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Abstract—Fault tolerance and load balancing are critical 

points for executing long-running parallel applications on 

multicore clusters. This paper addresses both fault tolerance and 

load balancing on multicore clusters by presenting a novel work-

stealing task scheduling framework which supports hardware 

fault tolerance. In this framework, both transient and permanent 

faults are detected and recovered at task granularity. We 

incorporate task-based fault detection and recovery mechanisms 

into a hierarchical work-stealing scheme to establish the 

framework. This framework provides low-overhead fault-

tolerance and optimal load balancing by fully exploiting task 

parallelism.  
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I.  INTRODUCTION 

Today, most of high performance computing platforms 
such as clusters, grids and desktop grids are built from 
multicore machines connected via high speed interconnects. To 
compute long-running applications in this kind of systems, two 
key issues need to be resolved: 1) How to exploit parallelism 
for performance enhancement of the application? 2) How to 
make long-running computations resilient to hardware faults?  

To exploit parallelism of the multiple processing elements 
(PEs), efficient task partitioning of the application and 
scheduling of these tasks onto parallel PEs are of utmost 
importance. Work-stealing is a popular task scheduling 
approach which achieves an efficient dynamic load balancing. 
Under work stealing, each processor maintains its own work 
queue of tasks and idle processors attempt to steal work from 
victim processors selected randomly. On shared memory 
systems, work-stealing has been studied extensively. Most of 
the popular parallel programming models and languages offer 
work-stealing schedulers for task parallelism e.g., Cilk [1], 
Intel Threading Building Blocks (TBB)[2], Microsoft Task 
Parallel Library (TPL)[3], OpenMP 3.0, and Java Concurrency 
Utilities. On distributed memory systems, recent researches 
[4][5][6][7] also show good performance by using work-
stealing schedulers, and there are some public available 
implementations of work-stealing on clusters of SMP machines, 
such as X10 [8] and Kaapi [9].  

Work-stealing has native fault tolerance capability. For 
example, in Cilk-NOW [10], an implementation of the Cilk 
runtime system for networks of workstations, if a processor 
crashes, the other processors automatically steal and redo the 

work that was lost in the crash. Any work-stealing algorithm 
can be implemented to tolerate such processor failures. But for 

another type of hardware faults―transient faults [11], there is 

not a work-stealing technique scheme providing tolerance 
support. As the number of processors in a computing system 
increases, the probability of a transient fault increases, which 
leads us to design a fault tolerant work-stealing scheme. 

Fault tolerance involves both fault detection and fault 
recovery. Most of the transient fault detection techniques are 
replication-based. In [11][12][13], operations are duplicated at 
different granularities (instruction, thread and process). The 
results of original operations and duplicated operations are 
compared to detect a fault. Fine-grained replication and 
comparison provides fast reaction to a fault, but needs tightly-
coupled synchronization which harms to dynamic load 
balancing. Coarse-grained replication is vice versa. For task 
parallel applications, it is natural to use a task as a basic unit of 
replication and comparison. Task has a medium granularity and 
gives a tradeoff between fault response speed and load 
balancing. However, as far as we know, none of the existing 
fault detection methods work at task granularity.  

In this paper, we introduce task-based fault detection and 

recovery. Each task is scheduled on two PEs to execute twice 

in parallel. Each worker thread runs on a different PE, and each 

thread maintains a private space for shared data. Here, the 

shared data is the data which may be write-accessed 

concurrently by the two copies of a same task. During the 

execution of a task, any write to the shared data is buffered in 

thread’s private space. After the double executions, the 

buffered data in two spaces is compared. If the data does not 

match, a fault is detected and the task will be re-executed. 

Otherwise, the data is committed to their original memory 

addresses. We combine this task-based fault detection with the 

work-stealing scheduling, and propose a fault tolerant work-

stealing framework which minimizes the performance 

degradation due to fault detection by fully exploiting task 

parallelism.  
Once a fault (transient or permanent) is detected, the 

program needs to restart the computation from a previously 
established state in the computation before the occurrence of 
the fault. Checkpoint/restart is the most commonly used fault 
recovery approach. Most existing systems for checkpointing 
such as LAM/MPI and Condor take system-level checkpoints 
which consists of memory contents, register values and process 
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context. Checkpoint/restart in these systems is actually a 
mechanism for process migration between cluster nodes. For 
SPMD applications, a same program runs on all worker nodes. 
If an application is partitioned into tasks, task migration can be 
implemented to replace process migration. The data of a task 
needs to be stored in a checkpoint before running this task. 
This is application-level checkpointing technique [14] which 
reduces the size of the saved state and can make a task restarted 
on any platform.  

