
Formal Analysis of Sporadic Bursts
in Real-Time Systems

Sophie Quinton, Mircea Negrean, Rolf Ernst
Institute of Computer and Network Engineering,

TU Braunschweig, 38106 Braunschweig, Germany
Email: {quinton, negrean, ernst}@ida.ing.tu-bs.de

Abstract—In this paper we propose a new method for the
analysis of response times in uni-processor real-time systems
where task activation patterns may contain sporadic bursts. We
use a burst model to calculate how often response times may ex-
ceed the worst-case response time bound obtained while ignoring
bursts. This work is of particular interest to deal with dual-cyclic
frames in the analysis of CAN buses. Our approach can handle
arbitrary activation patterns and the static priority preemptive
as well as non-preemptive scheduling policies. Experiments show
the applicability and the benefits of the proposed method.

I. INTRODUCTION

Formal performance verification of systems with real-time
constraints is becoming essential as their complexity increases.
The interferences between concurrently executing tasks are
very hard to capture by simulation, thus making formal
analysis essential in order to obtain reliable information on
the system behavior. Methods focusing on providing upper
bounds on the worst-case timing scenario for a given system
are proven efficient and safe [2], [1], but their results do
not reflect the frequency of worst-case occurrences. In many
practical cases, however, embedded system applications accept
occasional deadline violations, if the maximum number of
occurrences can be bounded. Recently, a new formalism has
been introduced to bound such typical worst-case behavior [3]
based on the concept of weakly-hard constraints [4].

In this paper we build upon the method proposed in [3]
for providing quantitative information in addition to worst-
case results when these are due to a sporadic overload at the
input of the system. The general idea consists in performing
for each task a response time analysis of the system using a
“typical worst-case” model in which the sporadic overload is
ignored. Based on the result of the usual worst-case analysis
and a formal representation of the ignored overload activations
at the input, a safe bound on the number of response times for
a given task which may be out of the range obtained using the
“typical” activation model is then computed. This error model
is a function err such that for any sequence of k consecutive
executions of the task under consideration (k ∈ N+) at most
err(k) response times may be larger than the bound obtained
while ignoring the overload. This approach can be used for
example to analyze deadline misses in systems where tasks
execute completely even if they have missed their deadline.

The approach of [3] ignores dependencies between overload
activations. In presence of bursts, this will lead to overly
pessimistic results, as each activation in the burst is assumed
to impact a complete busy window. Furthermore, the overload
model that was used in [3] assumes that activation traces
can be decomposed into typical-case and overload activation
traces; this is usually impossible for bursts. We solve these
issues by introducing a more general model for representing
bursts of activations, for which we provide a formula to
compute safe error models.

Our work is motivated by the need to handle dual-cyclic
frames, also called cyclicIfActiveFast [5], in the analysis of
CAN buses [6]. Such frames (tasks) execute according to two
different periods, depending on the context. Traditional worst-
case analysis only considers the smallest (most pessimistic)
period even if it is used seldom during execution. The ex-
tension of [3] to bursts and to static-priority non-preemptive
(SPNP) [6] scheduling presented here covers such cases.

This paper is organized as follows. Section II presents
related work. Section III describes our system model and
Section IV recalls the basics of the busy window analysis
for SPP and SPNP scheduling. Section V introduces the
principle of our approach, while Section VI describes the
burst model and Section VII shows how to compute the
error model. Finally Section VIII presents experimental results
while Section IX concludes.

II. RELATED WORK

Our approach uses the response time analysis of [2]. A
comparable method based on a similar model of systems is
Real-Time Calculus [1]. In particular, [7] also provides a
model for bursts. However, so far no other work than [3] using
either [2] or [1] to compute weakly-hard response times of
tasks has been published.

