that involves simultaneously optimizing numerous timing, 
power, and reliability metrics [4].  An ECO synthesis process can 
aid in maintaining the stability of such design metrics because the 
changes inserted are designed to be minimally invasive. On the 
manufacturing end, processing the new logic from scratch may 
result in discarding the multi-million dollar front-end-of-line 
(FEOL) mask sets. With ECO synthesis, the logic changes can 
often fit into spare cells provided on the chip, and the wiring 
changes are implementable on cheaper back-end-of-line (BEOL) 
masks.  

Existing logic ECO methods can be classified into two major 
categories: error-detection-and-correction-based approaches, and 
matching-based approaches. Error-detection-and-correction-based 
approaches [3][10][11][12][29] view an ECO as an error correction 
problem and borrow techniques from literature in diagnosis and 
verification. The matching-based methods [2][13][18][1] 
acknowledge that ECOs are small changes, and that a large part of 
the design remains equivalent.  After matching these equivalent 
parts, the differences can be extracted out.  

We note that the key task in logic ECO synthesis is the 
determination of points in logic at which minimal substitutions can 
be made, in order to rectify the difference between the ECO and 
original logic. We call such points the output-side boundary of the 
changes.  This boundary is difficult to establish because there are 
no longer any functionally equivalent points to guide the methods. 
In lieu of functional equivalence, [1] uses a laborious method of 
recursive matching that is severely limited due to the difficulty of 
both subcircuit enumeration and Boolean matching. [10] uses 
MAX-SAT to find changes, but synthesizing the substitution logic 
can still be a challenging task. 

Despite these proposals, ECO synthesis is often done manually, 
since designers seem able to intuitively derive smaller changes than 
the respective tools in many cases. In this work, we study the 
process by which designers manually synthesize ECOs and 
incorporate their methods into an efficient industrial-strength 
design flow. We significantly reduce the complexity of finding the 
output-side boundary of the change by observing that if we 
generate gate-level netlists from both the original and ECO 
specifications, we can often find pairs of points that directly form a 
functional correspondence between the ECO and original netlists. 
Thus, in our approach, error detection and correction are performed 
simultaneously.  In this paper we: 

1. Formulate the notion of a functional correspondence between 
the ECO and original designs, which form the output-side 
boundary. 

2. Provide a method for the generation of pairs of points in logic 
that constitute functional correspondences. 

3. Provide a general method that can incorporate guessed or 
otherwise generated correspondences, to derive verifiable full 
functional correspondences that result in small logic changes. 

4. Incorporate our ECO methodology into an industrial physical 
synthesis flow that places the gates produced by logic ECO 
synthesis and optimizes them to improve timing. 
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The rest of this paper is organized as follows: Section 2 
describes previous work in this area, Section 3 provides 
background in equivalence checking and previous ECO methods, 
Section 4 and 5 present the new logic ECO process; Section 6 
describes our ECO physical synthesis flow and presents the 
empirical results on a set of industry designs, and, Section 7 
concludes the paper. 

2. PREVIOUS WORK 
Several previous papers propose error-detection-and-correction-

based approaches [3][10][11][12][29].  The error detection step 
tries to find signals that can correct the original netlist in order to 
make it equivalent to the new functional specification. Then, the 
error correction step constructs substitution circuits to correct the 
identified signals. Existing methods in this category differ in how 
these two steps are conducted. The early work [3] uses BDD-based 
Boolean quantification based on a formula originally proposed in 
[21] to identify single-signal errors. Error correction is then done 
by functional decomposition. [12] uses a SAT formulation 
originally proposed in [20] to detect signals to be replaced, and 
then constructs the replacement logic with nearby signals using a 
set of error signatures. The authors in [10] formulate the signal 
error detection problem as MAX-SAT problem originally proposed 
in [14] and then derived the function based on SAT based function 
dependency check [22] and functional decomposition targeted for 
FPGA [23]. Recent work in [12] proposes a modified SAT-based 
fault identification procedure built on the proposals of [12][20] to 
include the potential fix via MUX modeling. Solving the SAT 
problem identifies and corrects the error at the same time. This 
technique also relies on extensive simulation to narrow down the 
scope of searching and SAT interpolation to construct ECO logic, 
similar to [10], if the MUX modeling fails. One difficulty with the 
error detection and correction based approaches are the difficulty of 
locating the signals if there are multiple points changed. Other 
difficulties include building the right support set, and synthesizing 
the correcting logic. Latest works [11][29] propose to use SAT 
interpolation technique to construct partial fixes for ECO and claim 
good results on both single and multiple error circuits.  

