
A Work-Stealing Scheduling Framework Supporting

Fault Tolerance

Yizhuo Wang, Weixing Ji, Feng Shi, Qi Zuo

School of Computer Science and Technology

Beijing Institute of Technology

Beijing, China

{frankwyz, jwx,sfbit,zqll27}@bit.edu.cn

Abstract—Fault tolerance and load balancing are critical

points for executing long-running parallel applications on

multicore clusters. This paper addresses both fault tolerance and

load balancing on multicore clusters by presenting a novel work-

stealing task scheduling framework which supports hardware

fault tolerance. In this framework, both transient and permanent

faults are detected and recovered at task granularity. We

incorporate task-based fault detection and recovery mechanisms

into a hierarchical work-stealing scheme to establish the

framework. This framework provides low-overhead fault-

tolerance and optimal load balancing by fully exploiting task

parallelism.

Keywords—fault tolerance; work-stealing; multicore; cluster

I. INTRODUCTION

Today, most of high performance computing platforms
such as clusters, grids and desktop grids are built from
multicore machines connected via high speed interconnects. To
compute long-running applications in this kind of systems, two
key issues need to be resolved: 1) How to exploit parallelism
for performance enhancement of the application? 2) How to
make long-running computations resilient to hardware faults?

To exploit parallelism of the multiple processing elements
(PEs), efficient task partitioning of the application and
scheduling of these tasks onto parallel PEs are of utmost
importance. Work-stealing is a popular task scheduling
approach which achieves an efficient dynamic load balancing.
Under work stealing, each processor maintains its own work
queue of tasks and idle processors attempt to steal work from
victim processors selected randomly. On shared memory
systems, work-stealing has been studied extensively. Most of
the popular parallel programming models and languages offer
work-stealing schedulers for task parallelism e.g., Cilk [1],
Intel Threading Building Blocks (TBB)[2], Microsoft Task
Parallel Library (TPL)[3], OpenMP 3.0, and Java Concurrency
Utilities. On distributed memory systems, recent researches
[4][5][6][7] also show good performance by using work-
stealing schedulers, and there are some public available
implementations of work-stealing on clusters of SMP machines,
such as X10 [8] and Kaapi [9].

Work-stealing has native fault tolerance capability. For
example, in Cilk-NOW [10], an implementation of the Cilk
runtime system for networks of workstations, if a processor
crashes, the other processors automatically steal and redo the

work that was lost in the crash. Any work-stealing algorithm
can be implemented to tolerate such processor failures. But for

another type of hardware faults―transient faults [11], there is

not a work-stealing technique scheme providing tolerance
support. As the number of processors in a computing system
increases, the probability of a transient fault increases, which
leads us to design a fault tolerant work-stealing scheme.

Fault tolerance involves both fault detection and fault
recovery. Most of the transient fault detection techniques are
replication-based. In [11][12][13], operations are duplicated at
different granularities (instruction, thread and process). The
results of original operations and duplicated operations are
compared to detect a fault. Fine-grained replication and
comparison provides fast reaction to a fault, but needs tightly-
coupled synchronization which harms to dynamic load
balancing. Coarse-grained replication is vice versa. For task
parallel applications, it is natural to use a task as a basic unit of
replication and comparison. Task has a medium granularity and
gives a tradeoff between fault response speed and load
balancing. However, as far as we know, none of the existing
fault detection methods work at task granularity.

In this paper, we introduce task-based fault detection and

recovery. Each task is scheduled on two PEs to execute twice

in parallel. Each worker thread runs on a different PE, and each

thread maintains a private space for shared data. Here, the

shared data is the data which may be write-accessed

concurrently by the two copies of a same task. During the

execution of a task, any write to the shared data is buffered in

thread’s private space. After the double executions, the

buffered data in two spaces is compared. If the data does not

match, a fault is detected and the task will be re-executed.

