
Multi-level Phase Analysis for Sampling Simulation
Jiaxin Li∗†, Weihua Zhang∗†, Haibo Chen‡, Binyu Zang∗

∗Parallel Process Institute, Fudan University
Email: {lijiaxin, zhangweihua, byzang}@fudan.edu.cn

†The State Key Lab of ASIC & System, Fudan University
‡Institute of Parallel and Distributed Systems, Shanghai Jiaotong University

Email: haibochen@sjtu.edu.cn

Abstract—Extremely long simulation time of architectural sim-
ulators has been a major impediment to their wide applicability.
To accelerate architectural simulation, prior researchers have
proposed representative sampling simulation to trade small loss
of accuracy for notable speed improvement. Generally, they use
fine-grained phase analysis to select only a small representative
portion of program execution intervals for detailed cycle-accurate
simulation, while functionally simulating the remaining portion.
However, though phase granularity is one of the most important
factors to simulation speed, it has not been well investigated and
most prior researches explore a fine-grained scheme. This limits
their effectiveness in further improving simulation speed with
the requirement of increasingly complex architectural designs
and new lengthy benchmarks.

In this paper, by analyzing the impact of phase granularity
on simulation speed, we observe that coarse-grained phases can
better capture the overall program characteristics with a less
number of phases and the last representative phase could be
classified in a very early program position, leading to fewer
execution internals being functionally simulated. By contrast,
fine-grained phases usually have much shorter execution intervals
and thus the overall detailed simulation time could be reduced.
Based on the above observation, we design a multi-level sampling
simulation technique that combines both fine-grained and coarse-
grained phase analysis for sampling simulation. Such a scheme
uses fine-grained simulation points to represent only the selected
coarse-grained simulation points instead of the entire program
execution, thus it could further reduce both the functional and
detailed simulation time. Experimental results using SPEC2000
show such a framework is effective: using the SimPoint method
as baseline, it can reduce about 90% functional simulation time
and about 50% detailed simulation time. It finally achieves
a geometric average speedup of 14.04X over SimPoint with
comparable accuracy.

I. INTRODUCTION

Architecture simulators are indispensable in evaluating new
architectural designs. Despite their advantages of low cost
and high flexibility, extremely long simulation time limits
their wide applicability. Therefore, reducing simulation time
has become a crucial issue in designing such simulators [1].
Among prior solutions, representative sampling simulation
techniques, which exploit cyclic (phase) behavior patterns in
programs, have been shown to be extremely effective to reduce
simulation time [1].

In a representative sampling simulation technique, a pro-
gram’s execution is first divided into non-overlapping intervals,
each of which is a contiguous portion of program execution.

Then, such intervals with similar behavior (e.g., similar IPC,
and/or cache miss rates) are classified into the same phase.
After the phase classification, a small representative portion
of intervals (often referred to as simulation points) is selected
based on their phase (i.e., cyclic) behavior. These selected
simulation points are simulated in cycle-accurate detail, and
the remaining portion is only functionally simulated, which
is known as fast-forward simulation. The granularity (or the
size) of the intervals is referred to as the phase granularity in
this study.

Although sampling techniques have been widely used, they
still need to be further improved to satisfy the increasing
demand of emerging architectural designs. Nowadays, ar-
chitectural designs have become more complex with more
system configurations and design tradeoffs to be evaluated.
This situation has been further exacerbated as new benchmarks
have become increasingly more complex with longer execution
time. For example, while the simulation time of SPEC2000
could be reduced by about 15X using the SimPoint method, the
simulation time of SPEC2006 becomes about 10X longer than
that of SPEC2000. All these point to a dire need for further
improvement in simulation speed while holding the simulation
errors in check.

For a representative sampling simulation method, the speed
and accuracy are mainly affected by two key factors: phase
granularity and the metrics used to classify phase behavior [2].
Phase granularity can be either fine-grained or coarse-grained.
Since loops are the most time-consuming part of a program
execution, and an iteration of a loop is a repetitive execution
of the loop body with a similar behavior, a loop iteration cor-
responds roughly to an interval mentioned above. The average
size of iteration in outmost loops of all SPEC2000 benchmarks
is about 2,000M (million) instructions. Hence, in this study,
we consider an interval size in the range of 1M to 1,000M
instructions as fine-grained, whereas, an interval size in the
range of 1,000M instructions and above as coarse-grained.
The metrics are critical program characteristics that identify
the repetitive behavior of a program execution. They could be
working set oriented, e.g. basic-block vectors (BBVs) [3][4]),
or data access oriented, e.g. memory reuse distance [5].