The matching-based methods [2][13][18][1] attempt to find 
portions of the design to re-use. The pioneering work in [2] 
proposes to directly reconnect the ECO logic with the original 
netlist on key signals, where the ECO logic is either functionally or 
structurally correspondent to the original netlist. Authors of [2] 
propose an ATPG-based approach to check functional equivalence. 
The authors of [13][18] extend the work in [2] by name-based 
matching between the ECO logic and original netlist, and BDD-
based equivalence checking.  

After logic ECO, the new logic gates have to be placed and 
optimized using ECO physical synthesis. ECO physical synthesis is 
an incremental CAD paradigm [8] [17], where design perturbation 
is an optimization criterion, in addition to the conventional 
wirelength, timing, and power constraints. Research in ECO 
physical synthesis is geared towards making each physical 
synthesis step (placement, buffer insertion, gate sizing) ECO aware. 
The authors of [6] present an ECO placement system, [15] 
introduce an ECO buffer insertion algorithm using spare cells, [26] 
presents a method to perform technology remapping with spare 
cells, and [16] introduces an ECO routing algorithm. Incremental 
legalization schemes such as [7][9] can also be used in ECO 
placement.  

 
 

3. BACKGROUND 
In this paper we build on the framework of DeltaSyn [1], which 

utilizes a two-phase process to reduce the logic difference or delta, 
between the ECO and original designs. As shown in Figure 1, the 
first phase finds functional equivalences between original netlist 
and ECO logic from the primary inputs forward, forming the input-
side boundary of the changes. Functional equivalences can be 
generated by sat-sweeping as in [27], which is summarized in 
Figure 2. 

 
 

Figure 1. Summary of the DeltaSyn Method from [1]. 
 

find_functional_equivalence( netlist A, netlist B) 
{   

simulate A and record signature(i) on each net i 
      create hash table for signature(i) on A 
      connect primary inputs of A and B together 
      simulate B and record signature(i) on each net i 
      for each net i in B  
           for each net j in A where signature(j)=signature(i) using hash table  
                construct a SAT miter between i and j 
                if (unsat) record functional equivalence (i==j) on i  
} 

Figure 2: Functional Equivalence  

The second phase uses Boolean matching starting from 
corresponding primary outputs and proceeds recursively backwards 
as it matches small chunks of logic, thus forming the output-side 
boundary of the logic change. One problem with this approach is 
that it returns large sets of changes to implement ECOs when the 
changes are close to the primary inputs or drive a large fanout. This 
is due to limitations of subcircuit enumeration and Boolean 
matching method.    

4. LOGIC ECO SYNTHESIS 
We observe that designers are often able to perform ECO synthesis 
quickly because they come up with intelligent guesses about 
correspondences between the VHDL and the original 
implementation and then verify them. In this section, we formalize 
the notion of a user hint in the framework of functional 
correspondence, which can be utilized in logic eco synthesis. Then, 
we discuss how to automatically derive intelligent functional 
correspondences. We begin with some notations and problem 
formulation:  

1. The original functional specification is denoted original VHDL. 
2. The modified functional specification containing the ECO is 
denoted ECO VHDL. 
3.  The original implemented netlist is denoted original netlist. 
4.  A preliminary synthesized gate-level version of the ECO VHDL 
is known as the ECO netlist. 

Problem statement: The problem of logic ECO synthesis is to 
determine a minimal logic delta, i.e., a list of gates and connections 
to be inserted into existing logic, such that the ECO and original 
netlists are rendered equivalent. 