In our technique, task queues of each cluster node and the 
relevant data are saved periodically in a checkpoint. If a node 
crashes, another node will restart the tasks in the checkpoint. 
According to the storage solution, checkpointing techniques 
can be classified as disk-based checkpointing and diskless 
checkpointing. Disk-based checkpointing stores checkpoints in 
stable storage. Diskless checkpointing techniques use the 
volatile memory of other computers within the system to store 
the data instead of using stable storage. Diskless checkpointing 
reduces the overhead of storing checkpoints, but cannot survive 
the failure of the whole system. In out framework, we assume 
that there is at least one processor working at any moment. 
Diskless checkpointing is applied in our framework for 
recovery from permanent faults. 

The rest of the present paper is organized as follows. In 
Section 2, work-stealing and fault tolerance techniques are 
reviewed. A novel fault tolerant work-stealing framework is 
presented in Section 3. The implementation of the proposed 
framework is described in Section 4. Section 5 presents 
experimental results and Section 5 concludes the paper. 

II. BACKGROUND AND RELATED WORK 

A. Work-stealing 

Work-stealing is the most popular way to achieve dynamic 
load balancing in the execution of task parallel applications. 
The basic work-stealing paradigm is shown in Figure 1. Each 
processor (worker) maintains a local task queue which is 
double-ended. Tasks are dynamically generated during the 
execution and enqueued to or dequeued from a task queue at 
the queue’s bottom end at runtime. Tasks in all queues are 
independent each other and can be executed in parallel. When a 
processor’s task queue is empty, the processor will steal one 
task or a group of tasks from another processor, called a victim 
which is randomly selected normally. To minimize 
synchronization overhead for the queue’s owner, stolen 
elements are always taken from the top end of the queue. 

Work-stealing has been implemented for shared memory 
systems in TBB[2], Cilk++[15], TPL[3], etc., and for 
distributed memory systems in Satin[16], ATLAS[17], 
Kaapi[9], etc. However, as far as we know, there is not a work-
stealing system like ours which supports both transient and 
permanent fault tolerance.  

 
Figure 1.  Classic work-stealing. 

B. Fault Tolerance 

Fault tolerance requires at least two basic mechanisms: 
fault detection and fault recovery. 

1) Fault Detection  
In clusters, heartbeat mechanism is widely used to detect 

permanent faults of the nodes. Permanent fault (node failure) 
detection schemes only differ on the implementations.  

Transient fault detection necessitates redundancy in general. 
EDDI [11] duplicates instructions during compilation and 
inserts appropriate instructions to check the results. AR-SMT 
[18] uses SMT to execute two copies of the same program to 
detect a fault. AR-SMT was later improved by many 
researchers in different architectures (e.g. CRT[19], SRT[12]). 
These techniques run a “leading” thread and a duplicated 
“trailing” thread, and compare their outputs to detect error. 
Process-level Redundancy (PLR) [13] is a software technique 
for transient fault tolerance, which creates a set of redundant 
processes per application process and systematically compares 
the processes to guarantee correct execution. Above techniques 
introduce redundancy at different granularities. But none of 
them implements fault detection at task level like ours. 

2) Fault Recovery 
Prior work in fault recovery can be classified into two 

categories: backward error recovery (BER) and forward error 
recovery (FER). FER techniques detect and correct the errors 
without requiring to rollback to a previous state. N-version 
programming [20] is a typical FER mechanism which uses 
redundant code execution and software-implemented voting to 
achieve fault recovery.  

BER techniques periodically save a checkpoint and 
rollback to the latest checkpoint when a fault is detected. Such 
checkpoint/restart mechanism has been widely used in HPC 
field by systems such as Condor, LAM/MPI, Open MPI, FT-
MPI and MPICH-V. We use diskless application-level 
checkpoint/restart in our system. 