Although the phase granularity has been one of the most
important factors in a representative sampling simulation
method [2], it has not been well investigated. Until now,
it is still unclear which granularity is a better choice and978-3-9815370-0-0/DATE13/ c©2013 EDAA



how to exploit the advantages of different granularities. Most
researchers simply applied a fine-grained strategy because each
of the selected intervals requiring time-consuming detailed
simulation could be much smaller compared to a coarse-
grained scheme.

In this paper, we present a comprehensive study on the
granularity of representative sampling techniques, and provide
some new insights into the choice of a phase granularity:
1) Coarse-grained phases can better capture the overall pro-
gram characteristics with a less number of phases and the
last representative phase could be classified in a very early
program position, leading to fewer execution internals being
functionally simulated. 2) Fine-grained phases usually have
much shorter execution intervals and thus the overall detailed
simulation time could be reduced.

Based on the above observation, we design a multi-level
sampling simulation technique that combines both coarse-
grained and fine-grained phase analysis for representative sam-
pling simulation. We have designed and implemented a multi-
level phase analysis framework. In this framework, we first
design a coarse-grained approach called COASTS (COarse-
grained Accurately Sampling Technique for Simulators) that
expands the size of each simulation point, i.e., making it more
coarse-grained. After selecting the simulation points through
COASTS, we apply a fine-grained sampling method to further
re-sample the selected coarse-grained simulation points. Such
a multi-level scheme has the following advantages:

• Compared to fine-grained phases, the coarse-grained ones
can better catch the overall characteristics and hide in-
stant fine-grained changes, which could lead to fewer
coarse-grained phases and the last representative phase
could be classified in a very early program position. As
a result, the coarse-grained approach could be used to
reduce the functional simulation time, which has become
one of time-dominant portions in a fine-grained represen-
tative sampling simulation method.

• After selecting the coarse-grained simulation points,
we could further re-sample those coarse-grained ones
through a fine-grained scheme. Since those fine-grained
points are only used to represent the selected coarse-
grained simulation points instead of the entire program
execution, combining the coarse-grained approach can
lead to less detailed simulation time compared to purely
fine-grained sampling simulation methods.

Experimental results using SPEC2000 show that such a
framework is effective. When using SimPoint, one of the
most well-known representative sampling techniques, as the
baseline, our approach can reduce about 90% functional simu-
lation time and about 50% detailed simulation time. It achieves
a geometric average speedup of 14.04X over the SimPoint
method while still maintaining comparable accuracy. Based on
our framework, the simulation of SPEC2000 can be finished
in about half a day (about 15 hours).

II. RELATED WORK

Since most programs exhibit repetitive behavior over many
different metrics, phase analysis has been widely used to i-
dentify repetitive program behavior patterns for reconfigurable
architectural design, dynamic optimization and simulation
acceleration. In a phase analysis, phase granularity and the
metrics used for phase selection are two key considerations [2].
Here, we give a brief overview on representative sampling
simulation from these two perspectives.

As one of the most representative sampling techniques, Sim-
Point [3][4] divides program execution into non-overlapping
fixed-length intervals. It uses BBVs as the metric for identify-
ing phases. The method in [4] selected early simulation points
through constraining the position of the last cluster (EarlySP
metric). However, this method can only reduce some func-
tional simulation time. Moreover, its setting configurations
are sensitive to both benchmarks and interval length. In [6],
Dhodapkar et al. showed that BBV performs better than other
instruction-execution related metrics, such as the working set.
Lau et al. [7] showed that, using loop frequency vectors as
a metric performed almost as well as BBV in accuracy and
could also yield fewer distinct phases that could cut down
the number of simulation points. Although there are some
discussions on granularity in [8], they do not exploit multi-
level phase analysis for sampling simulation. Therefore, in
their later work [9], they still exploited fine-grained phase
behavior for sampling simulation. The software phase marker
(SPM) [9] method is a BBV-based technique and selects fine-
grained phases according to loop or procedure boundaries as
variable-length intervals. It has about the same simulation time
as 10M SimPoint with a comparable error rate.

