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Abstract—Soft error has been identified as one of the major challenges
to CMOS technology based computing systems. To mitigate this problem,
error recovery is a key component, which usually accounts for a
substantial cost, since they must introduce redundancies in either time or
space. Consequently, using state-of-art recovery techniques could heavily
worsen the design constraint, which is fairly stringent for embedded
system design. In this paper, we propose a HW/SW methodology
that generates the processor, which performs finely configured error
recovery functionality targeting the given design constraints (e.g., per-
formance,area and power). Our methodology employs three application-
specific optimization heuristics, which generate the optimized composition
and configuration based on the two primitive error recovery techniques.
The resultant processor is composed of selected primitive techniques at
corresponding instruction execution, and configured to perform error
recovery at run-time accordingly to the scheme determined at design
time. The experiment results have shown that our methodology can at
best achieve nine times reliability while maintaining the given constraints,
in comparison to the state of the art.

I. INTRODUCTION AND MOTIVATION

Deploying soft-error countermeasures in a computing system es-
sentially requires designing extra functionality, and combining it with
the native functionality. This extra functionality can be realized either
in hardware, software, or both. No matter in which way the reliability
functionality is realized, it would incur extra resources either in terms
of the gate number (more hardware), or operation number (more
software). Therefore, the resultant extra resources must introduce
more execution time, area, power, and/or energy consumption.

Inevitably, the cost of the reliability functionality contradicts the
design constraints (e.g., execution time, chip area, power, and energy)
that come inherently with the application-specific nature of embed-
ded systems. Consequently, it becomes quite difficult to keep high
reliability while maintaining the design constraints. Traditional reli-
ability enhancement techniques are very likely to yield overdesigned
solutions since they are mostly monotonously treated (on or off for
the entire system and the entire run-time).

Therefore, for reliability-oriented embedded systems, the design
methodology must evolve to cope with the underlying contradictions
(constraints). Firstly it is necessary to obtain the application-specific
trade-off between reliability and other performance metrics (from
execution time to power consumption) at the design time. Secondly,
the system should be flexible to adapt its functionality at run-time
to achieve the best overall performance (dependent to the specific
application), given the reliability and other traditional constraints
(perhaps with different priorities). Notwithstanding, most of the
existing reliability solutions are designed from a general perspective,
and thus lack the mechanism to customize the reliability functionality
considering the underlying application.

Recent research [1], [13] has studied on estimating the vulnerability
to soft errors by static analysis (or model). In the scope of instruction
set processor systems, one derivative of those techniques is proposed
for enabling soft-error vulnerability estimation for each instruction
in a program at design time. It has been used in several software-
implemented soft-error countermeasures [15], [16], which reportedly
show an improvement in reliability at the software program level.

Fig. 1 plots the Instruction Vulnerability Index (IVI) values of the
instructions that are executed during the function of adpcm coder
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Fig. 1. Vulnerability of instructions at run time (the trace begins from
PC=0x1F0 on the left to 0x22C on the right)

in application named ADPCM on a processor (using the technique
in [15]). It shows that in 100 clock cycle execution, there are only
a few (roughly 10%) instructions having significant probability to
introduce soft errors. The rest of instructions are ten times less
vulnerable. This observation provides unique evidence suggesting
the inefficiency of pessimistically adding reliability operations for
all the instructions, especially when considering stringent design
constraints. Ultimately this finding supports our motivation of using
static knowledge that is gained from design time to smartly guide
the reliability functionality, which works at run time. In this way,
we can flexibly choose the trade-off between reliability and other
metrics (throughput, power, and area). In order to realize this concept,
the reliability functionality should be designed in such a way: 1)
capable of exploiting both temporal and spatial redundancy, and 2)
can perform the recovery functionality at an optimal effort level for
a particular run-time application.

