
On-the-fly Verification of Memory Consistency with
Concurrent Relaxed Scoreboards

Leandro S. Freitas, Eberle A. Rambo and Luiz C. V. dos Santos
Computer Science Department, Federal University of Santa Catarina, Brazil

Email: {freitass, eberle18, santos}@inf.ufsc.br

Abstract—Parallel programming requires the definition of
shared-memory semantics by means of a consistency model,
which affects how the parallel hardware is designed. Therefore,
verifying the hardware compliance with a consistency model is a
relevant problem, whose complexity depends on the observability
of memory events. Post-silicon checkers analyze a single sequence
of events per core and so do most pre-silicon checkers, although
one reported method samples two sequences per core. Besides,
most are post-mortem checkers requiring the whole sequence of
events to be available prior to verification. On the contrary, this
paper describes a novel on-the-fly technique for verifying memory
consistency from an executable representation of a multicore
system. To increase efficiency without hampering verification
guarantees, three points are monitored per core. The sampling
points are selected to be largely independent from the core’s
microarchitecture. The technique relies on concurrent relaxed
scoreboards to check for consistency violations in each core. To
check for global violations, it employs a linear order of events
induced by a given test case. We prove that the technique neither
indicates false negatives nor false positives when the test case
exposes an error that affects the sampled sequences, making it
the first on-the-fly checker with full guarantees. We compare our
technique with two post-mortem checkers under 2400 scenarios
for platforms with 2 to 8 cores. The results show that our
technique is at least 100 times faster than a checker sampling a
single sequence per processor and it needs approximately 1/4 to
3/4 of the overall verification effort required by a post-mortem
checker sampling two sequences per processor.

I. INTRODUCTION

Perhaps the most primitive question we can ask about the
behavior of a memory system is: what is the value returned
by a load instruction? And yet the answer is not trivial for
multiprocessors, because the “last” store instruction writing to
the same address is not precisely specified by program order.
Therefore, shared-memory parallel programming requires the
definition of memory semantics by means of a memory con-
sistency model (MCM) [1], which essentially specifies when a
stored value must be seen by a load instruction. The simplest
way to precisely define memory semantics is to enforce a
sequential order of all operations, but this disallows compiler
and hardware optimizations. That is why relaxed MCMs are
required, such as Weak Ordering (ARM), Total Store Order [2]
(SPARC), and the ones adopted by Alpha [3] and PowerPC.

This work was partially supported by the Brazilian Council for Scien-
tific and Technological Development (CNPq) through grants 556757/2009-2
(PNM), 559882/2010-6 (CTINFO-PDI), and 306654/2009-1 (PQ).

978-3-9815370-0-0/DATE13/ c©2013 EDAA

An MCM not only affects how parallel programs are
written, but also how parallel hardware is designed (e.g.
multiple out-of-order load/store units, store queues with read
bypassing, multiple memory modules, lock-up free caches,
cache-coherence protocols, etc.). The verification of the hard-
ware’s compliance with an MCM is a relevant problem whose
complexity depends on the observability of memory events.

This work exploits the extended observability of an exe-
cutable representation to speed up the verification of consis-
tency, instead of reusing – at design time – methods originally
developed for post-silicon testing. We exploit the extra observ-
ability by oversampling memory events. Instead of a single
sequence [2], [4]–[9] or two [10], we sample three sequences
per processor. Instead of trying to infer order relations between
memory operations [2], [5]–[9] or relying on bipartite graph
matching [10], we verify the equivalence of expected and
observed sequences on the fly. Although conventional score-
boards are more efficient than postmortem checkers [2], [4]–
[10], they cannot handle the multiple behaviors that an MCM
allows for the same sequence of stimuli. That is why the use of
a relaxed scoreboard was proposed for MCM verification [4].
Unfortunately, such use of a single relaxed scoreboard offers
limited verification guarantees. For this reason, we propose
an entirely new algorithm for a relaxed scoreboard that leads
to full verification guarantees when multiple instances of the
novel scoreboard class are employed to concurrently check
consistency at each processor.

Section II formulates the target problem. Section III briefly
reviews related work. Section IV formalizes the algorithms
underlying the proposed technique. Section V provides the
theoretical guarantees. Section VI reports experimental results
by comparing the technique with two post-mortem checkers in
terms of effectiveness and efficiency. Finally, in Section VII,
we put theoretical and experimental results in perspective.

II. THE TARGET VERIFICATION PROBLEM

To clearly establish the links to related work, we borrow
the notations used in [2] and [10] with a few adaptations.