III. MOTIVATION

Although the phase granularity has been one of the most
important factors in a representative sampling simulation
method [2], until now, it is still unclear which granularity is a
better choice for representative sampling simulation methods.
In this section, we will discuss the limitation of only consider-
ing fine-grained phase and the advantages of applying multi-
level phase analysis for sampling simulations. Then, we will
give out our multi-level sampling simulation approach.

A. Limitation of Fine-grained Sampling

To reduce detailed simulation time, prior sampling tech-
niques, such as SimPoint [3] and the SPM method [9], tend
to choose fine-grained phases and to constrain the maximum
interval size. However, when a program is spilt into finer-
grained intervals, more sensitive changes in program behavior
will be exposed, and more phases would be identified even its
overall proportion in the entire program is very low (i.e., not
so important). Consequently, more simulation points will be
selected. Some of them will usually locate close to the end
of the program execution. Hence, the simulation of program
execution will need to be extended to a substantially larger
portion of the program execution to cover the ending phases.



In such cases, even though using finer-grained phases could re-
duce the detailed simulation time of each simulation point, the
total amount of simulated instructions could be substantially
increased, which consequently increases the total simulation
time (both functionally and detailed).

B. Observation and Motivation

To gain insight into possible solutions to further improve
the efficiency of sampling simulation method, we studied the
behavior of coarse-grained phases in SPEC2000 and found
some interested characteristics, which could be exploited to
further improve the efficiency of sampling simulation:

Reducing Functional Simulation Time: Based on the char-
acteristics of coarse-grained phase distribution in SPEC2000,
we found that the number of coarse-grained phases is very
small. For SPEC2000, the average coarse-grained phase num-
ber is three and only four benchmarks are larger than three (4
for gzip, 6 for equake and 5 for fma3d). Furthermore, the
position 1 of last coarse-grained simulation point is very small
(i.e., early). For example, the average position for SPEC2000
is about 17% and only three benchmarks are larger than
30% (86% for gcc, 47% for art and 36%for bzip2). Based
on this observation, we can select coarse-grained simulation
points to optimize the functional simulation time in a sampling
simulation approach.

0 2000 4000 6000 8000 10000 12000 14000

−0.5

0

0.5

x

B
B

V 
PC

A

0 20 40 60 80 100 120

0.2

0.4

0.6

0.8

x

B
B

V 
PC

A

(b) lucas with COASTS

Simulation Point

(a) lucas with 10M SimPoint

Fig. 1. This example illustrates how different granularities influence the
selection of simulation points. The X-axis is the interval number (numbered
according to its execution order), and the Y-axis is the value of first principal
component of BBV in each interval. The check marks are the positions of the
selected simulation points.

Here, we use a benchmark in SPEC2000, lucas, as an
illustrating example. We collect the BBVs of each fixed-
length interval of 10M instructions and that of our coarse-
grained approach, respectively. Since BBVs are a kind of
multi-dimensional data, we use Principal Components Analy-
sis (PCA) [10] to extract their first principal component. Those

1We define the position of an interval in a program to be the instruction
number before its last instruction dividing the total instruction number in the
program.

PCA values are shown on the y-axis in Figure 1. The interval
numbers are numbered according to their execution order,
which are shown in the x-axis. As shown in the figure, the
curves of the fine-grained method are very chaotic with violent
changes. These thus lead to more phases being identified
and more simulation points being selected close to the end
of program execution (shown as the check marks in Figure
1(a)). In contrast, the curves of the coarse-grained approach
are very smooth. Thus, much fewer simulation points at very
early stages of the program execution are selected (shown in
Figure 1(b)). As a result, a very large portion of program
execution need not to be functionally simulated and the overall
simulation time could be reduced.