Otherwise, the data is committed to their original memory

addresses. We combine this task-based fault detection with the

work-stealing scheduling, and propose a fault tolerant work-

stealing framework which minimizes the performance

degradation due to fault detection by fully exploiting task

parallelism.
Once a fault (transient or permanent) is detected, the

program needs to restart the computation from a previously
established state in the computation before the occurrence of
the fault. Checkpoint/restart is the most commonly used fault
recovery approach. Most existing systems for checkpointing
such as LAM/MPI and Condor take system-level checkpoints
which consists of memory contents, register values and process

978-3-9815370-0-0/DATE13/©2013 EDAA

context. Checkpoint/restart in these systems is actually a
mechanism for process migration between cluster nodes. For
SPMD applications, a same program runs on all worker nodes.
If an application is partitioned into tasks, task migration can be
implemented to replace process migration. The data of a task
needs to be stored in a checkpoint before running this task.
This is application-level checkpointing technique [14] which
reduces the size of the saved state and can make a task restarted
on any platform.

In our technique, task queues of each cluster node and the
relevant data are saved periodically in a checkpoint. If a node
crashes, another node will restart the tasks in the checkpoint.
According to the storage solution, checkpointing techniques
can be classified as disk-based checkpointing and diskless
checkpointing. Disk-based checkpointing stores checkpoints in
stable storage. Diskless checkpointing techniques use the
volatile memory of other computers within the system to store
the data instead of using stable storage. Diskless checkpointing
reduces the overhead of storing checkpoints, but cannot survive
the failure of the whole system. In out framework, we assume
that there is at least one processor working at any moment.
Diskless checkpointing is applied in our framework for
recovery from permanent faults.

The rest of the present paper is organized as follows. In
Section 2, work-stealing and fault tolerance techniques are
reviewed. A novel fault tolerant work-stealing framework is
presented in Section 3. The implementation of the proposed
framework is described in Section 4. Section 5 presents
experimental results and Section 5 concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Work-stealing

Work-stealing is the most popular way to achieve dynamic
load balancing in the execution of task parallel applications.
The basic work-stealing paradigm is shown in Figure 1. Each
processor (worker) maintains a local task queue which is
double-ended. Tasks are dynamically generated during the
execution and enqueued to or dequeued from a task queue at
the queue’s bottom end at runtime. Tasks in all queues are
independent each other and can be executed in parallel. When a
processor’s task queue is empty, the processor will steal one
task or a group of tasks from another processor, called a victim
which is randomly selected normally. To minimize
synchronization overhead for the queue’s owner, stolen
elements are always taken from the top end of the queue.

Work-stealing has been implemented for shared memory
systems in TBB[2], Cilk++[15], TPL[3], etc., and for
distributed memory systems in Satin[16], ATLAS[17],
Kaapi[9], etc. However, as far as we know, there is not a work-
stealing system like ours which supports both transient and
permanent fault tolerance.

Figure 1. Classic work-stealing.

B. Fault Tolerance

Fault tolerance requires at least two basic mechanisms:
fault detection and fault recovery.

1) Fault Detection
In clusters, heartbeat mechanism is widely used to detect

permanent faults of the nodes. Permanent fault (node failure)
detection schemes only differ on the implementations.

Transient fault detection necessitates redundancy in general.
EDDI [11] duplicates instructions during compilation and
inserts appropriate instructions to check the results. AR-SMT
[18] uses SMT to execute two copies of the same program to
detect a fault. AR-SMT was later improved by many
researchers in different architectures (e.g. CRT[19], SRT[12]).
These techniques run a “leading” thread and a duplicated
“trailing” thread, and compare their outputs to detect error.
Process-level Redundancy (PLR) [13] is a software technique
for transient fault tolerance, which creates a set of redundant
processes per application process and systematically compares
the processes to guarantee correct execution. Above techniques
introduce redundancy at different granularities. But none of
them implements fault detection at task level like ours.

2) Fault Recovery
Prior work in fault recovery can be classified into two

categories: backward error recovery (BER) and forward error
recovery (FER). FER techniques detect and correct the errors
without requiring to rollback to a previous state. N-version
programming [20] is a typical FER mechanism which uses
redundant code execution and software-implemented voting to
achieve fault recovery.

BER techniques periodically save a checkpoint and
rollback to the latest checkpoint when a fault is detected. Such
checkpoint/restart mechanism has been widely used in HPC
field by systems such as Condor, LAM/MPI, Open MPI, FT-
MPI and MPICH-V. We use diskless application-level
checkpoint/restart in our system.