 

ORIG ECO Delta 

Output-side boundary 

Input-side boundary 



 
Minimizing the delta also implies maximizing reuse of existing 

logic in the original netlist. As in [1], we also begin by marking and 
eliminating functionally equivalent signals from the delta. However, 
functional equivalence can only find signals upstream of logic 
changes. For example, in Figure 3, functional equivalence can 
eliminate the signal x and its fanin-cone from the logic changes. It 
cannot detect that the gate driven by z can also be re-used in 
synthesizing the ECO. This requires the recognition of a different 
concept which we define and explore in this section.  

4.1 Functional Correspondence 
Definition A functional correspondence between two logic 

circuits, ckt_orig and ckt_eco, is a 2-tuple (S, S’), where S and S’ 
are sets of signals S={s1, s2,…, sn},  S’ = {s1’, s2’, …, sn’}, from 
ckt_orig and ckt_eco respectively, such that substituting signals in 
S from ckt_orig with those of S’ (including the gates that drive 
signals in S’) results in ckt_orig becoming functionally equivalent 
to ckt_eco. 

The individual signal pairs (s1, s1’), (s2, s2’) … (sn, sn’) are said to 
be correspondence pairs. For example, in Figure 3, the set of 
signals S={z} and S’={z’} form a functional correspondence, so do 
S={y} and S’={y’}. Figure 4 gives the algorithm for verifying a 
functional correspondence based on the definition. 

verify_functional_correspondence ( S in ckt_orig, S’ in ckt_eco) 
{ 

    connect primary inputs of ckt_orig and ckt_eco together 
      for each correspondence pair (si, si’) 
           connect sinks of si in S to si’ in S’ 
      check equivalence beween ckt_orig and ckt_eco 

if (equivalent) return true 
else return false  

} 
Figure 4: Verifying a Functional Correspondence 

Definition A well-formed functional correspondence (S,S’) 
has the property that it is no longer a functional correspondence if 
any correspondence pair (s,s’) is dropped from (S,S’). 
   For example, in Figure 3, S={y,z}, S’={y’,z’} is not a well-formed 
functional correspondence because after removing (y,y’), the result, 
S={z}, S’={z’}, is still a functional correspondence. Generally, this 
means that in traversing the circuit along any path from a primary 
input to a primary output, only one corresponence pair is reached. 
From here on, when we refer to functional correspondences, we 
mean well-formed correspondences. 

Functional correspondences can form the output boundary of the 
logic ECO changes, with the substitutable logic being directly 
apparent in the ECO netlist. The number of gates to be inserted, i.e. 
the delta size, is the number of gates in the fanin cones of 
functional correspondences S’ that are not marked by functional 
equivalence step.  

The trivial functional correspondence for any ECO is formed by 
S={o1,o2,…,on} and S’={o1’,o2’,…,on’}, where o and o’ are primary 
outputs not matched after functional equivalence. The resulting 
delta is usually not very good unless the changes are close to 
primary outputs.  The problem of deriving a minimal set of changes 
can be formulated as the problem of finding the best functional 
correspondences. A functional correspondence (S, S’) is better than 
another correspondence (F, F’) if it results in a smaller set of logic 
changes. In the remainder of this section, we derive efficient 
methods by which functional correspondence can be determined 
and verified.   

4.2 Compute Functional Correspondence 
In this section, starting from any list of correspondence pairs, we 

show how to generate a functional correspondence. We emphasize 
that this can include guessed and potentially invalid pairs, i.e., pairs 
that do not belong to any functional correspondence.  

In order to solve this problem optimally, we can use a branch-
and-bound approach, which branches on the number of 
intermediate equivalences created upon immediate replacement of 
the correspondence pair in question. For instance, in Figure 3, if (x, 
y’) were entered as a potential correspondence pair, it would not 
create any additional equivalences between the designs. However, 
if (x, x’) were used then it would create an additional equivalence at 
(y, y’). Equivalences do not have to be proven and simulation can 
generate new potential equivalences for the purposes of branch and 
bound. 