In this paper we propose a HW/SW reliability solution, namely
CSER, which focuses on soft-error recovery for application specific
instruction set processors (ASIPs)1. To the best of our knowledge,
our solution is the first to realize the configurable HW/SW error-
recovery functionalities in the processor architecture, and to allow
them serve as intelligent handlers that leverages the reliability of
the system at the instruction and basic-block levels. The proposed
solution exploits the characteristics of the recovery functionalities and
forms the optimized recovery schemes at varied levels of granularity,
to increase efficiency. Guided by the particular configuration that is
derived from design input information, the instructions on the CSER
architecture would perform the deployed recovery operations in one
of the two types of the state:
Error-Resiliency: commit the additional operations so that to allow
the system to be able to recover from errors. The additional operations
are selected w.r.t. the configuration and integrated into the execution
of instructions through instruction customization.
Low-Cost: throttle the additional operations, thus to allow tuning
the run-time performance or other metrics up again, while sacrificing
reliability (ability to recovery).

Our contributions are as follows:

(1) A HW/SW instruction-based configurable error-recovery sys-
tem that supports tailored soft-error recovery functionality that
is determined at design time.

1A representative type of embedded processors that supports customizable
instruction set and are designed through architectural description language
(ADL) to HDL synthesis tools (e.g., ASIPmeister and Xtensa [12]).978-3-9815370-0-0/DATE13/©2013 EDAA



(2) An application-specific framework using static Soft Error vul-
nerability estimation to guide the run-time error-resiliency for
flexible design trade-off.

II. RELATED WORK AND BACKGROUND

Traditional error-resilient techniques are implemented in pure hard-
ware or software for general purpose platforms. They do not consider
application specific characteristics, and therefore have difficulty in
providing flexible error-recovery schemes given design constraints.
HW techniques introduce no modification to SW, rather increase the
number of gates in the system. In contrast, SW ones do not enlarge
the system but raise the number of instructions. This means the
system must run more code and thus have performance degradation
and more dynamic power/energy consumption. Moreover, SW ones
cannot touch the resources/state other than those transparent to the
program in the system.

On the HW side, Cache-Aided Rollback Error Recovery [7]
modifies the cache replacement policy and utilizes the cache as a
buffer to hold the unsure data for computation. This technique is
sound in not incurring a new buffer at the cost of the memory traffic
(especially with the associativity lower than 4-way). Afterwards,
Sequoia [2] solves HW error recovery in multi-processor systems;
whereas SWICH [20] improves in the rollback window size. On the
SW side, Software-Implemented Fault Tolerance [17] optimizes the
compiler to generate additional lines of code that allow the system to
use majority voting algorithm to recover errors with almost doubled
code; while TRUMP [17] uses AN-code in replacement of majority-
vote in arithmetic instructions to reduce the overhead. Because
AN-code does not propagate through many logical operations, the
applicability of this technique is limited. Some HW/SW fault tolerant
techniques [10] are proposed to enhance the systems with the archi-
tecture that allow instructions to manage checkpoint and recovery.
Those pieces of research above do not include the consideration of
configuring the effort level of the technique to provide flexibility to
system designers. In addition, they do not include any estimation
model to gauge the application-specific vulnerability so that to help
optimize the technique.

Recently there are a few pieces of research [5], [8], [11], [15],
[21] exploring with the incentive that reliability-oriented design
can be greatly improved in efficiency by using adequately advised
relaxation. The approaches [8], [11], [15], [21] differ with ours
in such aspects as: 1) they do not focus on error-recovery, and
2) their techniques are software-only and compiler-based. Due to
this difference, their techniques still face such issues as the code
size increase and unreachable state/resources limited to the level of
techniques (software). On the other side, the approach in [5] addresses
the recovery problem by utilizing the statistically idempotent property
of the program to reduce the recovery cost and provide flexibility in
the degree of fault tolerance. Beside the difference in the theoretic
proof that derives the reduction criteria, this approach differs in the
second aspect stated above, in comparison to ours.

