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Abstract—In this paper, we introduce a novel modeling tech-
nique to reduce the time associated with cycle-accurate simula-
tion of parallel applications deployed on many-core embedded
platforms. We introduce an ensemble model based on artificial
neural networks that exploits (in the training phase) multiple
levels of simulation abstraction, from cycle-accurate to cycle-
approximate, to predict the cycle-accurate results for unknown
application configurations.

We show that high-level modeling can be used to significantly
reduce the number of low-level model evaluations provided that a
suitable artificial neural network is used to aggregate the results.
We propose a methodology for the design and optimization of
such an ensemble model and we assess the proposed approach for
an industrial simulation framework based on STMicroelectronics
STHORM (P2012) many-core computing fabric.

I. INTRODUCTION

Nowadays, finding the best trade-off in terms of the se-
lected figures of merit (such as energy, delay, and area) can be
achieved by tuning a range of application parameters through
sophisticated design space exploration heuristics. However, the
problem is exacerbated by the long simulation time associated
with each configuration of the applications running on a virtual
platform. Several closed-form models have been proposed
to overcome this inefficiency [1]–[4] but we believe that
the research area associated with model aggregation has still
untapped potential.

In this paper, we introduce a modeling methodology that
leverages different simulation models to reduce the overall
simulation time. The methodology is inspired by ensemble
learning [5]. Ensemble methods use multiple models to obtain
better predictive performance than it could be obtained from
any of the constituent models. Indeed, ensemble models can
give better accuracy with respect to a specific model, provided
that a suitable aggregation technique is used [6].

While a pure ensemble is a technique for combining many
weak learners (as defined in [5]) in an attempt to produce a
strong learner, here we are validating a new technique that
attempts to produce a fast predictor by combining many slow
predictors.

Our assumption is to have a Low-Level, highly accurate
model MLL that allows, given an application/architecture
configuration x, to derive an estimate y of a specific system
metric:

y =MLL(x) (1)

Design space exploration techniques based on Response
Surface Models (RSMs) [7] are an important area of research
and development that needs a high level of efficiency in
evaluating a huge number of system configurations. The goal
of these techniques is to find a set of optimal configurations
x that minimize one or more system metrics. Our goal is to
improve state-of-the-art modeling methodology to support the
next generation of design space exploration tools.

Neural networks have been already used effectively as a
surrogate of MLL [7]. The final model is a closed form
expression that can be used to predict with reasonable accuracy
the target system metric provided by cycle-accurate simulators.
However, before being useful, the model must be trained and
the training time can be long depending on the target accuracy.

Our goal is to combineMLL with a high-level (thus faster),
but less accurate, model MHL:

ŷ =MHL(x) (2)

We expect that, ifMHL is somewhat correlated withMLL

(or with the samples that have been used for training it), then
it can be used to improve the prediction accuracy attainable
withMLL (given the same amount of simulation time needed
for the training phase). Dually, it can be used to decrease the
simulation time associated to a certain degree of accuracy.

The main contribution of this paper is to combine both
MHL and MLL by applying techniques borrowed from ma-
chine classification, statistical analysis of variance and multi-
objective analysis. Our goal is to exceed the speed/accuracy
trade-off attainable with state-of-the-art methods such as those
presented in [7].

As all statistical modeling techniques, our modeling
methodology makes sense only when the aggregated models
present certain properties. In particular, we assume that there
exists a non negligible correlation between all the input models
and the target system metric. This assumption has been exper-
imentally verified for MHL and MLL simulation platforms
used in this work by means of a correlation test. The reported
correlation is indeed very strong and it has been exploited in
the ensemble model to speed up the overall exploration phase
while maintaining the accuracy.
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Conventional modeling
Randomly chosen configurations are simulated 
through the low level simulator; the evaluated 
system metrics are then used to train a neural 
network. Prediction is then possible for all the 
configurations in the design space.

neural training
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(training set)

Ensemble modeling
Randomly chosen 
configurations are 
simulated at high and low 
abstraction levels. 
Configurations are 
classified and used to train 
the neural network.
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Fig. 1. Conventional modeling (left) compared to the proposed ensemble modeling (right).

The paper is organized as follows. Section II introduces
the proposed ensemble modeling methodology, while Section
III describes the experimental setup and the experimental
results. Section IV summarizes some relevant previous work
and finally Section V reports some concluding remarks.

II. A METHODOLOGY FOR ENSEMBLE MODELING OF
APPLICATIONS AND ARCHITECTURES

The original motivation behind this work is the following:
is it possible to improve closed-form models, such as the one
considered in [7], by using an ensemble of abstraction levels?
Ensemble modeling is gaining more and more momentum in
various fields related to data mining [5]; along this direction,
it seemed reasonable to us considering model “stacking” to
improve the accuracy of the final model, as defined in [8].