III. ARCHITECTURE

We first present a hierarchical work-stealing scheme for
multicore clusters. Based on it, we set up our fault tolerant
work-stealing framework.

A. Hierarchical Work-stealing Scheme

Figure 2 depicts the system model for dynamic task
scheduling in a multicore cluster environment. In general, it is
a master-worker model. An application is partitioned into tasks
and the task dependences are represented as a directed acyclic
graph (DAG). The application and its DAG are submitted to a
master node where a global scheduler works. When the job is
submitted to the master node, the global scheduler performs
initial partitioning with a static scheduling algorithm. The
initial partitioning is essential on distributed memory systems
because the cost of task stealing between cluster nodes is much
higher than it between threads on a shared memory system.
The initial partitioning could balance the workload before the
parallel execution of the tasks and thus reduce the frequency of
dynamic task stealing across the nodes. Therefore, our work-
stealing algorithm of the global scheduler starts with an initial
partitioning phase. For tasks with different patterns of
parallelism, the static partitioning algorithms are different.

P0 P1

Stealing

...

Worker

T
a
sk

 q
u

eu
e

 For flat parallelism provided by parallel loops, the
simplest way is to assign even partitions of the loop
iterations to the workers.

 For recursive parallelism provided by divide-and-conquer
algorithms, the first few steps of the recursive calculation
must be done at the master node to spawn enough
subtasks based on the number of available worker nodes.

 For irregular task parallelism, a static DAG scheduling
algorithm will be applied to partition the tasks into
batches.

Figure 2. The system model for task scheduling in a multicore cluster.

After the initial partitioning, tasks are dispatched to the
worker nodes. Each node runs a local scheduler instance,
which balances the workload between the PEs on the node with
a work-stealing algorithm. The local scheduler can be
implemented by expanding any existing work-stealing
scheduler for shared memory system. To support transient fault
detection, every two PEs in a same chip share a local task
queue and a faulty task queue in our system (see next section
for details). When the task queues on a node are empty, a
message is sent to the master node to require a task. The global
scheduler determines whether to steal a task from another node
or to assign a subsequent task to the requestor.

The inter-node work-stealing (implemented in the global
scheduler) and the intra-node work-stealing (implemented in
the local scheduler) establish a hierarchical work-stealing
scheme. It is similar to the state-of-the-art work-stealing
scheme for multicore HPC clusters in [6]. But we adopt the
initial partitioning to reduce the inter-node steals. In the next
two subsections, we describe the details of the fault tolerance
mechanisms in our framework.

B. Transient Fault Tolerance

To detect a transient fault, each task is executed twice on
two cores, and the results (output data of the task, i.e., the data
which is written in this task, but not locally accessed only in
this task) of the double executions are compared.

We make the following rule: each task must be executed
twice in two different processing elements (PEs). Thus, two
PEs share a task queue in our work-stealing framework, as
shown in Figure 3. Task is stolen from the top end of the task
queue. The two PEs obtain a same task from the bottom end of
their task queue to execute. Besides the task queue, every pair
of PEs has another task queue in which the faulty tasks coming
from other task queues are recorded. Faulty tasks are those that
the results of the double executions are not identical. A faulty
task running on a pair of PEs will be transferred to a faulty task

queue of another pair of PEs, as dot arrow lines in Figure 3. A
task element has two tags (P’ and P”) which refer to the two
PEs which are running this task.

As shown in Figure 4(a), P0 and P1 share a task queue.
There are two tasks C0 and C1 in the task queue. P0 and P1 get
C0 to execute at the beginning. The tags P' and P" of C0 equal -
1 initially. P0 set P' of C0 to 0 (the ID of P0) and P1 set P" to 1
(the ID of P1) before they execute C0. P0 updates the tag P' and
P1 updates P" of the tasks during the execution.
Synchronization is required between P0 and P1 to determine
whether the double executions complete.

Figure 3. Fault tolerant work-stealing.

In practice, the double executions are not possible to start
or end at the same time because of the real environment and
the synchronization. Let's assume P0 finishes the task C0 before
P1 as shown in Figure 4(a). P0 will continue to get the next task
in the queue to execute (each PE has its own head pointer to
the task queue). When P1 finishes C0, it will compare the
results of the double executions. If they are equal, P1 will
commit the data, move task C0 out of the task queue and
enqueue the new tasks while there are new tasks spawned. If
not equal, P1 will transfer C0 to a faulty task queue selected
randomly from the faulty task queues of other PE pairs.