A. Basic Notions and Preliminaries

In this paper, a few basic notions are applied and they are defined
as follows:
Instruction: The fundamental node of a computing task (i.e. pro-
gram). Thereafter, we denote static instructions as the elements of
instruction set; whereas dynamic instructions as those, equivalent
to program counter (PC) values, in the code generated by compilers.
Basic Block: The high-level node consisting of a number of instruc-
tions and constitutes a computing task. One block in principle has
only one entrance and one exit instruction, and does not include
control flow instructions in the middle.
Architectural State: The state of the architectural components in
a processor. Typical architectural components are registerfile, data
memory, and other special registers (e.g. status registers).
Functionality: A group of operations. Each operation is either a data
transfer or processing of functional unit.
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Fig. 2. CSER Overview

Composition: Composing a functionality primitive denotes the pro-
cess of allocating the underlying operations to the determined static
instruction. E.g., if Instruction A (static) is composed of Operation B,
then Operation B can be supported by the occurrences of Instruction
A.
Configuration: Configuring a functionality primitive denotes the
process of activating and deactivating the underlying operations. E.g.,
if Operation B is composed in Instruction A, but not configured at
a dynamic occurrence (PC=0x100), then Operation B would not be
performed at that occurrence.

Moreover, in this study we mainly consider Single-Event Upset
(SEU), which is reported as the most common soft-error effect in
system level [3]. To facilitate the description of our approach, we
assume and employ two primitive error-recovery functionalities that
represent the common “naive” error-recovery techniques (refer to
Sec. III-A) that take different kinds of redundancies (space and
time). In CSER approach, they are characterized, modeled, selectively
incorporated into the instruction set via HW/SW integration, and
finally configured at run time (refer to Sec. III-B).

III. CSER APPROACH

Fig. 2 shows the overview of the proposed approach. Our approach
comprises two main components: 1) design-time optimization, and 2)
run-time operation. Design-time optimization principally composes
the recovery functionality primitives that can recover the system
from soft-error effect. It also generates the configuration on the
selected error-recovery functionality primitives. This process is based
on the provided template system information such as instruction set
architecture and design constraint. Finally it produces the processor
(HDL model) that is composed of primitives and also available to
perform the configuration at run time.

A. Characterizing Primitives

Error recovery functionality primitives (summarized in Fig. 3) are
briefly described as follows:
Instruction Replay and Vote (IRV)2 performs instruction-level
recovery (Fig. 3(a)), via iterating the selected instruction two more
times, and then voting for the correct instruction result from the
majority. This mechanism basically invokes two more redundant
iterations for a particular objective instruction.
Block Checkpoint and Recovery (BCR)3 fulfills block-level re-
covery, by saving the original values of the architectural state at
every update in a basic block, and then undoing the update in case
the block’s executions are faulty (Fig. 3(b)). In comparison to IRV,
BCR is a coarse-grained recovery technique, where the granularity
of protection is the basic block.

These two primitives demonstrate great orthogonality in their
features and thus the costs induced. This orthogonality suggests a
complementary benefit in mixing the two primitives in one solution
and using them in a configurable way. Note CSER is not limited to

2IRV comes from the notion of triple modular redundancy (TMR) which
is widely applied in other bodies of research [18], [19].

3Existing HW/SW techniques of BCR can be seen in [10], where the error
is assumed to be checked at the end of the blocks.
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Fig. 3. Error Recovery Primitives: (a) Instruction Replay and Vote; (b) Block
Checkpoint and Recovery; (c) Comparison

these two primitives, other primitive techniques can also be applied
in the framework of CSER approach.

1) Modeling the Cost of IRV: The cost of this technique lies in
two parts:
Execution Time can be estimated to be bounded by Ctime = 3 ·
Tinstr ·Ninstr where Ninstr stands for the number of the executions
of protected instructions, and Tinstr denotes the execution time (in
clock cycles) of one arbitrary instruction.
Additional HW Structures are introduced as well (mainly including
two more registers and a few multiplexors). This cost is twofold and
can be formulated as CHW = Cstatic + Cdynamic where Cstatic

is the static cost of the additional HW structures in terms of area
and static power, and Cdynamic is the dynamic cost that is a variant
value, in terms of dynamic power or energy, dependent to the run-
time behavior of the processor. For example, suppose we put replay
operations that are realized by additional HW. This augmentation
adds a number of gates into the system; however if this operation
is not behaved by the system at run-time, then the dynamic HW
cost (i.e. dynamic power and energy) is very limited (negligible).
Basically, we can assume Cdynamic linearly increases with Ninstr .
Because the HW structure increase is relatively small, the major cost
of IRV is in execution time (or performance).