An MCM is specified by two types of axioms. Order axioms
define the degree of relaxation w.r.t. program order. A value
axiom restricts the values that a load can return. Formal
descriptions of such axioms can be found in the literature (e.g.
[2], [10]) for distinct MCMs. Their verification requires the
observation of memory traces, as formalized below.

Definition 1: A trace is a sequence (τ1, τ2, · · · τj , · · · τm),
where τj = (op, a, v) is a memory event such that op ∈
{Load, Store, Swap}, a is an address, and v is the value read
from or written to memory at address a.

Let n be the number of memory operations of a parallel
program and p be the number of processors. The verification
of memory consistency can be formalized as follows:

Problem 1: Given a collection of traces T1, T2, · · ·Tp, is
there a global trace T satisfying all the axioms of an MCM?

III. RELATED WORK

Let us review how Problem 1 is addressed by many authors,
as summarized in Table I. For each checker, the table shows
whether it can be used for design-time verification (pre-silicon)
or prototype testing (post-silicon), if the analysis is done
during simulation (on-the-fly) or after it (post-mortem), and
whether it offers or not full guarantees of finding an error
exposed by a given test case. Finally, it shows the required
observability and its impact on worst-case time complexity.
The table’s last row contrasts the checker proposed in the next
section with the related works.

Most checkers require all traces to be available before
verification can start and they rely on directed acyclic graphs
(DAGs) to encode order relations inferred from the traces. The
detection of a cycle in a directed graph is a proof of memory
inconsistency. The fact that no cycles are detected, however,
is not a proof of consistency, because the relation between
some operations might not have been inferred. To rule out
the false negatives that may result from the limitations of the
inference mechanism, a few checkers rely on backtracking [7]–
[9], leading to large runtimes, especially when the number
of processors increases. One pre-silicon method [10] offers
similar guarantees without the need for backtracking. It relies
on sampling two sequences of memory events per core. Since
it reused “as is” the matching algorithm proposed in [11] to
solve a more general problem, it unnecessarily inherited a high
worst-case complexity, which could be reduced by tailoring the
matching algorithm to the actual target instance. Experimental
evidence show, however, that the average computational effort
is much smaller when using random instruction tests.

A recent method [9] claims that MCM verification can be
performed in linear time for a fixed number of processors.
However, since it adopts backtracking, its long-term scalability
is limited by an exponential factor (Cp, where C is a constant).

As Table I points out, on-the-fly checkers are barely used
for MCM verification. This is due to the fact that conventional
scoreboards, which are very efficient checkers, cannot directly
handle a subsystem that does not preserve at its output the
order corresponding to its input stimuli.

That is why the use of a relaxed scoreboard was proposed
for MCM verification [4]. Instead of recording a single ex-
pected value for each input stimulus, as does a conventional
scoreboard, the relaxed scoreboard keeps multiple expected
values as long as a single value cannot be deterministically
identified. It relies on an update rule that records new values
after each store and dynamically removes from the scoreboard

the values that become invalid after each load. As a result, the
number of expected values for each stimulus is progressively
narrowed down. Although it represents a very efficient solution
for replacing inference-based checkers [2], [5]–[9], the authors
acknowledge that it may induce false negatives [4], because
the relaxed scoreboard never revisits a previous decision.

Since a single relaxed scoreboard has limited verification
guarantees, we devised a method relying on multiple relaxed
scoreboards, which concurrently check consistency from the
perspective of each processor, as described in the next section.

IV. THE PROPOSED ON-THE-FLY CHECKER

As conventional and relaxed scoreboards may induce false
negatives, and the full guarantees of a pre-silicon post-mortem
checker come at the expense of higher verification effort, the
proposed checker is built upon the following foundations:
1) Sampling in program order: memory operations are moni-

tored at the output of each processor’s commit unit;
2) Sampling in execution order: memory operations are mon-

itored at each processor’s interface with its private cache;
3) Checking for uncommitted operations: The reorder buffer
is monitored for identifying uncommitted operations.

The first two monitors avoid that the limited observability
of memory events may lead to false negatives [10]. The
third monitor precludes that implementation artifacts (such as
speculative operations) may lead to false positives.

Note that the points to be monitored were judiciously
chosen to be largely independent from the specificities of a
microarchitecture handling out-of-order execution. From now
on, let i+, i−, and i∗ represent monitors placed at the commit
unit of processor i, at the interface between processor i and
its private cache, and at its reorder buffer, respectively.