In practice, if the correspondence pairs we generate are primarily 
valid pairs (or if invalid pairs are topologically ahead of valid pairs), 
then we find that a greedy approach gives good results. The greedy 
algorithm is illustrated in Figure 5. Here, we traverse the set of 
corresponding pairs, N, in topological order. For each 
corresponding pair (n,n’), we first evaluate whether  n is equivalent 
to n’. If not, we add n into S and n’ into S’ and remove any 
corresponding pairs that are in the maximum fanout free cone 
(MFFC) of n and n’ from S and S’ respectively. At each step, we 
also speculatively connect the sinks of n to n’. This essentially 
allows (n,n’) to be part of a speculative functional correspondence. 
When a node is removed from (S,S’), these connections are restored. 
Eventually, it will reach the correspondence pairs on the primary 
outputs, if the existing pairs are not equivalent, they will be 
inserted into (S,S’). Therefore (S,S’) will always produce a valid 
functional correspondence.  

 
functional_correspondence_greedy ( correspondence pairs  
N={ (n1,n1’), (n2, n2’), … (nk, nk’)}) 
{ 
      Insert default correspondence pairs on primary outputs  
      sort N topologically 
      assign S and S’ as empty set 
      foreach (n,n’) in N   
           if ( n and n’ are equivalent) ) then next 
           (C,C’) = {(m,m’) : s∈MFFC (n)  && s’∈MFFC (n’)  

&& {m,m’}∈(S,S’) } 
           for each pair {m,m’} in (C,C’)  
                restore sinks of m in S from m’ in S’ 
           S  =  (S – C) ! {n} 
           S’ =  (S’ –C’) !  {n’}  
           connect sinks of n in S to n’ in S’ 
      return (S,S’)  
} 

Figure 5: Compute Functional Correspondence 
 

Figure 3: Functional Equivalence and Correspondence 

c d e f a  b

y y’

z

x’

z’

a  b

x

c d e f

original ECO

correspondence pairfunctional equivalence

c d e f a  b

y y’

z

x’

z’

a  b

x

c d e f

original ECO

correspondence pairfunctional equivalence  



For example, in Figure 3, N = {(z,z’), (y,y’)}. The algorithm will 
traverse (z,z’) first since it is topologically before (y,y’). Since z is 
different to z’, it will add (z,z’) to (S,S’) and connect the sinks of z 
to z’. Then, it will process (y,y’) and y and y’ are actually 
equivalent due to the reconnection on (z,z’). Thus, the algorithm 
will not add (y,y’) into (S,S’). In the end, it will return functional 
correspondence (S={z},S’={z’}). If the gate driving y’ is a NOR 
gate instead, y and y’ will not be equivalent even after we 
reconnected z and z’. Then pair (y,y’) will be added to (S,S’) when 
processing (y,y’); and (z,z’) will be removed and sinks restored 
since it is in the MFFC of (y,y’).   

To complete our method, we feed the smaller design consisting 
of the gates between the derived functional equivalences and 
derived functional correspondences to the algorithm from [1] which 
can further reduce the delta by Boolean matching. The problem 
size given to the Boolean matching phase is drastically reduced 
after applying functional correspondence. 

5. GENERATING CORRESPONDENCES 
In the previous sections, we described the main ideas of how 

functional correspondences can reduce the delta size and how to 
compute the best functional correspondence based on a given set of 
correspondence pairs. In this section, we describe how to generate 
likely correspondence pairs. 

In practice, most of the VHDL signal names exist in both the 
original and the ECO VHDL. Naturally, these names are the 
candidates for partial correspondence. For example, compare 
following two lines of VHDL determined by a program such as 
xdiff: 
Original:  rst <= ls_need AND ex_hit; 
ECO:   rst <= core AND ls_need AND ex_hit; 

If we were able to find the rst signal in the ECO and original 
netlists, then it would constitute a functional correspondence that 
can be used to reduce the ECO. The difficulty lies in the fact that 
the signal rst itself is not always visible in the gate-level netlists 
due to synthesis transformations merging several signals.  