2) Modeling the Cost of BCR: BCR involves additional HW
structures such as checkpoint buffer (the container of checkpoint),
pipeline flip/flops, and multiplexors. As a result, BCR costs mainly
on HW side (spatial redundancy). The cost of BCR is also in two
parts. Fault-free part is more dominant since the processor is in the
fault-free scenario in most of the service time. This part of cost has
three major factors from HW aspect: constant HW cost Cconstant,
variant HW cost Cvariant, and dynamic HW cost Cdynamic. The
former two factors constitute the static HW cost. Their relationship
can be expressed as CHW = Cconstant + Cvariant + Cdynamic.
Constant HW Cost can be break down as Cconstant =∑

comp∈ad HW Ccomp where comp is one of the additional pipeline
components ad HW that are induced by the underlying technique.
Variant HW Cost is Cvariant ≡ Ccheckpoint ∝
maxblock∈programNupdate block where Ccheckpoint is the check-
point operation number and buffer size, and its size is bounded by
the maximum update number, Nupdate block

4 in a block.
Dynamic HW Cost can be described as Cdynamic ∝∑

block∈program
Nupdate block · Freqblock is in terms of dynamic

power or energy, similarly to IRV. However, there is a difference that
the key factor to Cdynamic in BCR is Nupdate block.
The reason is that dynamic cost is correlated to the number of
additional operations the processor performs, which is dominated by
checkpoint operations (quantified by Nupdate block in a block). To
summarize, in BCR, both Cvariant and Cdynamic are significantly
influenced by Nupdate; however their correlations are different.

4Precisely, the update means unique update in the case of register file [10].

Algorithm 1: Instruction Level Selection Heuristic

1 Initialize C: set the capacity/constraint
2 Initialize ∆C: set the capacity modifier constant
/* Initialize profit table P = {p1, p2, . . . , pn} */

3 for v ∈ V do
4 pv ← P(v)← IV I(v) · Freq(v)

/* Sort the instructions by their profits */

5 Sorted List = ∅
6 for v ∈ V do
7 key ← pv

8 Sorted List ← SortList(key, v, ascending order)

/* Select from the most profitable */
9 S = ∅

10 for v ∈ Sorted List do
11 cremain ← C −∆C
12 if cremain > 0 then
13 C ← cremain

14 S ← v
15 ptotal ← ptotal + pv

16 else
17 break

18 return (S, ptotal )

B. Composition and Configuration

Provided the characterization of recovery functionality primitives,
the composition and configuration process is equivalent to solving
a selection problem given the constraints. This problem can be
simplified to a knapsack problem where the capacity denotes the
tolerable design constraints. The objective of the solution is to
maximize the reliability profit while satisfying the cost constraint. We
firstly propose an instruction level selection with IRV solely, which
mainly targets on execution time and resultant power consumption.
For exploring the efficacy with coarser and more spatially redundant
recovery techniques, we propose a heuristic for optimizing BCR for
high reliability while satisfying the constraints. At last, we propose to
use a hybrid technique IRV/BCR, for exploiting the benefit from the
orthogonality between these two primitives. For example, replacing a
number of blocks under BCR protection with a few instruction replays
can trade off area or power (due to the Ccheckpoint) to execution time.

One fundamental step before this process is the Reliability Anal-
ysis, which provides the reliability profit function. We adopt one
instruction-based estimation tool [16] to obtain the basic parameter,
instruction vulnerability index (IVI). To reflect the dynamic behavior
of the target program, we also use profiling to get the frequency
of the dynamic instructions. Therefore we have a profit function
P (instr) = IV Iinstr · Freqinstr where Freqinstr indicates one
dynamic instruction’s occurrences. The value of the profit indicates
the influence of the underlying instruction to the system under the
pressure of soft error effect.