In Figure 4, P0 completes C0 early. There are following
three possibilities of the next scheduling step of P0:
1) P0 checks its faulty task queue firstly in order to recover

from the faults as soon as possible. If there is a task, as C'
in Figure 4(b), P0 gets C' to execute, and then compares the
results, commits the data and updates the task queue that C'
comes from, or transfers C' to another faulty task queue if
the results are not equal.

2) If there is not task in the faulty task queue and there is task
in the task queue, as C1 in Figure 4(a). P0 gets C1 to execute.
P0 checks whether P1 works or not before the execution of
the next task. If P1 crashes, P0 transfers C0 to a faulty task
queue of other PE pairs directly.

3) If there is not task in the local task queue and faulty task
queue, as shown in Figure 4(c), P0 will steal a task from
other task queues. Termination detection is done when P0
attempts to steal a task. If all the task queues are empty,
there are following two possibilities:
a) If all the faulty task queues are empty, the job is

finished.
b) If there are tasks in the faulty task queues, P0 will get

one of them to execute and compare the results. If the
results are not equal, P0 will re-execute the task again
and commit the data directly without comparison. It is

Application

& Task DAG

Global

Scheduler

Master node

Worker node 1

Local

Sched-

uler

Core 1

P0

Core k

…

P1

Worker node n

Stealing

Local

Sched-

uler

...
Core 1

Core k

…

 …

Tasks are assigned

to compute nodes

Information is sent

to the master node

P2

P3

P’ P”

T
a
sk

 Q
u

eu
e

Faulty Task Queue

Figure 4. Task queues and scheduling for sample execution.

to avoid that a faulty task is transferred between the faulty task
queues infinitely which results that the job is never completed.

In a multicore cluster, when a transient fault is detected, the
faulty task is firstly re-executed by another core in the same
node on which the task just runs. Only if a fault cannot be
recovered within a node, the faulty task would be dispatched to
another node, that is, be pushed onto a faulty task queue
located on another node. In our current implementation, we
limit the migration of faulty task inside a worker node because
inter-node migration of faulty tasks would make the system
complex and the fault frequency is normally not so high that a
task cannot be correctly executed once on the node.

To ensure the correctness of the multiple times executions
of a same task on a node, we use a buffer-and-commit
computation model which is similar to the SpiceC parallel
computation model in [21]. In this model, the double
executions of a task load shared data from the same place, but
store the data to different buffers. If the contents of the two
buffers compare as equal after the executions, the data in one
of the buffers is committed to their original addresses.
Otherwise, a fault is detected and the task is pushed onto a
faulty task queue to be re-executed.

Discussion. Our technique cannot detect a fault which occurs
during the task scheduling or the data comparing. However,
considering the overhead of these operations is relatively low
compared with the execution time of tasks, our technique has
reasonable fault coverage. In addition, if undetected faults
cause a processor crash, the tasks assigned to it will be stolen
by other processors and the faulty task will migrate to another
processor in our framework. Therefore, the fault recovery
coverage of our framework is high although the fault detection
coverage is not high.

C. Permanent Fault Tolerance

The master node is responsible for permanent fault (node
failure) detection in our system. A heartbeat is sent from each
worker node to the master node periodically to check its status.
When the master node exceeds a maximum waiting time
without receiving any information from a particular worker
node, it suspects that the worker node has failed.

In order to recover from a node failure, a diskless
checkpointing scheme is used in our system. The information
of the task queues on a node and the interim data needed to
restart the tasks are saved in a checkpoint periodically. Note

that we save checkpoints periodically not with a time interval
but with a task interval, that is, after the execution of every few
tasks. The checkpointing frequency is determined by the user
with respect to the sizes of the tasks. During checkpointing, the
checkpoint of a worker node is transferred to another node and
stored in its local memory. The master node maintains a table
which records the node where a checkpoint is stored. The
initial state of the table and the changes after a node failure are
represented in Figure 5. The circles represent the nodes and the
arrows represent the checkpoint transmissions. The basic rule
of checkpoint mapping is transferring a checkpoint to the
nearest neighbor.