III. ARCHITECTURE 

We first present a hierarchical work-stealing scheme for 
multicore clusters. Based on it, we set up our fault tolerant 
work-stealing framework.  

A. Hierarchical Work-stealing Scheme 

Figure 2 depicts the system model for dynamic task 
scheduling in a multicore cluster environment. In general, it is 
a master-worker model. An application is partitioned into tasks 
and the task dependences are represented as a directed acyclic 
graph (DAG). The application and its DAG are submitted to a 
master node where a global scheduler works. When the job is 
submitted to the master node, the global scheduler performs 
initial partitioning with a static scheduling algorithm. The 
initial partitioning is essential on distributed memory systems 
because the cost of task stealing between cluster nodes is much 
higher than it between threads on a shared memory system. 
The initial partitioning could balance the workload before the 
parallel execution of the tasks and thus reduce the frequency of 
dynamic task stealing across the nodes. Therefore, our work-
stealing algorithm of the global scheduler starts with an initial 
partitioning phase. For tasks with different patterns of 
parallelism, the static partitioning algorithms are different.   
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 For flat parallelism provided by parallel loops, the 
simplest way is to assign even partitions of the loop 
iterations to the workers.  

 For recursive parallelism provided by divide-and-conquer 
algorithms, the first few steps of the recursive calculation 
must be done at the master node to spawn enough 
subtasks based on the number of available worker nodes.  

 For irregular task parallelism, a static DAG scheduling 
algorithm will be applied to partition the tasks into 
batches. 

 

 
Figure 2.  The system model for task scheduling in a multicore cluster. 

After the initial partitioning, tasks are dispatched to the 
worker nodes. Each node runs a local scheduler instance, 
which balances the workload between the PEs on the node with 
a work-stealing algorithm. The local scheduler can be 
implemented by expanding any existing work-stealing 
scheduler for shared memory system. To support transient fault 
detection, every two PEs in a same chip share a local task 
queue and a faulty task queue in our system (see next section 
for details). When the task queues on a node are empty, a 
message is sent to the master node to require a task. The global 
scheduler determines whether to steal a task from another node 
or to assign a subsequent task to the requestor.  

The inter-node work-stealing (implemented in the global 
scheduler) and the intra-node work-stealing (implemented in 
the local scheduler) establish a hierarchical work-stealing 
scheme. It is similar to the state-of-the-art work-stealing 
scheme for multicore HPC clusters in [6]. But we adopt the 
initial partitioning to reduce the inter-node steals. In the next 
two subsections, we describe the details of the fault tolerance 
mechanisms in our framework. 

B. Transient Fault Tolerance 

To detect a transient fault, each task is executed twice on 
two cores, and the results (output data of the task, i.e., the data 
which is written in this task, but not locally accessed only in 
this task) of the double executions are compared.  

We make the following rule: each task must be executed 
twice in two different processing elements (PEs). Thus, two 
PEs share a task queue in our work-stealing framework, as 
shown in Figure 3. Task is stolen from the top end of the task 
queue. The two PEs obtain a same task from the bottom end of 
their task queue to execute. Besides the task queue, every pair 
of PEs has another task queue in which the faulty tasks coming 
from other task queues are recorded. Faulty tasks are those that 
the results of the double executions are not identical. A faulty 
task running on a pair of PEs will be transferred to a faulty task 

queue of another pair of PEs, as dot arrow lines in Figure 3. A 
task element has two tags (P’ and P”) which refer to the two 
PEs which are running this task. 

As shown in Figure 4(a), P0 and P1 share a task queue. 
There are two tasks C0 and C1 in the task queue. P0 and P1 get 
C0 to execute at the beginning. The tags P' and P" of C0 equal -
1 initially. P0 set P' of C0 to 0 (the ID of P0) and P1 set P" to 1 
(the ID of P1) before they execute C0. P0 updates the tag P' and 
P1 updates P" of the tasks during the execution. 
Synchronization is required between P0 and P1 to determine 
whether the double executions complete.  

 
Figure 3.  Fault tolerant work-stealing. 