Coarse-grained
Simulation point

Coarse-grained
Simulation point

Fine-grained
Simulation point

Fine-grained
Simulation point

(a) while a coarse-grained sampling method is used

(b) while a multi-level sampling frame is used

Functional
Simulation
Detail

Simulation

Fig. 2. This example illustrates how multi-level phase analysis framework
works.

Reducing Detailed Simulation Time: Furthermore, as
shown in Figure 2, after selecting the coarse-grained simu-
lation points, we could apply a fine-grained sampling method
again to those coarse-grained simulation points. Since those
fine-grained simulation points are only used to represent the
selected coarse-grained simulation points instead of the entire
program execution, less fine-grained simulation points will be
required, which can further optimize the detailed simulation
time compared to pure fine-grained methods. Therefore, in a
representative sampling simulation method, such a multi-level
method could have the advantages of both coarse-grained and
fine-grained approaches.

Since sampling methods tend to select the most representa-
tive parts to represent the entire execution of a program, it can
guarantee the simulation accuracy to a certain level. Therefore,
sampling twice in our multi-level sampling approach won’t
lead to more deviation. Our evaluation results confirm that the
accuracy of our multi-level scheme is comparable to a fine-
grained scheme.

IV. DESIGN OF MULTI-LEVEL SAMPLING SIMULATION

In this section we will describe the design of our multi-
level sampling framework. In this framework, we first select
coarse-grained simulation points based on our coarse-grained
sampling algorithm, which is referred as to COASTS. Then,
we re-sample those coarse-grained simulation points to perfor-
m multi-level sampling via a fine-grained sampling algorithm.

A. Coarse-grained Sampling (COASTS)

For presentation clarity, we will refer to an interval instance
as an iteration instance. Moreover, a phase instance is referred



to as one occurrence of the phase. It could consist of multiple
interval instances. As it could lead to a periodic behavior when
the program is in a loop or in a recursive procedure, we refer
them to as cyclic program structures in the rest of the paper.

In the first-level sampling stage, we try to obtain larger
iteration sizes (or interval sizes). Hence, we tend to choose
outer loops or shallow recursive calls to form coarse-grained
intervals, instead of using inner ones with constrained interval
sizes as in the SPM method [9]. Although a cyclic program
structure exhibits some repetitive behavior, its iterations cannot
be simply classified into a single phase because branches and
memory accesses could lead to different dynamic behavior.
Therefore, after choosing the appropriate level of a cyclic
program structure, we classify the different iterations in the
cyclic program structure into different phases based on the
metrics. In this paper, we still choose BBVs [3] as the metrics
for phase identification since BBV performs better than other
instruction-execution related metrics, such as the working set
as analyzed in [6]. Briefly, our approach requires the following
three steps:

• Collection of Boundary Information: Currently, we use
the similar method in [9][11] to collect the boundary in-
formation from dynamic profiling. Based on the profiling
information, we first discard cyclic program structures
with coverage less than 1%, since these contributed little
to the final simulation results.

• Collection of Metrics Information: Metrics information,
i.e., BBVs, is collected for each iteration instance of
the selected cyclic program structures through a profiling
stage. After the original information is collected, BBVs
are randomly projected into their respective 15-dimension
vectors. Such projections reduce computation complexity
and storage requirement for the trace file. They also
preserve behavior information for phase selection. Such
a projection is widely used in prior techniques, such as
SimPoint [3]. Then, BBV of each iteration instance are
concatenated to form a signature vector. Such signature
vectors are then normalized by having each element
divided by the sum of all elements in the vector.

• Coarse-grained Sampling: After the metrics information
is collected, we apply the k-means clustering method [3]
for coarse-grained phase classification. Since the number
of coarse-grained phase is small, the default Kmax pa-
rameter for our coarse-grained phase clustering is three.
Once the coarse-grained phases are classified, we choose
the earliest instance of each coarse-grained phase as its
representative (i.e., coarse-grained simulation point).