After a node failure is detected, the master node notifies the
worker node which stores the checkpoint of the crashed node
to re-execute the tasks in the checkpoint. Unlike traditional
checkpointing method which saves the state of a process, we
save minimum necessary information of the tasks in a
checkpoint. The task information is related to the application.
For example, in a standard matrix multiplication program, a
few row and column numbers can be used to represent a task.

(a)

(b)
Figure 5. Checkpoint mapping between the nodes and the changes after a

node failure. (a) An even number of nodes. (b) An odd number of nodes.

Even though we do not deal with the master node failure in
the proposed framework, there are several ways in which the
failure of the master node can be handled. For example,
backups for the global scheduler can be scheduled on some
other nodes in the system. When the master node fails, another
node with a global scheduler becomes a new master.

IV. IMPLEMENTATION

This section describes the prototype implementation of our
framework. We implement the global scheduler (GS) and the
local scheduler (LS) in a runtime library. Following core
classes are defined in the library: LS, GS, Task and Worker. LS
and GS provide scheduling methods, communication routines
and termination detection function. A sample task class
implementation for standard matrix multiplication (C=A*B) is

C

0

C
0

Time

P
0
 P

1

C

1

C

1

C
0

C
1

Task queue

(a)

Compare &

commit C
0

C

0

C
0

P
0
 P

1

C’

C

1

C

1

C
0

C
1

C’
Task queue Faulty task queue

(b)
Time

C

0

C
0

P
0
 P

1

C

2

C

2

(c)

Steal C
2

shown in Figure 6(a). To detect transient fault, a task is
executed twice by two workers calling Execute1() and
Execute2() respectively, and the results are compared after the
executions. The two workers write to different buffers c1 and
c2 which are allocated in Execute() and freed in Commit().
We use memory pools to manage the buffers. To support
permanent fault recovery, two functions, Checkpoint and
Restart are defined in the class. During checkpointing, each
task in task queues saves the necessary information to a
specified structure, TaskInfo. The local scheduler is responsible
for combining these TaskInfo objects into a checkpoint.
Checkpoint transmissions and task migrations across the nodes
are all represented as messages. We use MPICH2 to implement
the message passing between the nodes.

Every Worker object starts a new thread and bind it to a
processor. Pseudocode of the worker thread implementation is
shown in Figure 6(b). A task is obtained by calling
LS.Schedule() method and executed. After the execution, tags
are checked to determine whether the double executions of the
task are finished. Then the thread compares the results to detect
a fault or continues to ask for a task.

Figure 6. Pseudocode for (a) task definition and (b) worker thread

implementation.

V. EVALUATION

In this section, we evaluate our framework using the task-
parallelized applications in Table 1. Experiments were
conducted on a cluster which has 16 multi-core nodes. Each
node is equipped with 12G memory and a 2.4GHz quad-core
Intel Xeon E5620 processor which supports 8 hardware threads.
Each node is connected to a switch on Gigabit Ethernet.

To measure the performance overhead of our framework,
we compare our framework, denoted by FTWS (Fault Tolerant
Work-Stealing), with a non-fault-tolerant framework, denoted
by HWS (Hierarchical Work-Stealing). HWS is implemented
by just removing fault tolerance elements in the prototype
implementation of FTWS. Therefore, comparing FTWS with
HWS, we can get the fault tolerance overhead. We run the

benchmarks in a fault free environment. The execution times
(normalized w.r.t. HWS) are reported in Figure 7. The
performance overhead of FTWS is 39% (or 1.39x) on average.
The overhead comes from the compare and commit operation,
checkpointing and the double executions. The costs of
compare-commit operations and checkpointing depend on the
output data of tasks (see Section 3.2). For Fib(n) and Nq(n),
each task has a small output. In contrast, tasks of Ms(4G),
MM(12k) and St(12k) produce a lot of data. Therefore, we
observe the overhead of Fib(52) and Nq(20) is less than that of
Ms(4G), MM(12k) and St(12k). The double executions would
make the overhead more than 100% in theory. However, the
maximum overhead in our experiments is 57%, which can be
attributed to efficient load balancing and fine-grained task
parallelism in our framework. In addition, for MM(n) and St(n),
small input sets reduce the overhead significantly. The
minimum overhead of 21% is achieved on St(6k). It is due to
the fact that not all PEs are really used when there are not
enough tasks produced because of the small input sets. FTWS
increases PEs usage because each task is executed twice on
different PEs.