1) Instruction Level Selection: Instruction level selection (ILS)
essentially selects a set of instructions that are to be composed of
IRV statically and configured to perform IRV at run-time. This set
S is a subset of the node in the program graph G = (V,E), where
a node vi is a dynamic instruction (equivalent to program counter
value) of instructions V that are derived from the assembly code.

Problem: Select the subset of instructions from the given set of
instructions V in G, considering each instruction as basic element
vi (vi ∈ V, i = 1, . . . , n), each instruction having a reliability
profit P (vi) in case that it performs IRV, and weight (or cost) function
W (vi).

Objective: Determine the subset S so as to achieve

ptotal = maximize
∑

v∈S

P (v)

Constraint: The total cost of the selected instructions must satisfy

ctotal =
∑

v∈S

∆C ≤ C



Algorithm 2: Block Level Selection Heuristic

1 Initialize C: set the capacity/constraint
/* Initialize block profit table P = {p1, p2, . . . , pn} */

2 for b ∈ B do
3 for v ∈ b do
4 GetProfit() /* Line 3-4 in Alg. 1 */

5 pb ← Pblock(b)←
∑

v∈b
pv

/* Initialize block cost table W = {w1, w2, . . . , wn} */
6 for b ∈ B do
7 wb ← W (b)← Nupdate b

/* Dynamic programming */
8 for i = 1 to n do
9 for c = 0 to C do

10 ci ← Λ(wi)
11 if (ci ≤ c) and (pi + K[i− 1, c− ci] > K[i− 1, c]) then
12 K[i, c]← pi + K[i− 1, c− ci]
13 sel[i, c]← True

14 else
15 K[i, c]← K[i− 1, c]
16 sel[i, c]← False

/* Examine selection and fill Sblock */
17 cremain = C
18 Sblock = ∅
19 for i = n downto 1 do
20 if sel[i, cremain] = True then
21 Sblock ← bi
22 cremain ← cremain − ci

23 ptotal ← K[n,C]
24 return (Sblock, ptotal)

Based on the characterization of IRV, it can be assumed that most
of the instructions’ costs are highly similar 5. Hence, in order to
simplify the problem (knapsack problem), which is NP-hard, we make
one assumption that the cost function maps to a constant value ∆C.
With this simplification, the solution of instruction level selection
problem can be solved within a reasonable time (described in Alg. 1),
which follows a greedy search. At first, the algorithm initializes the
table that contains the profits of all the dynamic instructions (Line 3-
4). This table is then used to make a sorted list of instructions for
selection (Line 5-8). Then, the algorithm greedily puts the instructions
one by one from the top of the list into a new set, until the capacity
is met (Line 10-17).

2) Block Level Selection: Block level selection (BLS) considers
composing and configuring BCR, which is more complex than
that with IVR. The reason is in two aspects: 1) the grains are
more different to each other (blocks have very different constituent
instructions and behave very differently), thus they introduce fairly
distinctive recovery operations; 2) the additional HW structure cost
is strongly dependent to the block’s behavior (i.e. the number of
registerfile and memory write references), due to the feature of BCR.

Based on the instruction model that is used in ILS (Sec. III-B1),
we further derive the block model. For each block in the program, it
has two important parameters:
Block Profit is defined as the sum of the profits for instructions in the
block and given by the profit function Pblock(b) =

∑
i∈b Pinstr(i).

Block Cost is dominated by the number of the registerfile and
memory write references that would require checkpoint operations
and buffer space (i.e. Cvariant and Cdynamic), which is reflected by
the cost function W (b) ≡ Nupdate b = Nreg b + Nmem b and is
elaborated in Sec. III-A2.

Problem: Select a subset of basic blocks from the given set B in
the program G = (B,D), where a node is a block b ∈ B and D is
the set of dependencies between blocks, considering the capacity C,
the reliability profit function P (b) and the cost function W (b).

Objective: Determine a subset Sblock so as to satisfy

ptotal = maximize
∑

b∈Sblock

P (b)

5Exceptions can happen in some architectures, where the multiplication and
division instructions take longer cycles in execution stage. In this case, the
algorithm for BCR can be applied.