B. Fine-grained Sampling

Although our coarse-grained sampling method used in the
first level sampling can effectively reduce the functional sim-
ulation time by decreasing the number of simulation points,
the number of instructions in each simulation point can be
increased. To further optimize the detailed simulation time
in chosen coarse-grained simulation points, our multi-level
sampling framework further re-sampling those coarse-grained

simulation points in the second-level sampling via a fine-
grained sampling method. If the size of a coarse-grained
simulation point is larger than a threshold, we apply a fine-
grained sampling method to re-sample it. Through selecting
finer-grained simulation points within the coarser-grained sim-
ulation point, it can gain the advantages of both coarse-grained
and fine-grained approaches.

V. EXPERIMENTAL RESULTS

We evaluate our approach based on SimpleScalar tool set
3.0 [12] and SPEC2000 benchmarks with reference inputs for
evaluation. The reasons we still choose SPEC2000 instead of
SPEC2006 are that: First, The default parameters of the Sim-
Point method [3] are set based on the analysis on SPEC2000,
so it is more reasonable to compare our approach with the
SimPoint method using SPEC2000 benchmarks as inputs.
Moreover, as analyzed in [13], the programs in SPEC2006
have similar phase behavior with those in SPEC2000, even
the distribution of weights for simulation points.

TABLE I
CONFIGURATIONS

Part A: Base Configuration
Parameter Value
Out-of-Order Issue 8-way decode, issue, commit width
ROB/LSQ Entries 128/64
Registers 32 integer, 32 floating point
Functional Units 8-integer ALU, 4-load/store units, 2-FP adders,

2-integer MULT/DIV, 2-FP MULT/DIV
Instruction Cache 8k 2-way associative, 32 byte blocks, 1 cycle latency
Data Cache 16k 4-way associative, 32 byte blocks, 2 cycle latency
Unified L2 Cache 1Meg 4-way associative, 32 byte blocks, 20 cycle latency
Branch Predictor Combined, 8K BHT Entries
Memory Latency 150, 10 cycle access (first, following)

Part B: Sensitivity Analysis Configuration
Parameter Value
Out-of-Order Issue 8-way decode, issue, commit width
ROB/LSQ Entries 128/64
Registers 32 integer, 32 floating point
Functional Units 6-integer ALU, 2-load/store units, 6-FP adders,

4-integer MULT/DIV, 4-FP MULT/DIV
Instruction Cache 32k direct mapping, 32 byte blocks, 1 cycle latency
Data Cache 128k 2-way associative, 32 byte blocks, 1 cycle latency
Unified L2 Cache 1Meg 4-way associative, 64 byte blocks, 23 cycle latency
Branch Predictor Combined, 16K BHT Entries
Memory Latency 330, 20 cycle access (first, following)

To compare our results with those from SimPoint [3], the
base machine configuration of the simulation is the same as
that in [4] and [9], which is shown in Table I (Part A). To
test the architecture sensitivity of our approach, we employ
another architecture configuration shown in Table I (Part B).
This configuration includes a larger cache size and a longer
memory latency. CPI, L1 Cache hit rate and L2 Cache hit
rate are used to measure the accuracy. The baseline data
are collected from complete execution of each benchmark
through the original version of sim-outorder. We then collect
simulation results by simulating the simulation points selected
by our approach and those by the current SimPoint release
version (10M fixed length, Kmax = 30). The reasons why we
select 10M SimPoint are as follows: First, 10M SimPoint is
the recommended interval length and is used in most of the
SimPoint related papers; Second, although the SPM method



applied VLIs in it, we cannot compare our results with it
directly because it is not implemented in current release of
SimPoint. However, comparing with 10M SimPoint will not
influence the final conclusions as the SPM method has about
the same simulation time as 10M SimPoint with a comparable
error rate [9]. Since the default Kmax of 10M SimPoint is 30,
we use 300M as the re-sampling threshold as described in
Section IV-B(which is calculated as 10M*30=300M.)

In the following parts of this section, we will first present
the experimental results of first-level sampling using COASTS
alone and then illustrate the effect of our multi-level sampling
framework via including second-level sampling.

A. Evaluation for COASTS

 0

 5

 10

 15

 20

 25

 30

gzip
gcc

crafty
ammp

eon
vortex

bzip2
twolf

sixtract

art equake

mesa
swim

fma3d

lucas
applu

facerec

wupwise

apsi
mgrid

AVG.