While conventional stacking is meant to improve only the
accuracy of the final model by combining the original trained
models, our technique tries to combine models that can provide
a good trade-off in terms of simulation time (used for the
training) and accuracy. Thus we will extend the conventional
notion of ensemble learning to multiple dimensions, such as
efficiency and accuracy level.

It is widely understood that different abstraction models
(cycle-accurate, cycle-approximate, functional) can provide
different overlapped views of the same simulated platform.
There evidently exists some correlation among the various
models that can be leveraged to improve the speed of the
overall prediction phase. The problem is, however, how to best
combine each model to reduce the simulation time (which, for
closed-form models, is typically associated with training time).

Proposed structure for ensemble modeling. Conventional
modeling tries to overcome lengthy simulations by using
closed form models (such as neural networks [7], see Figure
1). In this scenario, low level simulations are used to train the
model by tuning its structure to minimize a certain measure
of error. The error can be computed by considering either
configurations not belonging to the training set or belonging to
a bigger set (potentially as large as the overall design space).

Closed form models are ideally very light given their
straightforward mathematical representation. The main draw-
back, however, is due to the time needed to simulate the
training samples. In our approach, we assume that MLL has
been already used to derive a suitable neural surrogate meta-
model. As can be seen in Figure 1, the final goal of the model
is to make educated predictions about the remaining set of
configurations, by resorting to a selected random subset of
training simulations.

In this paper, we will show that a conventional meta-model
can be extended to an ensemble model that, taking into account
the information coming from a higher level of abstraction
MHL, provides either better accuracy or better performance
(see again Figure 1). Although the meta-model currently used
in conventional modeling could be seen as another “higher-
than-high” level of abstraction, in this paper we consider it
only as an intermediate step towards ensemble modeling.

How to combine models to improve low level simulation
accuracy and/or speed. The methodology is based on the
following phases:

• Identify the structure of the ensemble model. In the
case of the neural network, this consists of identi-
fying the number of hidden layers and the number
of neurons, by analyzing the associated design space.
Since this problem can be of exponential complexity,
suitable heuristics should be applied.

• Identify the correct percentage of training samples
to be used for both MHL and MLL and the overall
training set size. This should be done by considering
the relative length of simulation of each configuration,
which might depend on architecture, software resource
usage and/or application-level parameters.

• Characterize statistically the distribution of the
prediction errors and assess the statistical properties
of the model.

As outlined above, we are interested in improving state-
of-the-art conventional modeling, thus, in this paper, we will
extend traditional approaches based on feed-forward neural
networks [7].



In our methodology for ensemble modeling, we are con-
sidering the following parameters:

• The number of hidden layers and the number of
neurons per layer in the NN setup, which change
the internal geometry of the NN.

• The composition of the training sets in terms of
MLL and MHL configurations. This is considered
in proportion to the total number of configurations of
the application design space.

We formally define a design point (either produced by
MLL or MHL) by a tuple:

c = 〈α,π〉 (3)

where:

• α is the array of values for application parameters
(also referred to as input configuration);

• π is the array of metric values associated to the input
configuration α.

The possible values for α depend on the design space for
the specific application to be explored.

In order to distinguish between MLL or MHL points,
we apply a coloring technique. Beside the application input
parameters, we add a flag parameter (either 0 or 1) to the
input configuration of each design point.

c = 〈α′,π〉 (4)

α′ = [α0, . . . , αn−1, φ] (5)

where φ is the flag to classify the two types of training
configurations:

c = 〈[α0, . . . , αn−1, 1],πLL〉 (6)

c = 〈[α0, . . . , αn−1, 0],πHL〉 (7)

We expect the NN model to be able to learn the common-
alities and differences from the information gathered from the
two simulation types; in practice, we expect it to learn the
correlation – if any – between type 0 and type 1 metrics.

III. APPLICATION OF THE PROPOSED ENSEMBLE MODEL
AND EXPERIMENTAL RESULTS

In this section we present a methodology to assess the
proposed ensemble model. An industrial multi-cluster embed-
ded platform was chosen as reference platform because the
complexity of multi-cluster architectures can be modeled at
different abstraction levels. At the same time, the customiza-
tion space for applications targeted to this type of device is too
large to think about profiling all possible configurations on a
cycle-accurate simulator.

We will show that an ensemble model based on artificial
neural networks (NNs) provides a significant reduction of the
simulation time, while still guaranteeing results close to the
low level simulation model.

Target architecture and platform simulator. The target
platform for the applications used in this work is STMicroelec-
tronics STHORM, a low-power many-core computing fabric
also known as Platform 2012 [9]. STHORM consists of a
Globally Asynchronous Locally Synchronous (GALS) fabric
of clusters (4 in our configuration), connected through an asyn-
chronous global Network-on-Chip (GANOC). The STHORM
cluster is composed of a multi-core computing engine, called
ENCore, and a cluster controller. The ENCore cluster hosts
16 processing elements (PEs); the base processing element of
the ENCore engine is a STxP70-V4 processor, a dual-issue
customizable 32-bit RISC core of STMicroelectronics with a
32-bit floating-point unit.