Algorithm 3: Hybrid Level Selection Heuristic

1 Initialize C1: set the capacity/constraint
2 Initialize C2: set the capacity/constraint
3 Initialize ∆CIRV : set the capacity modifier constant for IRV
/* Initialize block profit and cost tables */

4 InitBLS()/* Line 2-7 in Alg. 2 */
/* Block Level Selection */

5 (SBLS , pBLS)← GetBLS()/* Line 8-24 in Alg. 2 */
/* Reduced Instruction Level Selection */
/* Initialize instruction profit table */

6 InitILS()/* Line 3-4 in Alg. 1 */

7 G′ = G− SBLS

8 (SILS , pILS)← GetILS()/* Line 5-18 in Alg. 1 */
9 ptotal ← pBLS + pILS

10 return (SILS, SBLS , ptotal)

Constraint: The total cost must be bounded by

ctotal =
∑

b∈Sblock

W (b) ≤ C

This selection problem can be solved by using dynamic program-
ming. Our heuristic is described in Alg. 2. For the sake of brevity,
we assume the total number of blocks in the program is n, and they
are enumerated from b1 to bn. We also assume the cost mapping
Λ : wi → ci, where wi is the value of W (bi). Precisely, this mapping
abstracts out the detail of deriving the total cost ci while including
bi that has a weight wi. We use a common dynamic programming
data structure which is a memoization table K[i, c] recording the
maximum profit achievable with capacity c and blocks 1, . . . , i. In
addition, we use an auxiliary boolean table sel[i, c] whose value is
True if bi is selected in K[i, c] and False otherwise. This table is
used to derive the Sblock after dynamic programming is finished.
The algorithm firstly initialize the profit table and cost table via the
profit and cost function respectively (Line 2-7). Then, these two tables
are used to select the optimal subset for each subproblem from the
base cases, until reaching the ultimate case, i.e. c = C and i = n
(Line 8-23).

3) Hybrid Level Selection: The main motivation behind using hy-
brid level selection (HLS), i.e. composing and configuring IRV/BCR,
lies in the benefit from orthogonality. One typical exemplar scenario
is that, the execution time constraint solely prohibits the composition
and configuration from achieving broader coverage of IRV, i.e.,
more reliability profit, while there is still a rich quota on area
constraint. Apparently, using hybrid recovery promises further gain in
reliability, exploiting unused area quota, within the multi-dimensional
constraints.

Problem: Given design constraints {C1, C2}, two reliability profit
functions Pinstr(v) and Pblock(b), and the cost functions Winstr(v)
and Wblock(b), the problem is to determine the selections of the
subsets SILS and SBLS .

Objective: The selected subsets must satisfy

ptotal = maximize(
∑

v∈SILS

Pinstr(v) +
∑

b∈SBLS

Pblock(b))

Constraint: The total cost should be restricted by

∀i ∈ {1, 2} : ctotal i = cILS i + cBLS i ≤ Ci

Alg. 3 describes the solution to this problem, which essentially is
optimizing ILS-BLS partition across the dynamic instructions G. We
use a good (not necessarily optimal, but with significantly reduced
complexity) partitioning heuristic that can be summarized in two
sequential steps:
Partitioning Coarse Grains: select the set SBLS of blocks of in-
structions protected by BCR from graph G(V,E) with the constraint
C (follow Alg. 2).
Partitioning Fine Grains: select the set of instructions SILS pro-
tected by IRV from sub-graph G′ = G − SBLS with the restrained
constraint C′ = C − CBLS (follow Alg. 1).