Sp
ee

du
p 

C
om

pa
re

d 
to

10
M

 S
im

Po
in

t

4050.68 52.30 48.91

6.78

Fig. 3. Speedup of COASTS over SimPoint

TABLE II
DEVIATION COMPARISON

Config A Config B
CPI AVG Worst AVG Worst
COASTS 0.93% 6.42% 0.66% 4.79%
SimPoint 1.43% 10.03% 2.35% 17.86%
Multi-level Sampling 1.88% 13.95% 1.53% 13.60%
L1 Cache Hit AVG Worst AVG Worst
COASTS 0.03% 0.75% 0.02% 0.89%
SimPoint 0.03% 0.25% 0.05% 0.26%
Multi-level Sampling 0.10% 1.89% 0.11% 1.90%
L2 Cache Hit AVG Worst AVG Worst
COASTS 0.13% 2.51% 0.18% 2.62%
SimPoint 1.32% 23.32% 2.83% 16.22%
Multi-level Sampling 1.35% 6.62% 1.92% 14.12%

Figure 3 and Table II show the speedup and the deviation,
respectively, using COASTS approach and 10M SimPoint.
Average results (AVG) use the geometric mean. Due to the
space constraint, we only give the average deviation results
and the deviation results in the worst cases. In Table II, the
AVG is the average deviation results and the Worst is the
worst deviation results. From the average results, our COASTS
approach (first-level sampling) showed a speedup of 6.78X
while maintaining comparable accuracy.

TABLE III
SIMULATION POINTS STATISTICS.

Mean Mean Mean Mean
Algorithm Interval Sample Detail Functional

Size (inst.) Number (inst.%) (inst.%)
COASTS 444M 1.6 0.37% 2.21%
10M SimPoint 10M 20.1 0.09% 93.76%
Multi-level Sampling 16M 7.3 0.05% 5.06%

To identify the root cause of the faster simulation, we
compare a couple of metrics in Table III. In Table III, Mean
Interval size is the geometric mean of interval lengths in
different benchmarks, Mean Sample number is the geometric
mean of the number of selected simulation points, Mean Detail
is the total instructions simulated in detail divided by the
total instructions and Mean Functional is the total instructions
functionally simulated divided by the total instructions. Based
on the above data, we can conclude that:

• Since the coarse-grained ones can better catch the over-
all characteristics and hide instant fine-grained changes,
which leads to fewer coarse-grained phases and the last
representative phase could be classified in a very early
program position. In our study, even though benchmarks
in SPECINT2000 are quite complex, fewer than three
simulation points on average are needed. Coarse-grained
samples lead to less total simulation time. As illustrate
in Table III, our average sample size is larger (444M
instructions, as opposed to 10M for the largest interval
size used in SimPoint ) and it leads to longer detailed
simulation time (0.37% of total instructions simulated
vs. 0.09% in 10M SimPoint). However, the functional
simulation time is significantly reduced because fewer
simulation points near the end of program execution are
selected (2.21% of total instructions simulated vs. 93.76%
in 10M SimPoint). A larger reduction of the proportion of
the simulated instructions leads to a higher performance
improvement.

• Regardless of a coarse-grained or a fine-grained sampling
method, the variable length interval (VLI) only makes
the phase boundaries more natural but does not gain
performance improvement. For example, although the
SPM method applies the VLI, the dominant functional
simulation time is not reduced. In our coarse-grained
approach, it does not lead to the reduction of the number
of detailed simulated instructions.

While only applying the first-level sampling, more simula-
tion time will be needed for gcc than that of 10M SimPoint.
The reason is that gcc is a complex benchmark [3] [5]. There
are 56 iterations in its outmost loop using the reference input
set, and their instruction counts vary significantly. Although
we only selected two simulation points for gcc, the instruction
count of one selected simulation point accounts for 60% of
the total number of instructions executed in gcc. As a result,
the COASTS approach needs to simulate more instructions in
detail and the total simulation time is significantly increased.

B. Evaluation for Multi-level Sampling

To evaluate our multi-level sampling framework, we apply
10M SimPoint as the fine-grained method in the framework.
The speedup and the deviation are shown in Figure 4 and Table
II. As the results shown, fewer instructions are simulated in
detail in such a multi-level sampling framework and it can
achieve a speedup of 14.04X over 10M SimPoint while main-
taining a comparable accuracy. Even for gcc, our framework
achieves 97% performance of the SimPoint method.