We decomposed the resolution of Problem 1 in two sub-
problems addressed by two types of complementary checkers:
one type is used to verify consistency from the point of view
of each processor, the other is used for checking consistency
from a global perspective. It should be noted that both checkers
address only operations visible by all processors. Operations
that never reach the memory interface (e.g. read-on-write-
early [1]) are addressed separately. We employ a single global
checker and p independent local checkers, each relying on a
distinct relaxed scoreboard. As soon as a scoreboard detects
a mismatch, an error is raised. If the monitored sequences
are locally consistent for all processors, then a global checker
further verifies if the value returned by each load is unique
from a global perspective and indicates an error if not.

To build the global checker, we adopted the algorithm
global-behavior-ok proposed in [10], because it employs a
linear order induced by the execution of a given test case,
instead of inferring valid orderings via backtracking [6]–[9], a
mechanism that becomes impractical with processor upscaling.

However, to build the local checkers, we designed a novel
technique that instantiates one relaxed scoreboard per proces-
sor. Each scoreboard instance waits for events at the monitors
i+, i−, and i∗ of each processor i so as to continuously update
the sets of monitored events V +

i , V −
i , and V ∗

i .

TABLE I: A qualitative comparison between distinct classes of consistency checkers
Technique Usage Type Key idea Guarantees Monitors Worst-case complexity

[2] (Pre-) Post-silicon Post-mortem DAG-based inference 1 O(n5)

[5] (Pre-) Post-silicon Post-mortem DAG-based inference 1 O(pn3)

[7] (Pre-) Post-silicon Post-mortem DAG-based inference full 1 O((n/p)ppn3)

[6] (Pre-) Post-silicon Post-mortem DAG-based inference 1 O(n4)

[8] (Pre-) Post-silicon Post-mortem DAG-based inference 1
O(p3n)

full O(p2n2)

[9] (Pre-) Post-silicon Post-mortem DAG-based inference full 1 O(p3n)

[4] Pre-silicon On-the-fly Single relaxed scoreboard 1 O(p2n2)

[10] Pre-silicon Post-mortem Bipartite graph matching full 2 O(n6/p5)

This work Pre-silicon On-the-Fly Concurrent relaxed scoreboards full 3 O(n2/p)

Let ≤ be a partial order specified by the (order) axioms
of a given MCM1. Given a processor i, a local checker
verifies if the sequences monitored at points i+ and i− are
consistent. Two sequences are considered consistent when
every committed event is equivalent to an event observed at
the memory interface, an observed event is committed only
once, and the observed events that were committed satisfy the
partial order ≤ specified by the axioms of a given MCM. This
notion is formalized below.

Definition 2: Given a partial order ≤ on the set V + =

{v+1 , v
+
2 , · · · , v

+
N} and an equivalence relation R = {(j,m) ∈

{1, · · · , N}×{1, · · · ,M} : v+j ≡ v
−
m}, we say that the sequences

(v+1 , v
+
2 , · · · , v

+
N) and (v−1 , v

−
2 , · · · , v

−
M) are consistent iff there

is a mapping µ : {1, · · · , N} 7→ {1, · · · ,M} such that:
1) µ is a function such that µ ⊆ R;
2) µ is an injection;
3) ∀k, j ∈ {1, · · · , N} : (v+k ≤ v

+
j)∧(µ(k) = t)∧(µ(j) = m)⇒

(t < m).
An event seen at i− is either a committed event observed

at i+ or an uncommitted event seen at i∗, i.e. |V −
i | = |V

+
i |+

|V ∗
i |, as formalized below:
Property 1: Let σ : V −

i 7→ V ∗
i be an injective function such

that σ ⊆ {(v−m, v∗s) ∈ V −
i × V

∗
i : v−m ≡ v∗s}. For every v−j ∈ V

−
i ,

only one of the following conditions hold:
1) (∃m ∈ {1, · · · ,M} : µ(j) = m) ∧ (@v∗s ∈ V ∗

i : σ(v−m) = v∗s)

2) (@m ∈ {1, · · · ,M} : µ(j) = m) ∧ (∃v∗s ∈ V ∗
i : σ(v−m) = v∗s)

Algorithm 1 continuously monitors events until the simula-
tion ends. It returns false as soon as a mismatch is detected.
After simulation, it returns true if all committed events were
matched and all events observed at the memory interface
were either committed or uncommitted. It returns false if
some committed event was left unmatched or Property 1 was
violated. At line 5, it invokes the function match(i, v−m), where
lies the new checking mechanism described by Algorithm 2.

Algorithm 2 returns false if no committed event was found
to be equivalent to the observed event v−m or if its matching
to an equivalent event would violate the pre-specified order
of events (≤). First, it finds the committed events that are
equivalent to a given v−m (line 2). If any is found (line 3), it

1Including the Membar axiom [2]. A Membar is a barrier that prevents
operations from being reordered through it. Although monitored by i+,
Membars are not seen by i− (they do not reach the memory system). For
consistency verification, when their effect is captured by ≤, the analysis can
be reduced to sequences free of Membars without loss of generality.