In practice, the double executions are not possible to start 
or end at the same time because of the real environment and 
the synchronization. Let's assume P0 finishes the task C0 before 
P1 as shown in Figure 4(a). P0 will continue to get the next task 
in the queue to execute (each PE has its own head pointer to 
the task queue). When P1 finishes C0, it will compare the 
results of the double executions. If they are equal, P1 will 
commit the data, move task C0 out of the task queue and 
enqueue the new tasks while there are new tasks spawned. If 
not equal, P1 will transfer C0 to a faulty task queue selected 
randomly from the faulty task queues of other PE pairs.  

In Figure 4, P0 completes C0 early. There are following 
three possibilities of the next scheduling step of P0: 
1) P0 checks its faulty task queue firstly in order to recover 

from the faults as soon as possible. If there is a task, as C' 
in Figure 4(b), P0 gets C' to execute, and then compares the 
results, commits the data and updates the task queue that C' 
comes from, or transfers C' to another faulty task queue if 
the results are not equal. 

2) If there is not task in the faulty task queue and there is task 
in the task queue, as C1 in Figure 4(a). P0 gets C1 to execute. 
P0 checks whether P1 works or not before the execution of 
the next task. If P1 crashes, P0 transfers C0 to a faulty task 
queue of other PE pairs directly. 

3) If there is not task in the local task queue and faulty task 
queue, as shown in Figure 4(c), P0 will steal a task from 
other task queues. Termination detection is done when P0 
attempts to steal a task. If all the task queues are empty, 
there are following two possibilities: 
a) If all the faulty task queues are empty, the job is 

finished. 
b) If there are tasks in the faulty task queues, P0 will get 

one of them to execute and compare the results. If the 
results are not equal, P0 will re-execute the task again 
and commit the data directly without comparison. It is  
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Figure 4.  Task queues and scheduling for sample execution. 

to avoid that a faulty task is transferred between the faulty task 
queues infinitely which results that the job is never completed. 

In a multicore cluster, when a transient fault is detected, the 
faulty task is firstly re-executed by another core in the same 
node on which the task just runs. Only if a fault cannot be 
recovered within a node, the faulty task would be dispatched to 
another node, that is, be pushed onto a faulty task queue 
located on another node. In our current implementation, we 
limit the migration of faulty task inside a worker node because 
inter-node migration of faulty tasks would make the system 
complex and the fault frequency is normally not so high that a 
task cannot be correctly executed once on the node.  

To ensure the correctness of the multiple times executions 
of a same task on a node, we use a buffer-and-commit 
computation model which is similar to the SpiceC parallel 
computation model in [21]. In this model, the double 
executions of a task load shared data from the same place, but 
store the data to different buffers. If the contents of the two 
buffers compare as equal after the executions, the data in one 
of the buffers is committed to their original addresses. 
Otherwise, a fault is detected and the task is pushed onto a 
faulty task queue to be re-executed. 
 
Discussion. Our technique cannot detect a fault which occurs 
during the task scheduling or the data comparing. However, 
considering the overhead of these operations is relatively low 
compared with the execution time of tasks, our technique has 
reasonable fault coverage. In addition, if undetected faults 
cause a processor crash, the tasks assigned to it will be stolen 
by other processors and the faulty task will migrate to another 
processor in our framework. Therefore, the fault recovery 
coverage of our framework is high although the fault detection 
coverage is not high. 

C. Permanent Fault Tolerance 

The master node is responsible for permanent fault (node 
failure) detection in our system. A heartbeat is sent from each 
worker node to the master node periodically to check its status. 
When the master node exceeds a maximum waiting time 
without receiving any information from a particular worker 
node, it suspects that the worker node has failed.  

In order to recover from a node failure, a diskless 
checkpointing scheme is used in our system. The information 
of the task queues on a node and the interim data needed to 
restart the tasks are saved in a checkpoint periodically. Note 

that we save checkpoints periodically not with a time interval 
but with a task interval, that is, after the execution of every few 
tasks. The checkpointing frequency is determined by the user 
with respect to the sizes of the tasks. During checkpointing, the 
checkpoint of a worker node is transferred to another node and 
stored in its local memory. The master node maintains a table 
which records the node where a checkpoint is stored. The 
initial state of the table and the changes after a node failure are 
represented in Figure 5. The circles represent the nodes and the 
arrows represent the checkpoint transmissions. The basic rule 
of checkpoint mapping is transferring a checkpoint to the 
nearest neighbor. 