 0

 5

 10

 15

 20

 25

 30

gzip
gcc

crafty
ammp

eon
vortex

bzip2
twolf

sixtract

art equake

mesa
swim

fma3d

lucas
applu

facerec

wupwise

apsi
mgrid

AVG.

Sp
ee

du
p 

C
om

pa
re

d 
to

10
M

 S
im

Po
in

t
4050.68 52.30 118.16 120.30 34.68

14.04

Fig. 4. Speedup of the multi-level sampling over SimPoint

The percentage of detailed simulation instructions for each
benchmark is shown in Table III. The results show that
fewer instructions are simulated in detail in such a multi-
level sampling framework. The underlying reason is that the
total instructions in selected coarse-grained samples are much
less than that of the entire program. As a result, fewer fine-
grained simulation points are needed compared to those used
to represent the entire program. Although two-level sampling
could lead to a larger accumulation of errors, the increments
of error rates are slight shown in Table II. So they are still
comparable to those in COASTS and 10M SimPoint. The
results in Table II also illustrate the framework is not sensitive
to different architectural configurations.

VI. CONCLUSIONS

Phase granularity has been one of the most important
parameters in representative sampling simulation. However,
it has not been well studied yet. Prior researchers simply
used a fine-grained strategy in their designs. In this paper,
we presented a comprehensive study on the phase granularity
of representative sampling simulation. We found that a multi-
level sampling strategy can further improve the simulation
speed through reducing both the detailed simulation time and
the functional simulation time compared to a fine-grained one.
Based on the analysis, we designed and implemented a coarse-
grained sampling framework (i.e., COASTS) and a multi-
level sampling framework. Experimental results showed that
both these two systems are effective in simulation speed and
accuracy even for the benchmarks with very complex phase
behavior, such as gcc, vortex and equake [3][5][9].

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful
comments. This work was funded by China National Natural
Science Foundation under grant numbered 60903015, National
863 Program of China under Grant No. 2012AA010905, Key
Project of National 863 Program of China under Grant No.
2009AA012201.

REFERENCES

[1] J. J. Yi and D. J. Lilja, “Simulation of computer architectures: Simula-
tors, benchmarks, methodologies, and recommendations,” IEEE Trans-
action on Computers., vol. 55, no. 3, pp. 268–280, 2006.

[2] M. J. Hind, V. T. Rajan, and P. F. Sweeney, “Phase shift detection: A
problem classification. Technical Report, IBM,” 2003.

[3] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in ASPLOS, 2002.

[4] E. Perelman, G. Hamerly, and B. Calder, “Picking statistically valid and
early simulation points,” in PACT, 2003.

[5] X. Shen, Y. Zhong, and C. Ding, “Locality phase prediction,” in
ASPLOS, 2004, pp. 165–176.

[6] A. S. Dhodapkar and J. E. Smith, “Comparing program phase detection
techniques,” in MICRO, 2003, pp. 217–227.

[7] J. Lau, S. Schoenmackers, and B. Calder, “Structures for phase classi-
fication,” in ISPASS, 2004.

[8] J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and B. Calder, “Moti-
vation for variable length intervals and hierarchical phase behavior,” in
ISPASS, 2005, pp. 135–146.

[9] J. Lau, E. Perelman, and B. Calder, “Selecting software phase markers
with code structure analysis,” in CGO, 2006, pp. 135–146.

[10] R. A. Johnson and D. W. Wichern., Applied Multivariate Statistical
Analysis (5th Edition). Prentice Hall, 2002.

[11] M. C. Huang, J. Renau, and J. Torrellas, “Positional adaptation of
processors: Application to energy reduction,” in ISCA, 2003.

[12] D. C. Burger and T. M. Austin, “The simplescalar tool set, version 2.0.
Technical Report 1342, Computer Sciences Department, University of
Wisconsin - Madison,” 1997.

[13] A. A. Nair and L. K. John, “Simulation points for spec 2006,” in ICCD,
2008, pp. 38–46.