Algorithm 1 LOCAL-BEHAVIOR-OK(i)
1: m← 1
2: let T−

i be an empty sequence of events
3: repeat
4: v−m ←monitor(i−)
5: if ¬ match(i, v−m) then
6: return (false)
7: m← m+ 1
8: concatenate v−m to T−

i

9: until end-of-simulation
10: if (V +

i = ∅) ∧ (V −
i = ∅) then

11: return (true)
12: else
13: return (false)

Algorithm 2 match(i, v−m)

1: D ← ∅
2: Q← {v+q ∈ V +

i : v+q ≡ v−m}
3: if Q 6= ∅ then
4: j ← min{1 ≤ q ≤ |V +

i | : v
+
q ∈ Q}

5: D ← {v+k ∈ V
+
i : v+k ≤ v

+
j }

6: if Q = ∅ ∨D 6= ∅ then
7: S ← {v∗s ∈ V ∗

i : v∗s ≡ v−m}
8: if S = ∅ then
9: return (false)

10: x← arbitrary element of {1 ≤ s ≤ |V ∗
i | : v∗s ∈ S}

11: V ∗
i ← V ∗

i − {v∗x}
12: else
13: V +

i ← V +
i − {v

+
j }

14: V −
i ← V −

i − {v
−
m}

15: return (true)

selects the first match v+j (line 4). Then it finds the set of
dominators of v+j with respect to the order ≤ (line 5). If no
equivalent event is found (Q = ∅), this would mean that a
committed event was not observed at the memory interface
or v−m was not committed (it was “squashed”). Similarly, if
among the committed events still unmatched, there is some
dominator for v+j (D 6= ∅), the matching of v+j with v−m
would violate the order ≤ unless v−m was a squashed event.
That is why, in both scenarios (line 6), the algorithm first
looks for squashed events that match v−m (line 7). Since the
non-existence of some squashed event (line 8) is a proof
of inconsistency, the algorithm returns false. Otherwise, it
arbitrarily selects for v−m an equivalent squashed event v∗x (line
10) and removes it from the scoreboard (line 11). In this case,

v+j is kept in the scoreboard (since it may match a later event).
On the contrary, when an equivalent v+j was found and it has
no dominators, v+j is considered the good match for v−m and
is removed from the scoreboard (line 13). Finally, whether v−m
was matched to a committed event or to a squashed event, it
is removed from the scoreboard (line 14).

Algorithm 3 behavior-ok()
1: for i ← 1 to p do in parallel
2: if ¬LOCAL-BEHAVIOR-OK(i) then
3: return false
4: return global-behavior-ok(T−

1 , T−
2 , · · ·, T−

p)

Algorithm 3 integrates local and global verification of mem-
ory consistency. The novelty of our checker lies exactly in the
use of multiple instances of a new class of relaxed scoreboard
to concurrently evaluate LOCAL-BEHAVIOR-OK(i) for every
i (line 2). After consistency is locally checked for all p
processors, a global checking is required (line 4). As already
justified, we reuse the algorithm global-behavior-ok, which is
formally described in [10]. Essentially, that algorithm builds a
global trace from the local ones, according to a linear ordering
induced by a given test case, and checks for consistent value
consumption.

Given a perfectly-balanced parallel program serving as a
test case, each processor executes exactly n/p operations, i.e.
|V +

i | = n/p, and the worst-case scenario corresponds to a
sequence of n/p operations such that the execution of each one
causes the squashing of the whole reorder buffer, i.e. |V ∗

i | ≤
Cn/p, where C is the (constant) size of the reorder buffer.
Therefore, Algorithm 2 takes O(n/p). Since |V −

i | = |V
+
i | +

|V ∗
i |, Algorithm 1 invokes Algorithm 2 at most n/p+ Cn/p

times. Thus, Algorithm 1 takes O(n2/p2). Considering that
global-behavior-ok takes O(n log p) [10], Algorithm 3 takes
O(n2/p) under the pessimistic assumption that its parallel loop
performs all p iterations sequentially.

V. THEORETICAL GUARANTEES

To establish guarantees for the proposed technique, we
partially rely on proofs from related work [10], [11]. Since we
deliberately reused the global checker from the post-mortem
technique proposed in [10], but we replaced each local checker
with an on-the-fly version (LOCAL-BEHAVIOR-OK) of the
original post-mortem algorithm (local-behavior-ok), we can
inherit the guarantees provided by that work [10] if we can
prove that the former (which is based on a relaxed scoreboard)
is equivalent to the latter (which relies on extended bipartite
graph matching).