Both (m, k)-firm [8] and weakly-hard real-time systems [4]
provide guarantees similar those described in this paper, allow-
ing at most m out of k consecutive deadlines to be missed.
However, (m, k)-firm constraints are enforced by resorting to
dedicated scheduling mechanisms. Our approach is therefore
more in the line of weakly-hard constraints which are only
used for analysis purposes. One major difference between [4]
and the work that we present here is that we are not limited
to periodic systems in contrast to [4] which is based on an
analysis of the system hyperperiod.978-3-9815370-0-0/DATE13/ c©2013 EDAA



Stochastic analysis [9] typically aims at providing a distribu-
tion of the response times of each task in a system, thus also
refining worst-case information. The main limitation of this
family of approaches is that they must rely on the assumption
that activation and execution times of tasks can be represented
as independent random variables. This is in general not the
case, as e.g. cache memory induces a correlation between
the various execution times of a given task, and a data flow
between two tasks may lead to a correlation between their
respective execution times. Ignoring these dependencies is
not safe while attempts at dealing with them lead to overly
pessimistic results [10]. In the end, stochastic approaches yield
in general little information about the behavior of a system in
a given time window.

III. A TRACE-BASED REPRESENTATION OF SYSTEMS

In this paper, we assume a system of tasks (software compo-
nents) executing on a single resource (e.g. a processor, mem-
ory, or bus) scheduled according to the static-priority preemp-
tive (SPP) [11] or static-priority non-preemptive (SPNP) [6]
policy, which decides in which order tasks are executed.

The execution of a task is triggered by an input event re-
ceived by the task, called activation. The end of the execution
is indicated by the output of another event, called termination.
An event trace describes the set of instants (described as
natural numbers) at which an event takes place. Note that we
only use traces focusing on a specific type of event, which is
either the activation or the termination of a given task τ .

Definition 1. An event trace σ is an increasing (possibly
infinite) sequence of instants where σ(n) ∈ N denotes the
time of the n-th occurrence of an event in the trace.

Definition 2. The behavior of a system is represented by a
tuple (act1, end1, . . . , actn, endn) of event traces where for
each task τi, acti is the activation trace of τi and endi is its
termination trace.

In practice, the only reliable information available about the
possible behaviors of a system is related to: 1) the scheduling
policy; 2) the execution times of tasks, i.e., the time they
use the resource to produce their output; 3) the activation
traces at the input of the system. In this paper, we describe
execution times using the usual interval [BCET ;WCET ]
between a task’s best-case (i.e., smallest) and worst-case
(largest) execution time1.

Besides, traces are abstractly represented as event models
which describe the minimum and maximum size of a time
interval containing a given number of events in a trace
by means of δ-functions, or equivalently the minimum and
maximum number of events which may occur in a given time
interval (η-functions).

Definition 3. An event model is represented either as a pair
of functions δ− and δ+ : N+ −→ N, or η− and η+ : N −→ N.

1Note that we could as well use the more general model of [3] which
considers the best-case and worst-case execution time of a task integrated
over several executions.

An event trace σ satisfies an event model (δ−, δ+) if

∀k, n ≥ 1 : σ(n+ k − 1)− σ(n) ∈ [δ−(k); δ+(k)]

For finite traces this condition must be satisfied for all k and
n such that all terms are defined.
Equivalently a trace satisfies (η−, η+) if

∀∆t, t ≥ 1 :

∆t−1∑
i=0

event-atσ(t+ i) ∈ [η−(∆t), η+(∆t)]

where event-atσ(t) is the number of event occurrences at t.

Note that to represent a non-empty set of traces an event model
(δ−, δ+) must have some specific properties, e.g. δ− ≤ δ+,
and similarly for (η−, η+).

We now formally define response times, for which we want
to obtain safe information. A job is a pair relating in a behavior
one activation and its corresponding termination, as follows.

Definition 4. Consider a system Sys as above and a behavior
(act1, end1, . . . , actn, endn) of Sys . For a given n ∈ N+,
the n-th job of a task τi is the pair (act i(n), end i(n)). The
response time of the n-th job of τi in the given behavior is
the time interval RT i(n) = end i(n)− act i(n).

The worst-case response time (WCRT) of τi in Sys , is the
maximal RT i(n) over all n ∈ N+ and all behaviors of Sys .