TABLE I. BENCHMARK APPLICATIONS

Benchmark Description

Fib (n) Recursively compute the nth Fibonacci number.

Nq (n) The n-queens problem.

MM (n) Standard matrix multiplication using a loop nest where
the outermost loop is parallelized (n*n double matrix).

Ms (n) Parallel merge sort on an integer array of size n.

St (n) Dense matrix multiplication using Strassen's algorithm
(n*n double matrix).

To measure the fault coverage of our framework, we run

the benchmarks 1000 times with small input sets. Pin tool
instrumentation [22] is used to inject a single bit flip fault in
each run. The behaviors of program after injecting a fault are
categorized as Detected, Seg Fault, Timeout and Benign.
Timeout means the thread which is influenced by the fault has
not exit when all the tasks are finished. This thread may fall
into an infinite loop. Note that FTWS could still finish the
work in this case. Benign means the fault does not affect the
program’s execution and the program finishes with correct
output. Our experimental results in Figure 8 show that 62%
faults are detected and recovered on average. Although 28%
cause segmentation faults and 6.8% make a thread Timeout, all
runs successfully complete the work due to the permanent fault
recovery mechanism in FTWS. Therefore, FTWS provides 100%
fault recovery coverage in practice. Note that, in theory, the
fault recovery coverage of FTWS is not 100% because the
program will finish with incorrect result in the following cases:
1) two transient faults occur at the same location of the double
executions of a task; 2) a fault occurs when a faulty task is
finally re-executed (see Section 3.2). However, the possibility
of these cases is extremely low.

To measure the permanent fault recovery overhead, we kill
the process running on a cluster node to simulate a node crash.
Figure 9 shows the execution times of the benchmarks in fault-
free case, faulty case with one node crash and faulty case with
2 nodes crashes. Recovery time from a checkpoint can be
calculated by subtracting fault-free execution time from faulty
case execution time. From the figure, we see that the recovery
overhead is rather small. It is because we use diskless

class Task : public TaskBase { …
 double *a, *b, *c; // Point to the data of the matrices.
 double *c1, *c2; // Point to the buffers for the double executions.
 int startrow,size; // Portions of the matrices computed in this task.
 void Spawn (TaskQueue *tq);
 Task* Execute1() { Execute (c1); }
 Task* Execute2() { Execute (c2); }
 void Execute (double *c); // c = a*b;
 bool Compare (); // Compare the data in the buffers c1 and c2.
 void Commit (); // Copy c1 to c.
 …
 TaskInfo* Checkpoint ();
 Task* Restart (TaskInfo *tinf);
};

(a)
while (true) {
 Task* t = LS.Schedule ();
 if (thread_id%2 == 0) t->Execute1();
 else t->Execute2(); …
 if (tag1 && tag2){ // The double executions are finished.
 if (true == t->Compare()) // No fault occurs.
 t->Commit();
 else
 LS.FaultyTQ_push(t); // Push t to a faulty task queue.
 }…}

(b)

checkpoint/restart and the tasks reloaded from a checkpoint are
executed in parallel.

Figure 7. Performance comparison of FTWS with HWS.

Figure 8. Fault detection distribution.

Figure 9. Performance of FTWS with permanent faults

VI. CONCLUSION

In this paper we propose a fault tolerant work-stealing
framework (FTWS) for multicore clusters. This framework
supports both transient and permanent fault tolerance at task
granularity. FTWS is a pure software technique. Our
experimental results show that FTWS provides high fault
coverage at very low cost. As future work, we plan to support
fault tolerance to the master node failure in our system and
investigate the behavior of FTWS with some other scientific
applications.

ACKNOWLEDGMENT

This work was supported in part by the National Natural
Science Foundation of China under grant NSFC-60973010. We
would like to thank the anonymous reviewers for their helpful
comments on earlier versions of this manuscript.