To address this issue, we propose to find equivalences between 
signals in the RTL and the gate-level netlists, to find functional 
correspondences upstream of primary outputs by taking advantage 
of the speed of modern logic synthesis tools.  First, the ECO and 
original VHDLs are mapped into gate-level implementations such 
that signal names are preserved in the mapped netlist. We use the 
term “map” to mean that it is not necessary to perform tedious 
redundancy removal or other complex steps to generate these 
versions [24]. These mapped versions are called ECO_B and 
ORIG_B netlists. Then, we identify names that are common to both 
ECO_B and ORIG_B signals. Next, we detect and prove further 
equivalences between the pairs of netlists (ECO_B, ECO), and 
(ORIG_B, original) through the algorithm in Figure 2. Then, we 
can find functional correspondence between ECO and original by 
matching the functional equivalent signals based on the name-
matched signals in ECO_B and ORIG_B. The detailed algorithm is 
given in Figure 6. 

For example, Figure 7 shows four netlists: the original, the ECO, 
the mapped ORIG_B and ECO_B sharing the same PI: a, b, c, d, e, 
and f. We can see that there are no internal functional equivalences 
between the original netlist and the ECO netlist. The names of the 
internal signals are also quite different. But we can locate the 
functional equivalence (x,o1), (z,o2) and (y,o3) between ORIG_B 
and original; also (e0,x), (e4,z) and (e2,y) between ECO and 
ECO_B. Since x, y and z are signal names preserved in both 
ORIG_B and ECO_B, we can use the algorithm described in 
Figure 6 to derive correspondence pairs (o1,e0), (o2,e4) and (o3,e2) 

between original and ECO netlists. Note, that this method requires 
no alteration to the original synthesis method. It does require 
simple synthesis runs, which are very fast compared to physical 
design runs, and result in physical design efforts saved by the 
production of a smaller logic delta.  
find_named_functional_correspondences(all VHDLs, netlists) 
{ 
      ORIG_B = map(original VHDL) 
      ECO_B = map(eco VHDL) 

    find_functional_equivalences(original netlist, ORIG_B) 
    find_functional_equivalence(ECO netlist, ECO_B) 
    locate_name_based_correspondences(ECO_B, ORIG_B) 
    for each name_based_correspondence (s, s’) 
        if (exists_equivalent_signal(s, original netlist)) 
            n=equivalent_signal(s, original netlist)  
            if (exists_equivalent_signal(s’, ECO netlist)) 
                 n’=equivalent_signal(s’, ECO netlist) 
                 add (n, n’) to list of correspondences pairs 

} 
Figure 6: Name-based Functional Correspondences 

 
 

   Correspondence pairs can also be generated by designers who can 
intuitively determine signals，which correspond in any part of the 
logic. These user hints do not have to form a complete functional 
correspondence, as any correspondence pair can be utilized in the 
algorithm of Figure 5. Thus, our method is able to directly and 
systematically utilize any user intuition about ECO changes.  

6. AN INDUSTRIAL ECO FLOW 
Logic ECO process described in previous sections produces 
functionally correct circuits. It is up to ECO physical synthesis 
tools to place and optimize those circuits to satisfy timing 
constraints. The physical synthesis process must disturb a minimal 
amount of logic beyond the logic delta provided by the logic ECO 
process. Our ECO physical synthesis flow is illustrated in Figure 8. 
The first step is to place the ECO gates (the Delta netlist) produced 
the logic ECO flow. To maintain design stability, all the existing 
gates in the original netlist, excluding those deleted during ECO, 
will be kept fixed in their location. Existing gates are considered 
fixed blockages by the placer and other algorithms. First, ECO 
gates will be placed in the remaining empty space. Then, the placer 
will optimize total wirelength among the ECO gates and their 
connected original gates. After ECO gates are placed, the second 
step is to size and buffer these gates to fix electrical violations [4] 
such as max slew and max driving capacitance violations. These 
violations are fixed by gate sizing and buffering. During this step, 

Figure 7: Name-based Functional Correspondence Example 
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only the ECO gates are allowed to change under an in-place-
optimization (IPO) framework that it minimizes the disturbance to 
the existing placement. 