IV. CLASSIC WORST-CASE RESPONSE-TIME ANALYSIS

In this section we recall the basics of worst-case response
time analysis for SPP and SPNP scheduling on a single
resource, which are based on the notion of busy window [12]
(originally called busy period). We assume given a system
Sys and an arbitrary behavior (act1, end1, . . . , actn, endn)
of Sys . The SPP and SPNP scheduling policies define a strict
order between tasks by assigning them a priority such that
higher-priority tasks execute first and may also, in the pre-
emptive case, interrupt the execution of lower-priority tasks.

Definition 5. A level-i busy window is a maximal time interval
during which τi or a higher-priority task has a job that has
not terminated yet.

The maximum level-i busy window for a task τi is built by
assuming the occurrence of a so-called critical instant, where
τi and higher-priority tasks are all activated at the same time —
and therefore induce maximum interference with τi — while
the task with the largest execution time among lower-priority
tasks is activated just before the critical instant and therefore
induces the maximum blocking time2. It is also assumed that
all tasks are activated as early as possible and that they always
use their maximum execution time. The maximum level-i busy
window stops at the first instant when no job of τi and higher-
priority tasks remains incomplete.

The worst-case response-time WCRT i of τi can then be
safely defined as the maximum response time observed in this
maximum busy window. The formal definitions and proofs
of the response time analysis can be found for the periodic

2Note that this last condition is only needed for SPNP as lower-priority
tasks can be safely ignored in the SPP case.



case in [11] (SPP) and [6] (SPNP), and for general activation
patterns e.g. in [3] (SPP) and [13] (SPNP). In addition, these
methods return, for the SPNP case, the maximum queuing de-
lay QD i which describes the maximum time it may take before
task τi starts executing (remember that in the non-preemptive
case this means that is cannot be blocked anymore). They also
compute the maximum number of buffered activations bf i,
i.e. activations whose corresponding job has not started yet,
as well as the maximum backlog bl i, i.e. activations whose
corresponding job has not finished yet.

The whole process is illustrated on an example in Figure 1,
where waiting times (due to the execution of other tasks)
are represented as empty rectangles while execution times
are rectangles indicating their duration. The system consists
of three tasks τ1, τ2 and τ3 executing on the same resource
scheduled according to SPNP, such that τ1 has higher priority
than τ2, denoted τ1 � τ2, and τ2 � τ3. Tasks τ2 and τ3 are
cyclic, i.e. periodic (P = 15 ms), while τ1 is dual-cyclic: it
is activated sometimes according to a short period P1 = 2, 5
ms, sometimes according to a longer period P ′1 = 5 ms. We
focus on task τ2. Note that the analysis is performed assuming
the worst-case activation pattern of τ1, namely P1, even if in
practice such an activation scenario might seldom occur.

task
τ1

τ2
task

idle
tim

e
w

.r.t.
h
pe

(2)

task
τ3

WCRT 2 = 11 ms

1,5 1,5

2

3

P1

maximum level-2 busy window

1,51,51,51,5

Fig. 1. Busy window analysis and worst-case response time of τ2.

V. PRINCIPLE OF TYPICAL-CASE ANALYSIS OF BURSTS

Let us introduce our approach on the example of Section IV.
As already mentioned, task τ1 may typically not be activated
according to its smaller period P1 = 2, 5 ms, but rather most
of the time according to its larger period P ′1 = 5 ms. Hence
the idea to perform a busy window analysis of τ2 assuming
the “typical-case” activation model of τ1, namely period P ′1, as
illustrated in Figure 2. Such an analysis yields a much smaller
worst-case response time for τ2, which we denote TWCRT2.

Of course, TWCRT2 is not a safe bound for the response
time of τ2. At this point, the question then is: how often can
TWCRT2 be “wrong”, meaning that the actual response
time of τ2 is larger than TWCRT2 (while still being smaller
than WCRT 2)? Typical-case analysis will provide an answer

task
τ1

τ2
task 2

task
τ3

3

idle
tim

e
w

.r.t.
h
pe

(2
)

P ′1

TWCRT2 = 6, 5 ms

1, 5 1, 5 1, 5

Fig. 2. Busy window analysis of τ2 using the typical-case model.

to this question in the form of an error model as defined below
and the next two sections are devoted to the description of how
we come up with such an error model.