STHORM SDK (version 2012.2) includes a simulation
platform that can be configured in terms of simulation speed
and of accuracy with regard to the hardware architecture. We
selected the posix-posix simulation model for MHL and the
posix-xp70 one for MLL:

• In posix-posix, the host processor and each STHORM
PE are modeled as POSIX threads and the STHORM
memory hierarchy is also modeled. Application and
OpenCL runtime code run natively on the workstation
for both host and STHORM side.

• In posix-xp70 the host code (application and runtime)
is executed natively on the workstation in a POSIX
thread. The STHORM device is modeled as an archi-
tecture accurate platform based on xp70 Instruction
Set Simulator (ISS), on which the OpenCL runtime
and the application kernel execution are simulated.

Benchmark applications. Our approach being application-
specific, we selected three applications for image processing
implemented with OpenCL 1.1 APIs [10] and targeted to
STHORM: FAST corner detection, Scale-Invariant Feature
Transform (SIFT) and MultiView (MV) Stereo-Matching.
These applications were profiled on the STHORM simulation
platform to generate the databases of configurations corre-
sponding to MHL and MLL .

FAST, SIFT and MV are all characterized by a high degree
of parallelism, however they differ in terms of complexity and
customizability they provide. The customization is enabled by
a set of application parameters, that can be of two types:

• application specific parameters, which affect both the
Quality-of-Service (QoS) provided by the application
and the computational load;

• platform resource parameters, which impact on the
OpenCL runtime (kernel scheduling and memory ac-
cess patterns), without affecting the quality of appli-
cation results.

The possibility to change the platform resource parameters
allows for improved application portability and optimization
for the specific target device.

The main characteristics of the three applications are
summarized in Table I. FAST and SIFT have the same design
complexity in terms of number of parameters. However, while
in SIFT the two parameters are both application specific,
FAST also exposes a parameter that changes the parallelization
degree on the fabric clusters. MV has a larger design space
(six input parameters) and 4 out of 6 parameters affect the
OpenCL runtime. For all test applications, we consider the



metric cl-cycles, which represents the number of CPU cycles
for execution of the OpenCL kernels. This metric depends on
both application specific and platform parameters.

TABLE I. DESIGN SPACE EXPLORATION FOR TARGET APPLICATIONS.

FA
ST

SI
FT

M
V

Size of design space 64 20 486
Time (h) for complete LL simulation 6.75 12.58 603.15
Time (min) for complete HL simulation 0.55 0.73 44.48
Platform resource parameters 1 0 4
Application-specific parameters 1 2 2

Design space of the ensemble model and preliminary
correlation analysis. Table II shows the selected configuration
parameters of the neural network model. The LL% and HL%
values represent the percentages of design space that are
explored using MLL and MHL, respectively, to estimate the
clock cycles (cl-cycles). The set of mixed configurations (in
terms of LL% accurate and HL% approximate samples) is used
for training and validation of the NN model. Then, by querying
the NN model, it is possible to predict the clock cycles (cl-
cycles) for those configurations that were not simulated on
MLL during the first phase. The prediction error for a specific
NN configuration is calculated as the relative Root Mean
Square (RMS) error with respect to the solutions obtained by
using only MLL.

Fig. 2 shows a correlation analysis between the parameters
presented in Table II and the simulation time and RMS error
associated with the proposed ensemble model. The area as
well as the color intensity of the circles in the plot represent
the absolute value of correlation, while the color (blue or
red) indicates whether the correlation is, respectively, positive
or negative (indicated also by the ‘+’ or ‘–’ sign in each
cell). The negative correlation between “Error” (RMS), on the
one hand, and both “HL%” and “LL%”, on the other hand,
confirms that it is possible to improve prediction accuracy by
increasing the size of the training set. This is verified both
for MHL and MLL training samples, which accounts for the
adoption of an ensemble model. Indeed, while reducing the
RMS prediction error, the utilization ofMHL simulations has
a very low impact on the simulation time, which is confirmed
by the low correlation between “HL%” and “Sim. Time”.
Although derived from the MV application, this plot reveals
some general results observed also for the other applications
(not shown here because of space limitations).

Accuracy analysis of the ensemble model. In Fig. 3, the
different configurations for the NN model are plotted with
reference to the simulation time (relative to the total time
needed to simulate the entire application design space on the
low level simulator) and the associated RMS prediction error.
The area of the circles is proportional to the number of neurons
in the NN: we can observe that medium-small networks best
fit our model and allow for low prediction error.