REFERENCES

[1] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the
cilk-5 multithreaded language. SIGPLAN Not., 33(5): 212–223, 1998.

[2] Intel(R) Threading Building Blocks, Intel Corporation.

[3] D. Leijen, W. Schulte, and S. Burckhardt. The design of a task parallel
library. In OOPSLA, pp. 227-242, 2009.

[4] V. A. Saraswat, P. Kambadur, S. Kodali, D. Grove, and S.
Krishnamoorthy. Lifeline-based global load balancing. In PPoPP, pp.
201–212, San Antonio, USA, 2011.

[5] J.-N. Quintin and F. Wagner. Hierarchical work-stealing. In EuroPar, pp.
217–229, Berlin, Heidelberg, 2010.

[6] K. Ravichandran, S. Lee, and S. Pande. Work stealing for multi-core
HPC clusters. In EuroPar, pp. 205-217, Berlin, Heidelberg, 2011.

[7] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and J.
Nieplocha. Scalable work stealing. In SC, pp. 1–11, New York, NY,
USA, 2009.

[8] P. Charles, C. Grothoff, et al. X10: an object-oriented approach to non-
uniform cluster computing. In OOPSLA, pp. 519–538, 2005.

[9] MOAIS software: http://kaapi.gforge.inria.fr

[10] R. D. Blumofe. Executing Multithreaded Programs Efficiently. PhD
thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, September 1995.

[11] N. Oh, P. P. Shirvani, and E. J. McCluskey. Error detection by
duplicated instructions in super-scalar processors. IEEE Trans.
Reliability, 51(1):63-75, March 2002.

[12] S. K. Reinhardt and S. S. Mukherjee. Transient fault detection via
simultaneous multithreading. In ISCA, pp. 25-36, 2000.

[13] A. Shye, J. Blomstedt, T. Moseley, V. J. Reddi, D. A. Connors. PLR: A
Software Approach to Transient Fault Tolerance for Multicore
Architectures. IEEE Trans. Dependable Sec. Comput. 6(2): 135-148,
2009.

[14] G. Bronevetsky, D. Marques, et al. Application-level checkpointing for
shared memory programs. In ASPLOS, pp. 235-247, 2004.

[15] Cilk Arts: http://www.cilk.com.

[16] R. V. van Nieuwpoort, G. Wrzesińska, C.J.H. Jacobs, and H. E. Bal.
Satin: A high-level and efficient grid programming model. ACM Trans.
Program. Lang. Syst. 32(3), 39 pages, 2010.

[17] J. E. Baldeschwieler, R. D. Blumofe, and E. A. Brewer. Atlas: an
infrastructure for global computing. In Proceedings of the 7th workshop
on ACMSIGOPS European workshop, pp. 165–172, New York, USA,
1996.

[18] E. Rotenberg. AR-SMT: A microarchitectural approach to fault
tolerance in microprocessors. In Proceedings of the Twenty-Ninth
Annual International Symposium on Fault-Tolerant Computing, pp. 84-
91, 1999.

[19] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed design and
evaluation of redundant multithreading alternatives. SIGARCH Comput.
Archit. News, 30(2):99–110, 2002.

[20] A. Avizienis. The N-Version Approach to Fault-Tolerant Software.
IEEE Trans. On Software Engineering, 11(12): 1491-1501, 1985.

[21] M. Feng, R. Gupta, and Y. Hu. SpiceC: scalable parallelism via implicit
copying and explicit commit. In PPoPP, pp. 69-80, 2011.

[22] C.-K. Luk, et al. Pin: building customized program analysis tools with
dynamic instrumentation. In PLDI, pp. 190–200, New York, USA, 2005.

0

0.5

1

1.5

2

N
o

rm
al

iz
ed

 E
x
ec

u
ti

o
n

 T
im

e

HWS FTWS

0%

20%

40%

60%

80%

100%

%
 o

f
R

u
n

s

Benign

Timeout

Seg Fault

Detected

0.6

0.7

0.8

0.9

1

1.1

1.2

Fib(50) Nq(18) Ms(4G) MM(12k) St(12k) Avg.

N
o

rm
al

iz
ed

 E
x
ec

u
ti

o
n

 T
im

e

Fault-Free 1 Node Crash 2 Nodes Crashes