After a node failure is detected, the master node notifies the 
worker node which stores the checkpoint of the crashed node 
to re-execute the tasks in the checkpoint. Unlike traditional 
checkpointing method which saves the state of a process, we 
save minimum necessary information of the tasks in a 
checkpoint. The task information is related to the application. 
For example, in a standard matrix multiplication program, a 
few row and column numbers can be used to represent a task.  

(a)

(b)  
Figure 5.  Checkpoint mapping between the nodes and the changes after a 

node failure. (a) An even number of nodes. (b) An odd number of nodes. 

Even though we do not deal with the master node failure in 
the proposed framework, there are several ways in which the 
failure of the master node can be handled. For example, 
backups for the global scheduler can be scheduled on some 
other nodes in the system. When the master node fails, another 
node with a global scheduler becomes a new master. 

IV. IMPLEMENTATION 

This section describes the prototype implementation of our 
framework. We implement the global scheduler (GS) and the 
local scheduler (LS) in a runtime library. Following core 
classes are defined in the library: LS, GS, Task and Worker. LS 
and GS provide scheduling methods, communication routines 
and termination detection function. A sample task class 
implementation for standard matrix multiplication (C=A*B) is 
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shown in Figure 6(a). To detect transient fault, a task is 
executed twice by two workers calling Execute1( ) and 
Execute2( ) respectively, and the results are compared after the 
executions. The two workers write to different buffers c1 and 
c2 which are allocated in Execute( ) and freed in Commit( ). 
We use memory pools to manage the buffers. To support 
permanent fault recovery, two functions, Checkpoint and 
Restart are defined in the class. During checkpointing, each 
task in task queues saves the necessary information to a 
specified structure, TaskInfo. The local scheduler is responsible 
for combining these TaskInfo objects into a checkpoint. 
Checkpoint transmissions and task migrations across the nodes 
are all represented as messages. We use MPICH2 to implement 
the message passing between the nodes. 

Every Worker object starts a new thread and bind it to a 
processor. Pseudocode of the worker thread implementation is 
shown in Figure 6(b). A task is obtained by calling 
LS.Schedule( ) method and executed. After the execution, tags 
are checked to determine whether the double executions of the 
task are finished. Then the thread compares the results to detect 
a fault or continues to ask for a task.  

 
Figure 6.  Pseudocode for (a) task definition and (b) worker thread 

implementation. 

V. EVALUATION 

In this section, we evaluate our framework using the task-
parallelized applications in Table 1. Experiments were 
conducted on a cluster which has 16 multi-core nodes. Each 
node is equipped with 12G memory and a 2.4GHz quad-core 
Intel Xeon E5620 processor which supports 8 hardware threads. 
Each node is connected to a switch on Gigabit Ethernet.  

To measure the performance overhead of our framework, 
we compare our framework, denoted by FTWS (Fault Tolerant 
Work-Stealing), with a non-fault-tolerant framework, denoted 
by HWS (Hierarchical Work-Stealing). HWS is implemented 
by just removing fault tolerance elements in the prototype 
implementation of FTWS. Therefore, comparing FTWS with 
HWS, we can get the fault tolerance overhead. We run the 

benchmarks in a fault free environment. The execution times 
(normalized w.r.t. HWS) are reported in Figure 7. The 
performance overhead of FTWS is 39% (or 1.39x) on average. 
The overhead comes from the compare and commit operation, 
checkpointing and the double executions. The costs of 
compare-commit operations and checkpointing depend on the 
output data of tasks (see Section 3.2). For Fib(n) and Nq(n), 
each task has a small output. In contrast, tasks of Ms(4G), 
MM(12k) and St(12k) produce a lot of data. Therefore, we 
observe the overhead of Fib(52) and Nq(20) is less than that of 
Ms(4G), MM(12k) and St(12k). The double executions would 
make the overhead more than 100% in theory. However, the 
maximum overhead in our experiments is 57%, which can be 
attributed to efficient load balancing and fine-grained task 
parallelism in our framework. In addition, for MM(n) and St(n), 
small input sets reduce the overhead significantly. The 
minimum overhead of 21% is achieved on St(6k). It is due to 
the fact that not all PEs are really used when there are not 
enough tasks produced because of the small input sets. FTWS 
increases PEs usage because each task is executed twice on 
different PEs. 