Definition 6. An error model for a given TWCRT i is a
function err i : N+ −→ N such that erri(k) is a safe bound
on the number of instances of τi which can have a response
time larger than TWCRT i in a window of k consecutive
instances.

That is, out of every sequence of k (consecutive) jobs of τ2
(for a given k ∈ N+), at most err2(k) response times may be
larger than TWCRT2. In other words, err2 must provide
safe (i.e. worst-case) information about the behavior of the
system over a time window.

VI. BURST MODEL

We start by defining our representation of burst. Informally,
a burst is a time interval during which a task is activated
more often than average. The role of the burst model is to
relate the worst-case and the typical-case activation models
of a task and therefore the definition of an adequate burst
model for a given task depends on its worst-case and typical-
case activation models. For a dual-cyclic frame, the burst
model would describe how often and how long the task may
be activated according to its shorter period, as illustrated
in Figure 3, where activations drawn in bold belong to a
burst. Note that bursts start with the first activation which
arrives according to the shorter period and end before the last
activation arriving with the shorter period.

Definition 7. A burst model is a pair (∆+
burst , δ

−
burst) where

∆+
burst denotes the maximum time duration of a burst while

δ−burst is an event model describing how often bursts may
occur. Formally, for k ≥ 1, δ−burst(k) is the minimum distance
between the beginning of a burst and the beginning of the next
(k − 1)-th burst.

In particular, δ−burst(2) is the minimum distance between the
beginning of a burst and the beginning of the next burst.



∆+
burst

δ−burst(2)

burst trace typical trace

Fig. 3. Burst model for the dual-cyclic activation pattern.

As usual, we switch whenever convenient to a time-based
view of δ−burst , i.e., a function η+

burst such that for ∆t ≥ 0,
η+
burst(∆t) is the maximum number of bursts which may start

in a time interval of size ∆t. Note also that we are not
interested in δ+

burst or η−burst because we focus on WCRTs.

Definition 8. Given two event models (δ−s , δ
+
s ) and (δ−t , δ

+
t )

where the former is a safe (worst-case) model and the latter
is a typical-case model, a burst model δ−burst relating them is
such that any trace satisfying (δ−s , δ

+
s ) can be partitioned into

a sequence of finite traces, alternately typical and burst (see
Figure 3), such that:

• each typical finite trace satisfies (δ−t , δ
+
t );

• no burst finite trace is longer than ∆+
burst ;

• the distance between the beginning of successive bursts
satisfies δ−burst .

Equipped with such a definition we can now focus on how
to compute error models.

VII. COMPUTATION OF THE ERROR MODEL

The error model computation uses two main observations:
• Even when a burst occurs, response times satisfy the

worst-case pattern, because the latter has been computed while
taking these bursts into account. In particular, this implies that
the impact of a burst after it ends cannot last longer than the
worst-case busy window.
• If there is no burst activation in a busy window, response

times in that busy window are smaller than or equal to the
typical-case TWCRT i. Indeed, in such a case the worst
possible scenario is the one computed by the busy window
analysis on the typical-case model as in Figure 2.

Let us focus on the error model err i of a given task τi.
Remember that for k ∈ N+, err i(k) means the following:
for any k consecutive jobs of τi, called a k-sequence, at most
err i(k) response times may be larger than TWCRT i. At first
we consider the error err ji (k) for that k-sequence induced by
bursts at the input of a single task τj with a priority higher
than or equal to that of τi, as represented in Figure 4. We will
show later how to add up errors resulting from bursts at the
input of several tasks.

The computation of err ji (k) goes as follows:
1) We first compute the impact of a burst at the input of

τj , that is, how many response times of τi may be larger than
TWCRT i because of this burst.

2) We then compute the time interval ∆T ji during which a
burst at the input of τj may have an impact on the response
times in the considered k-sequence of τi.

3) Finally we compute how many bursts may occur at the
input of τj during this time interval ∆T ji and take into account
the impact of each burst on the response times of the k-
sequence.