The finer-grained step (i.e. ILS) is sequenced at last. The reason
is twofold: it has a higher chance than the coarser one (i.e. BLS)
to avoid including “bad grains”, which does not have a desirable



cdefgd hfijkfl
hfimnop

hfgd

qrs

tudkvjnfiw

xyz{ | y}{~

�hr

tudkvjnfiwxy�����{ | y����{~

xy�����{ | y���{~

�fk�vl

cdefgd

�fk�vl

hfijkfl

�fk�vl

tudkvjnfiwqiwjkp

hfgd
�ke�p

�jvjd

�rdomnld�

�d��

Fig. 4. CSER Architecture (Green: CSER, Grey: Template/Normal)

����������

����
 ����¡¢�£

��¢�¢�¤¥��¦
��¢§¨ © �¢ª«¬¨

®���¯¬ª�
��¢§���¢�

���¢� ���� �¢�� ����

(a)

Parameter Value
Template Sparc-V8 16-Window Integer

Benchmark ADPCM,CRC,SHA,SUSAN [6]
Constraint 3%,5%,10%,15%,20%

Clock Period 10 ns
Fault Model Single-Bit Flip
Repetition 1000 (1/trial)

Technology TSMC 65 nm
Reference Baseline,SWIFT [17],Reli [10]

HDL Simulator ModelSim SE6.6d
RTL Synthesis Synopsys DC&PT

(b)

Fig. 5. Experiment: (a) Flowchart; (b) Parameter Value

profit/cost ratio; and the proportion of “bad grains” increases after a
number of “good grains” are picked at the previous step. Note that
on the ground of CSER framework, more optimal hybrid selections
can be achieved if provided more complex algorithms, e.g. simulated
annealing (typically used for HW-SW partitioning [4]); However due
to the space limit, our discussion here only covers a simpler version.

C. CSER Architecture

CSER architecture (shown in Fig. 4) is generated by modifying
the template architecture with the consideration on the result of
CSER approach. This modification generally includes: 1) additional
operations from the corresponding error-recovery functionality prim-
itives are merged into the relevant instruction ADL model, which
is equivalent to control data flow graph (CDFG); 2) the relevant
instruction (including the error recovery operations) is then enhanced
with the functionality of configuration.

Merging the operations into template instructions considers
pipeline stages and conflicts (w.r.t data and structure). The detail
of this part can be seen in other literatures that follow the same
implementation style (ADL-to-HDL) [14]. For the sake of brevity,
we mainly discuss the functionality of configuration here. The main
components in this functionality are described:
Configuration Code: One bit for each primitive is added into
the code of the program at compile stage. This bit value denotes
the configuration or the scheme for the error recovery operations
in the instructions. The unused instruction code bits are potential
configuration bit.
Decoding: The configuration bit is decoded at the decoding stage6,
consistent to normal instruction code. The configuration information
(“1” for “True” and “0” for “False”) is thus brought into the pipeline
execution (control unit).
Control: The control unit adapts to the configuration information and
send out corresponding control signals to activate (if “True”) and/or
deactivate (if “False”) the underlying operations.

IV. EXPERIMENT SETUP

Fig. 5(a) depicts the experiment flow. Given the parameters and
baseline system, CSER processors are generated in processor vs.
configuration pairs. Each pair realizes a recovery scheme for an
benchmark application (e.g. ILS targeting 10% cost for ADPCM).
The complete experiment consists of two procedures: 1) fault injec-
tion test to obtain the error rate, and 2) logic synthesis and fault-free
simulation to yield the cost in design constraints.

Fig. 5(b) describes the parameters used in the experiment. The
template architecture (i.e. baseline reference) resembles 16-window
integer SPARC-V8 instruction set. The benchmark consists of four

6Usually the second stage in single-issue architectures.
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Fig. 6. Result: (a) ADPCM;(b) CRC32; (c) SHA; (d) SUSAN

applications from MiBench suite [6]. We use a set of constraints
ranging from 3% to 20% to represent quantification of design
constraints against the baseline. HDL simulation is conducted with
ModelSim SE simulator7, while RTL synthesis (RTL to Netlist) is
performed with Synopsys Design Tools (DC and PT)8.