This result is confirmed by the histogram in Fig. 4, which
shows the number of NN configurations for different levels
of RMS prediction error. The configurations are assigned to
one of the three histograms according to the number of layers

TABLE II. PARAMETERS FOR NN MODEL TUNING.

Test # Layers # Neurons HL% LL%
FAST 1-5 1-5 0,50,100 2,4,6,8,10
SIFT 1-5 1-5 0,50,100 5,10,15,20,25,30
MV 1-5 1-5 0,50,100 2,4,6,8,10
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Fig. 2. Correlation analysis applied to the neural network model for the
MultiView Stereo-Matching application.

in the NN. In this plot, the highest density distribution for
low levels of RMS error corresponds to NN configurations
with only one hidden layer. In general, the best configuration
we have consistently seen in our experiments is a NN with 1
hidden layer of 5 neurons.

In Fig. 3, the color intensity expresses the percentage of
MHL simulations used for training the NN. Since the cycle-
approximate simulator is much faster than the cycle-accurate,
the time contribution from adding MHL simulations is negli-
gible: thus, the overall simulation time is almost proportional
to the number of simulations on MLL.

Analysis of variance of the results. Fig. 5 shows the
distribution of NN configurations for MV, in relation to the
percentage of high-level samples used for training the en-
semble model. The configurations with the same number of
high-level training samples (either 0%, 50% or 100%) are
grouped together in the same vertical window. The vertical
gray bar indicates the average RMS error in each group: we
observe that by passing from a purely cycle-accurate model
(first window from left) to an ensemble model with 50% high-
level training samples, the average RMS error on the prediction
of metric cl-cycles decreases from 0.83 down to 0.51. At the
same time, as seen in Fig. 3, the delay due to additional high-
level simulations is negligible compared to the time required
for cycle-accurate simulations.

The box-plot diagrams in Fig. 6 show distribution and
median of the RMS prediction error on metric cl-cycles for
FAST and SIFT. Each diagram contains three distributions,
corresponding to three different percentages ofMHL samples
in the training set. For SIFT the improvement of prediction
accuracy is sound, while for FAST we only notice a reduction
of RMS error when increasing the number of approximate
training samples from 0 to 50%.

We applied the non-parametric Kruskal-Wallis analysis of
variance (ANOVA) to assess whether the introduction ofMHL

training samples is statistically significant for improvement of
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Fig. 4. Distribution of neural network model configurations
according to the number of hidden layers for the MultiView Stereo-
Matching application: density distribution vs. RMS prediction error.

TABLE III. KRUSKAL-WALLIS ANALYSIS FOR SIGNIFICANCE OF LL%
TRAINING SAMPLES ON RMS ERROR.

Test chi-squared degree of freedom p-value
FAST 0.0028 2 0.998
MV 47.686 2 4.4e-11
SIFT 10.308 2 0.006

the model prediction accuracy. From Table III we deduce that
the distributions observed for MV and SIFT can be considered
significant because of the low p-value1, while this hypothesis
is not verified for FAST (p-value ≈ 1).

Final considerations. The reported experimental results
show that the proposed ensemble model enables to achieve up
to 30% improvement given the same simulation time required
for a pure cycle-accurate model. Alternatively, the same level
of accuracy could be achieved by replacing part of the cycle-
accurate training set with application configurations profiled
on a fast simulation platform, with a one order of magnitude
speed-up of the design exploration.

IV. PREVIOUS WORK

Our work is mainly targeted to improving the simulation
speed of configurable models that are useful for design space
exploration (DSE). Improving DSE can be addressed in two
complementary ways, by either minimizing the number of
configurations simulated or the time required to evaluate each
configuration.

On one side, exhaustive exploration has been carried out
by clustering dependent parameters [11], sensitivity analysis
of the design space [12], design space pruning [13]–[16],
analytical meta-models [17], statistical simulation [18], opti-
mization algorithms such as Pareto simulated annealing [19],
evolutionary algorithms [20].

1The p-value indicates the probability that the observed difference in means
is due to chance (instead of a systematic effect).

On the other side, the reduction of the time for the
evaluation of each configuration has been addressed with linear
and spline regression [2], [3] and neural networks [4], [7],

This paper leverages these previous works and, in partic-
ular, extends neural-network based methodologies with tech-
niques borrowed from ensemble modeling.

V. CONCLUSIONS

Traditionally, high-level models are used to speed up
the simulation process at the expense of profiling accuracy.
Ensemble neural network models that have been trained with
both low-level and high-level simulations (mixed training set)
show better accuracy with respect to conventional models
(training set consisting of only low-level samples). This result
can be achieved because, given a time window, ensemble
neural network models enable to better exploit that time in
terms of high-level (fast) and low-level (slow) simulations.
The accuracy improvement reported by using ensemble neural
network models has been up to 30% for the target set of
embedded applications running on the STHORM platform.
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