δ+
i (k)BW +

i

act i

∆+j
burst D+

i,j

actj

k-sequence

∆T ji

Fig. 4. Impact of a burst of τj on the response time of τi.

Step 1: Computation of the impact of a burst
Theorem 1. The number of jobs of τi which may see their
response time impacted by a given burst at the input of task
τj is bounded by

N j
i = bi + η+

i (∆+j
burst + BW +

i )

where

bi =

 0 if i = j
bf i if i 6= j and the scheduling is SPNP
bl i if i 6= j and the scheduling is SPP

and bf i and bl i denote respectively the maximum number of
buffered activations and the maximum backlog of τi.

Proof. A burst at the input of τj may only influence the
response time of jobs of τi which are in one of the following
situations: 1) still pending when the burst at the input of τj
starts; 2) activated during the burst; 3) activated after the end
of the burst but within the same busy window as the last
activation of the burst.
• The impact of a burst after it ends lasts at most until

the end of the busy window in which the last activation of
the burst occurred (see Figure 4). Therefore, aside from the
activations which are still pending at the beginning of the burst
at the input of τj (see next item) the activations which may
be impacted are those arriving during the burst (of length at
most ∆+j

burst ) or within the following busy window (of length
at most BW +

i ): that is, at most η+
i (∆+j

burst + BW +
i ).

• Let bi be the maximum number of activations of τi
occurring before the beginning of a burst (at the input of
τj), whose response time may be influenced by that burst.
If i = j, the burst cannot influence the response time of
previous activations of τi so bi = 0. Similarly, if i 6= j
and the scheduling policy is SPNP then the burst can impact
only the activations which are buffered when it starts, while



all backlogged (i.e. buffered or executing) activations may be
impacted in the SPP case.

An obvious consequence of this theorem is that a burst at
the input of τj can result in at most Ni response times of the
k-sequence of τi being larger than TWCRT i.

Step 2: Computation of the interval of impact ∆T ji

Consider the activation traces of Figure 4. The bursts at
the input of τj cannot influence the response times of the
represented k-sequence of activations of τi, as we explain now.

Theorem 2. The time interval during which a burst at the
input of τj may have an impact on the response times in the
k-sequence of τi is bounded by

∆T ji = ∆+j
burst + BW +

i︸ ︷︷ ︸
(b)

+ δ+
i (k)︸ ︷︷ ︸
(a)

+D+
i,j︸︷︷︸

(c)
where

D+
i,j =


0 if i = j
QD+

i if i 6= j and the scheduling is SPNP
WCRT i if i 6= j and the scheduling is SPP

Proof.
(a) As already mentioned a burst starting during the k-

sequence of activations of τi (see Figure 4) may have an
impact on the response times in the k-sequence. The corre-
sponding time interval is of length at most δ+

i (k).
On top of that, we have to consider what happens if a burst
starts just before the first activation in the k-sequence or after
the last activation in the k-sequence.

(b) What happens before the beginning of the busy window
containing the first activation in the k-sequence has no impact
on the response times of the k-sequence. Therefore a burst
starting more than ∆+j

burst + BW +
i before this first activation

(see left part of Figure 4) will finish more than BW +
i earlier

than the first activation of the k-sequence and therefore not
impact it.

(c) If i = j then a burst of activations of τj starting after the
last activation in the k-sequence has no impact on the response
times in the k-sequence at all, because activations of a task
are handled in a FIFO order.
If i 6= j, what happens after the last activation in the k-
sequence starts executing if the scheduling policy is SPNP
(respectively finishes executing if it is SPP) has no impact
on the response times of the k-sequence (see right part of
Figure 4). The maximum interval of impact after the k-
sequence is then the maximum queuing delay QD+

i of τi
(respectively maximum response time WCRT i).
The result follows directly from these considerations.

Step 3: Computation of the error model err ji (k)

In order to compute a safe err ji (k) we now simply compute
the maximum number of bursts that may start during ∆T ji and
multiply it by the maximum impact of each burst.