Fault injection test and fault-free simulation is conducted in HDL
simulation at RTL level. The fault model is single-bit flip since it
represents the most common soft error occurrence, also named as
single event upset (SEU). The test has a series of repetitions of
injections (namely Monte Carlo Simulation). In each repetition (the
number of repetitions can be acquired using the method in [9]), one
fault is injected in to the system at an instruction at first (similar to

7http://model.com/
8http://synopsys.com/



the method used in [10]). The faulty instruction is randomly chosen
and the probability is affected by the area and time of the instruction
(follows the assumption in [15]).

The prototypes are measured in the forms of gate-netlist that is
yielded by RTL Synthesis with TSMC 65nm technology library. In
order to fully envision the feature of CSER, we use full-scope IRV
and BCR, which always perform the respective recovery operations,
as two reference techniques. They represent two state-of-art error
recovery techniques (full-scope IRV as the HW/SW equivalent of
SWIFT-R [17], and BCR as the resemblance of Reli [10]).

V. RESULT AND DISCUSSION

Fig 6 shows the results of reliability against cost rates w.r.t. the
benchmark ADPCM (a) to SUSAN (d), with CSER and reference
prototypes. In order to effectively express the application’s character-
istics, the kernel functions are mainly exercised in the fault injection
trials.

The reference SWIFT here is our HW/SW version of SWIFT-
R [17], which is a full-scope IRV notwithstanding CSER approach.
We assume, SWIFT would protect the instructions from beginning
until the constraints are used up, if the constraints are not sufficient
for the full-coverage protection. Reli is SPARC implementation
of Reli [10], which is a full-scope BCR notwithstanding CSER
approach. We assume Reli would not be equipped to the processor, in
case the constraints cannot suffice the cost. ILS, BLS, and HLS are
CSER processors using three respective heuristics in our approach.
The x-axis is the choice of design constraints or cost rate (20% means
20% more cost against baseline). The y-axis is the relative value
of reliability index Ri = (1/Ei) − Rbaseline against the baseline
(Rbaseline), where Ei is the error rate, reflected by the number of
effective errors that are not recovered.

In comparison to SWIFT (full-scope IRV), ILS demonstrates a very
gradual increasing profile in CRC32 (e.g., from about 0.1 to 0.5 in
Fig. 6(b)) as the constraints rise. In other three cases, the reliability of
ILS approach saturates more quickly than SWIFT at 15% constraint,
which shows the effect of fine-grained composition and configuration.
In contrast, SWIFT mostly spends the limited constraints on low-
profit instructions. One exception can be seen in FIg. 6(c) where
both approaches achieve more than 0.8 reliability at all the constraint
choices. The reason is that SHA kernel function has a small size
and most of the dangerous instructions are executed at the front part.
Overall ILS leads 1x to 9x against SWIFT.

In comparison to Reli (full-scope BCR), BLS shows optimized
contribution to reliability (7x to 9x) in all the applications in the
scenario of 10% constraints. This result is because the cost of con-
figuring the basic blocks to perform BCR in the relevant applications
are costly and the derived system costs are around 10%, where BLS
manages to configure a set of low-cost blocks, while Reli is not
applicable.

HLS (configuring IRV/BCR) shows the highest reliability profile
(0.1 to 0.9) in all the applications. It can be seen that within 3%
and 5% constraints, IRV is the principal contributor to the reliability,
which compensates the inefficiency of using BLS alone in undesirable
scenarios. The benefit of hybrid usage of two primitives is observed
when the constraints rises to 10%, in comparison to using ILS
alone. Overall, CSER approach at most can achieve approximately
9x reliability especially in the extreme constraint scenarios.

VI. CONCLUSION

In this paper, we have proposed CSER approach that can allow
finely configured error recovery functionality targeting the given
design constraints. Our methodology includes two primitive error re-
covery techniques, and three application-specific optimization heuris-
tics, which generate the optimized composition and configuration
based on the characteristics of primitive techniques, static reliability
analysis and design constraints. The resultant processor is composed
of selected primitive techniques, and configured to perform at run-
time accordingly to the optimized recovery scheme determined at
design time. The experiment results have shown that CSER can more

strategically enhance the reliability of the system while maintaining
the given constraints, especially in restricted cases (e.g., almost 10x
reliability below 10% constraints).
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