 
For high performance designs, the ECO circuit often has to be 

extensively optimized to meet tight timing constraints. Introducing 
ECO gates might affect the timing of other paths. A larger region 
than the ECO gates will need to be optimized if necessary. The 
algorithm to identify extended ECO region is given in Figure 9. 
Once the extended ECO region is identified, many IPO transforms 
[5] will be applied to circuits in the region to further optimize the 
design. 

identify_extended_ECO_region (ECO gates E, K) 
{ 

for each gates in E  
      forward traverse up to K levels and mark gates  
      backward traverse up to K levels and mark gates  
for each marked gates  
      forward traverse up to K levels and mark gates 
unmark gates with positive slacks 
assign marked gates as extended ECO region 

} 
Figure 9: Identify ECO Region 

When the FEOL masks are produced, ECO needs to be 
implemented with spare cells. Spare cells in our design 
methodology are gate array cells that are distributed in the space 
not occupied by standard cells. These cells can be rewired to 
implement a few basic logic functions during ECO. We are 
required to provide spare cell support in our ECO physical 
synthesis flow. During placement step, it is the spare cells that are 
placed. The spare cells are also placed at certain placement 
intervals. During optimization, we can not change the size or the 
location of any existing gate, instead, we can only create spare cell 
clones for these gates if they are underpowered, or buffer the 
existing nets with spare gates. 

Next, we show the empirical results our ECO logic and physical 
synthesis flows real ECOs on a set of IBM microprocessor macros. 
We will compare the results of the new logic ECO flow to the 
algorithm from [1]. For simplicity we will refer the new logic ECO 
flow as INTUIT in the rest of this section. Our code is written in 
C++/TCL and run on IBM P570 servers (L1 i64K d64K, L2 4M). 

6.1 ECO Logic Synthesis Results 
We are given the original netlist, original VHDL and ECO 

VHDL for these macros. The total number of VHDL line changes 
is listed in the second column (V#) of Table 1. Although there is 
often only one line of VHDL that is changed, it can affect many 
gates in the circuit as shown in “Cone Gates” column.  We run both 
DeltaSyn and INTUIT on these macros and report the delta size in 
the “delta” column. In M1-M5, where the design changes are close 
to primary outputs, DeltaSyn is capable in producing small deltas. 
It is clear, however, that the delta sizes produced by INTUIT are 

significantly smaller in M6-M12, where the design changes are not 
close to primary outputs. Overall, the delta size produced by 
INTUIT is only 6% as large as those from DeltaSyn: a 94% 
reduction! The microprocessor design team has verified that the 
sizes of these deltas are similar to what is produced manually [28]. 

 
The runtimes (in seconds) of both DeltaSyn and INTUIT are 

reported on “CPU” columns. The runtime includes both the front 
end synthesis [24] and the ECO algorithm. We observed that more 
than 90% of runtime is synthesis runtime. Since synthesis runtime 
dominates the entire flow, we can see the INTUIT runtime is about 
the same as much as the DeltaSyn runtime. 

6.2 ECO Physical Synthesis Results 
We run ECO physical synthesis flow on both the DeltaSyn 

generated delta and the INTUIT-generated delta. During physical 
synthesis we set K in Figure 9 to 2, which extends the ECO region 
by 2 levels. The results are shown in Table 2.  

To evaluate quality of result (QoR) impact, we report the worst 
negative slack (WNS) and total negative slack (TNS) before and 
after ECO physical synthesis. The sums of WNS and TNS on all 
macros are reported in the last row. Note that on M7 and M10 post-
ECO timing with DeltaSyn degraded significantly due to large 
delta sizes produced by DeltaSyn. In comparison, post-ECO timing 
with INTUIT is better than pre-ECO on the majority of the macros.  
Overall WNS is 14% better and TNS is 46% better.  

In Table 2 we also report the design perturbation introduced by 
ECO physical synthesis. A# column reports the number of gates 
added during ECO physical synthesis, D# reports the number of 
gates deleted and C# reports the number of gates changed, which 
includes resized or moved. Again, comparing the results of 
INTUIT and DeltaSyn, we can see that ECO physical synthesis 
introduced much less design changes with INTUIT deltas. For 
example, INTUIT resulted in an 84% reduction in total added gates, 
as compared to DeltaSyn. 