Definition 9. err ji (k) = N j
i × η

+j
burst(∆T

j
i )

Theorem 3. For any sequence of k jobs of τi, if bursts occur
only at the input of τj then at most err ji (k) response times in
the k-sequence of τi may be larger than TWCRT i.

Proof. This follows directly from Theorems 1 and 2.

We now define the error model err i(k) in the general case,
i.e., when bursts may occur at the input of multiple tasks, as
the sum of the error models induced by single tasks.

Definition 10. err i(k) =
∑

j∈hpe(i)

err ji (k)

Theorem 4. For any sequence of k jobs of τi, at most err i(k)
response times may be larger than TWCRT i.

Proof. The scenario where bursts at the input of different tasks
occur in different busy windows represents the worst case be-
cause overlapping bursts will in fact impact the same response
times. Therefore adding the task-specific error models provides
a safe over-approximation of the global error model.

Improvement for handling short bursts

We can refine Theorem 1 in order to account better for
bursts of small size, by replacing bi in the formula with

max
0≤q≤bi

{ q | q × BCET i ≤ ∆+j
burst }

Theorem 5. The number of jobs of τi which may see their
response time impacted by a given burst at the input of task
τj is bounded by

N j
i = max

0≤q≤bi
{ q | q×BCET i ≤ ∆+j

burst }+η
+
i (∆+j

burst+BW +
i )

where

bi =

 0 if i = j
bf i if i 6= j and the scheduling is SPNP
bl i if i 6= j and the scheduling is SPP

and bf i and bl i denote respectively the maximum number of
buffered activations and the maximum backlog of τi.

Proof.
• The main part of the proof is the same as that of

Theorem 1.
• Furthermore, if bi activations cannot all finish executing

before the end of the burst because bi × BCET i ≤ ∆+j
burst ,

then they necessarily belong to the same busy window as the
last activation of the burst. In that case, the burst would be
included in a level-i busy window which cannot be larger than
BW +

i . To avoid an overestimation because of this, we only
need to consider the maximum number of pending activations
at the beginning of the burst which may be in a different busy
window as the last activation of the burst.

Note that this improved version of the error computation is a
generalization of the approach presented in [3]. In particular,
an overload model, which describes the minimum distance
between overload (i.e., additional) activations, can be used as
a burst model by assigning the value 0 to ∆+

burst .



task ID activation pattern priority
τ1 cyclic 1 (highest)
τ2 dual-cyclic 2
τ3 dual-cyclic 3
τ4 cyclic 4
τ5 sporadic 5
τ6 cyclic 6 (smallest)

TABLE I
STRUCTURE OF THE EXPERIMENTAL SYSTEM

VIII. EXPERIMENTS

We have applied our approach for typical-case analysis
of bursts to a uni-processor system with 6 tasks scheduled
according to SPNP, as described in Table I. In order to
study a large variety of systems while limiting ourselves to
configurations which are relevant for the evaluation of typical-
case analysis, we have randomly defined parameters so as to
ensure a 50% base load (i.e., the load when sporadic tasks
are ignored and only larger periods of dual-cyclic frames are
considered) and a temporary load higher than 100% when
shorter periods occur. More precisely: 1) the base load is
randomly distributed among the non-sporadic tasks; 2) the
periods of cyclic tasks (only larger periods for dual-cyclic
frames) are randomly generated between 10 ms and 500 ms;
3) the (constant) execution time of each task is then computed
based on the task’s load and period; 4) shorter periods for dual-
cyclic frames are defined, in order to ensure high load when
they are used, as 1.5 ∗WCET , thus making dual-cyclic tasks
alone require more than 100% load when they are activated
according to their shorter period; 5) the sporadic activation
model of task τ5 is deterministic; 6) bursts have a maximum
size determined in terms of numbers of activations, in this
case 4 or 5 (randomly chosen); 7) burst models are determined
based on the shorter and larger periods of the task so as to
occur less and less frequently in a sporadic fashion.