TABLE I.  BENCHMARK APPLICATIONS 

Benchmark Description 

Fib (n) Recursively compute the nth Fibonacci number. 

Nq (n) The n-queens problem. 

MM (n) Standard matrix multiplication using a loop nest where 
the outermost loop is parallelized (n*n double matrix). 

Ms (n) Parallel merge sort on an integer array of size n. 

St (n) Dense matrix multiplication using Strassen's algorithm 
(n*n double matrix). 

 
To measure the fault coverage of our framework, we run 

the benchmarks 1000 times with small input sets. Pin tool 
instrumentation [22] is used to inject a single bit flip fault in 
each run. The behaviors of program after injecting a fault are 
categorized as Detected, Seg Fault, Timeout and Benign. 
Timeout means the thread which is influenced by the fault has 
not exit when all the tasks are finished. This thread may fall 
into an infinite loop. Note that FTWS could still finish the 
work in this case. Benign means the fault does not affect the 
program’s execution and the program finishes with correct 
output. Our experimental results in Figure 8 show that 62% 
faults are detected and recovered on average. Although 28% 
cause segmentation faults and 6.8% make a thread Timeout, all 
runs successfully complete the work due to the permanent fault 
recovery mechanism in FTWS. Therefore, FTWS provides 100% 
fault recovery coverage in practice. Note that, in theory, the 
fault recovery coverage of FTWS is not 100% because the 
program will finish with incorrect result in the following cases: 
1) two transient faults occur at the same location of the double 
executions of a task; 2) a fault occurs when a faulty task is 
finally re-executed (see Section 3.2). However, the possibility 
of these cases is extremely low. 

To measure the permanent fault recovery overhead, we kill 
the process running on a cluster node to simulate a node crash. 
Figure 9 shows the execution times of the benchmarks in fault-
free case, faulty case with one node crash and faulty case with 
2 nodes crashes. Recovery time from a checkpoint can be 
calculated by subtracting fault-free execution time from faulty 
case execution time. From the figure, we see that the recovery 
overhead is rather small. It is because we use diskless 

class Task : public TaskBase {  … 
 double *a, *b, *c;  // Point to the data of the matrices.  
 double *c1, *c2;   // Point to the buffers for the double executions.  
 int startrow,size; // Portions of the matrices computed in this task. 
 void  Spawn (TaskQueue *tq); 
 Task*  Execute1( ) {  Execute (c1);  } 
 Task*  Execute2( ) {  Execute (c2);  } 
 void  Execute (double *c);  //  c = a*b; 
 bool  Compare ( );   // Compare the data in the buffers c1 and c2. 
 void  Commit ( );    // Copy c1 to c. 
 … 
 TaskInfo*  Checkpoint ( ); 
 Task*  Restart (TaskInfo *tinf); 
}; 

(a) 
while (true) { 
 Task* t = LS.Schedule ( ); 
 if (thread_id%2 == 0)  t->Execute1( ); 
 else  t->Execute2( );  … 
 if ( tag1 && tag2){   // The double executions are finished. 
  if ( true == t->Compare( ))   // No fault occurs. 
   t->Commit( ); 
  else 
   LS.FaultyTQ_push( t );  // Push t to a faulty task queue. 
 }…} 

(b) 



checkpoint/restart and the tasks reloaded from a checkpoint are 
executed in parallel.  

 
Figure 7.  Performance comparison of FTWS with HWS. 

 
Figure 8.  Fault detection distribution. 

 
Figure 9.  Performance of FTWS with permanent faults  

VI. CONCLUSION 

In this paper we propose a fault tolerant work-stealing 
framework (FTWS) for multicore clusters. This framework 
supports both transient and permanent fault tolerance at task 
granularity. FTWS is a pure software technique. Our 
experimental results show that FTWS provides high fault 
coverage at very low cost. As future work, we plan to support 
fault tolerance to the master node failure in our system and 
investigate the behavior of FTWS with some other scientific 
applications. 
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