K in Figure 9 can be adjusted to balance between design 
perturbation and QoR improvement. A larger K opens up an 
extended region for optimization. Therefore, better QoR is possible. 
However, an extended physical ECO region also allows more gates 
changed, which means bigger perturbation. A larger perturbation 
often results in longer runtime and worse QoR for backend tools 
such as ECO routing. The tradeoff between QoR improvement and 
perturbation is shown in Figure 10. For example, using K=0 as the 
baseline, extra 24% of WNS and 31% of TNS improvement is 
achievable when K=5 at the cost of 70% more gates added and 
246% more gates changed. 

Table1: Logic ECO Statistics on IBM Benchmark 
macro V# Total  

Gates 
Cone 
Gates 

DeltaSyn INTUIT 

delta CPU delta CPU 

M1 1 7145 37 17 113 16 113 
M2 6 3427 169 34 64 30 64 
M3 1 8351 8 1 94 1 93 
M4 4 14115 1867 44 139 11 138 
M5 1 7929 317 4 101 4 101 
M6 3 4025 963 265 72 12 72 
M7 3 4632 1482 456 75 8 79 
M8 4 19263 4180 861 226 10 245 
M9 6 17135 1603 102 204 14 200 

M10 3 10729 2777 605 108 27 111 
M11 2 105620 2680 271 1332 58 1509 
M12 1 25458 7384 1086 682 32 703 
SUM    3746  223  

 

Figure 8: ECO Physical Synthesis 
Flow. 
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7. Conclusion 
We presented a novel logic ECO approach that uses synthesized 

versions of the ECO and original netlists to find potentially 
substitutable pairs of points in logic known as correspondence pairs. 
We presented methods by which good functional correspondences 
can be derived using these or other guessed correspondence pairs to 
drastically reduce the logic changes needed to synthesize an ECO. 
We then incorporated our method into an industrial ECO physical 
synthesis flow. Results show that our method produces improved 
timing and significantly smaller design perturbation than previous 
methods. 
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Table 2:  ECO Physical Synthesis Statistics on IBM Benchmark 
macro WNS 

(ps） 
TNS 
(ps) 

ECO physical synthesis from DeltaSyn ECO physical synthesis from INTUIT 

WNS TNS A# D# C# CPU WNS TNS A# D# C# CPU 

M1 -32.6 -2073.7 -22.1 -1023.2 155 5 28 201 -22.2  -1059.9  163 4 26 186  
M2 -2.6 -2.6 -2.6 -2.6 40 27 32 165 -2.7  -2.7  52 38 24 150  
M3 -1.3 -1.3 -1.3 -1.3 10 0 25 191 -1.4  -1.4  10 0 25 183  
M4 -18.8 -87.9 -18.8 -71.2 104 291 225 278 -18.8  -85.9  19 19 231 259  
M5 -4.3 -4.31 -9.7 -14.0 4 48 30 198 -4.3  -4.3  3 35 30 190  
M6 -35.4 -1502.6 -17.9 -451.2 552 209 154 219 -17.9 -673.5 118 7 24 177 
M7 1.9 0 -33.7 -871.3 1184 361 1103 999 8.7 0 58 17 115 488 
M8 -46.3 -116.0 -46.3 -126.0 1035 763 238 500 -46.3 -116.0 14 8 29 271 
M9 -15.7 -64.3 -20.6 -69.2 147 106 39 291 -15.7 -64. 35 12 39 287 

M10 2.6 0 -129.1 -4069.6 1019 665 21 889 -12.8 -30.1 36 20 21 245 
M11 -45.5 -121.2 -45.5 -124.7 716 423 132 1224 -45.5 -121.2 212 47 32 1153 
M12 -6.1 -54.6 3.3 0 2920 1593 638 1457 3.3 0 536 349 179 767 

SUM -204.1 -4028.51 -344.3 -6824.3 7886 4491 2665 6612 -175.6 -2159 1256 556 775 4356 
 

Figure 10: QoR and Perturbation Tradeoff on K 