We have performed our experiments on 1000 systems
generated according to the parameters that we have just
described for the SPNP case. We have focused on the impact
of typical-case analysis on the lowest-priority task, namely τ6,
for k-sequences of length 1000. The results are summarized
in Figure 5, where the x-axis describes the ratio between
TWCRT6 and WCRT 6 and the y-axis represents the ratio
between err(k) and k, in this case between err(1000) and
1000. As one can see, for most of the systems (in fact 655
out of 1000) typical-case analysis yields a typical worst-case
response time which is less than 50% of the original worst-
case response time, and with an error ratio smaller than 10%.
Furthermore let us underline that such a result is more precise
than a probabilistic value, as it ensures that never more than
100 out of 1000 consecutive jobs may have a response time
larger than TWCRT6.

Note that the results are similar for task τ4 which is not
influenced by the sporadic task τ5. Furthermore we have per-
formed similar experiments for SPP scheduling and obtained
comparable results.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

TWCRT/WCRT

er
r(
10

00
)/
10

00

Fig. 5. Improvement w.r.t. the response time of τ6 and corresponding error.

IX. CONCLUSION

In this paper we propose a new method for computing
quantitative information about response times in uni-processor
real-time systems where task activation patterns may contain
sporadic bursts. We use a burst model in order to calculate
how often response times may exceed the bound obtained
while ignoring bursts. We have shown on experiments that
this approach is well suited for the study of systems in which
load is generally low but may temporarily exceed 100%. In
such cases we are able to provide typical-case response times
dramatically smaller than their safe counterpart while the error
(i.e., how often the typical bound may be optimistic) remains
at an acceptable level.

REFERENCES

[1] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in Proceedings of ISCAS’00, vol. 4.
IEEE Computer Society, 2000, pp. 101–104.

[2] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis - the SymTA/S approach,” in IEE
Proceedings Computers and Digital Techniques, 2005.

[3] S. Quinton, M. Hanke, and R. Ernst, “Formal analysis of sporadic
overload in real-time systems,” in Proc. of DATE’12, 2012, pp. 515–
520.

[4] G. Bernat, A. Burns, and A. Llamosı́, “Weakly hard real-time systems,”
IEEE Trans. Computers, vol. 50, no. 4, pp. 308–321, 2001.

[5] M. Traub, T. Streichert, O. Krasovytskyy, and J. Becker, “Scenario ex-
traction for a refined timing-analysis of automotive network topologies,”
in Proc. of DATE’10. IEEE, 2010, pp. 81–86.

[6] R. I. Davis and A. Burns, “Controller area network (can) schedulability
analysis: Refuted, revisited and revised,” Refuted, Revisited and Revised.
Real-Time Systems, vol. 35, pp. 239–272, 2007.

[7] K. Albers and F. Slomka, “An event stream calculus for the schedu-
lability analysis of distributed embedded systems,” in Proc. of the
International Embedded Systems Symposium, 2009, pp. 102–114.

[8] M. Hamdaoui and P. Ramanathan, “A dynamic priority assignement
technique for streams with (m, k)-firm deadlines,” IEEE Trans. Com-
puters, vol. 44, no. 12, pp. 1443–1451, 1995.

[9] J. M. López, J. L. Dı́az, J. Entrialgo, and D. F. Garcı́a, “Stochastic anal-
ysis of real-time systems under preemptive priority-driven scheduling,”
Real-Time Systems, vol. 40, no. 2, pp. 180–207, 2008.

[10] M. Ivers and R. Ernst, “Probabilistic network loads with dependencies
and the effect on queue sojourn times,” in Proceedings of QSHINE’09,
ser. LNCS, vol. 22. Springer, 2009, pp. 280–296.

[11] K. Tindell, A. Burns, and A. J. Wellings, “An extendible approach for
analyzing fixed priority hard real-time tasks,” Real-Time Systems, vol. 6,
no. 2, pp. 133–151, 1994.

[12] J. P. Lehoczky, “Fixed priority scheduling of periodic task sets with
arbitrary deadlines,” in Proceedings of RTSS’90. IEEE Computer
Society, 1990, pp. 201–213.

[13] M. Negrean and R. Ernst, “Response-time analysis for non-preemptive
scheduling in multi-core systems with shared resources,” in Proc. of
SIES’12, Karlsruhe, Germany, 2012.