Lemma 1: Every invocation of Algorithm 2 such that
Q 6= ∅ ∧D = ∅ removes exactly one element from each of
the sets V +

i and V −
i , and returns true.

Proof: Let match(i, v−m) denote an invocation of Algo-
rithm 2 such that Q 6= ∅ ∧ D = ∅. Since (Q 6= ∅) ∧ (D = ∅)
holds, one element (v+j) is removed from (V +

i) (line 13), one
element (v−m) is removed from V −

i (line 14), and the algorithm
returns true.

Lemma 2: If the sequences (v+1 , v
+
2 , · · · , v

+
N) and

(v−1 , v
−
2 , · · · , v

−
M) are consistent, then every invocation of

Algorithm 2 such that Q = ∅ removes exactly one element
from V −

i , none from V +
i , and returns true.

Proof: By hypothesis, all clauses from Definition 2 hold.
Let match(i, v−m) denote an invocation of Algorithm 2 such that
Q = ∅. Since Clauses 1 and 2 hold and Q = ∅, we conclude
that ∀j ∈ {1, · · · , N} : µ(j) 6= m ⇒ ∀v+j ∈ V +

i : v+j 6≡ v−m.
Therefore, from Property 1 (Condition 2), we conclude that
∃v∗s ∈ V ∗

i : v−m ≡ v∗s for a given v−m. Thus, since S 6= ∅, v−m
is removed from V −

i , v+j is not removed from V +
i , and the

algorithm returns true.
Theorem 1: Algorithm 1 returns true iff the sequences

(v+1 , v
+
2 , · · · , v

+
N) and (v−1 , v

−
2 , · · · , v

−
M) are consistent.

Proof: Assumption 1 – Consistent sequences.
(1.1) N = M : Since Algorithm 1 calls Algorithm 2 M

times under condition Q 6= ∅ ∧ D = ∅ and as M = N ,
we conclude that N elements are removed from V +

i and M

elements from V −
i (Lemma 1). Therefore, on exit to the M-th

call, (V +
i = ∅)∧ (V −

i = ∅). Thus, Algorithm 1 returns true.
(1.2) N < M : Let |V ∗

i | = U . Algorithm 1 calls Algorithm
2 N times under the condition Q 6= ∅ ∧D = ∅. We conclude
that N elements are removed from V +

i and N elements from
V −
i (Lemma 1). As it calls Algorithm 2 U times under the

condition Q = ∅ ∨D 6= ∅, U elements are removed from V −
i

(Lemma 2). Since |V −
i | =M , |V +

i | = N , and M = N +U , we
conclude that, after the M-th call, (V +

i = ∅)∧ (V −
i = ∅). Thus,

Algorithm 1 returns true.
Assumption 2 – Inconsistent sequences.
(2.1) µ is not a function.
(2.1.1) Unmapped domain element: For some u ∈

{1, 2, · · · , N}, the following holds: ∀m ∈ {1, 2, · · · ,M}:
v+u 6≡ v−m. For any invocation of match(i, v−m), we have
v+u /∈ Q. When (Q = ∅) ∨ (D 6= ∅) holds, v+u is not removed
from V +

i . When Q 6= ∅∧D = ∅ holds, v+j is removed from V +
i

but v+j 6= v+u . Since v+u is never removed from V +
i , Algorithm

1 returns false since V +
i 6= ∅.

(2.1.2) Multiple mappings from same domain element: For
some j ∈ {1, 2, · · · , N}, the following holds: ∃m, t, · · · , z ∈
{1, 2, · · · ,M} : v+j ≡ v−m, v

+
j ≡ v−t , · · · , v+j ≡ v−z and ∀y ∈

{j + 1, · · · , N} : v+y 6≡ v−t , · · · , v+y 6≡ v−z . Therefore, since v+j is
removed from V +

i , the events v−t , · · · , v−z can never be removed
from V −

i in later calls to Algorithm 2, leading to V −
i 6= ∅.

Thus, Algorithm 1 returns false (line 13).
(2.2) µ is a non-injective function: For some m ∈

{1, 2, · · · ,M}, the following holds: ∃j, k, · · · , x ∈ {1, 2, · · · , N} :
µ(j) = m∧µ(k) = m∧· · ·∧µ(x) = m. Since µ is a function and
µ(k) = m, we conclude that ∀y 6= m : µ(k) 6= y, · · · , µ(x) 6= y.
Since Algorithm 2 removes v−m from V −

i at its m-th invocation,
we conclude that v+k /∈ Q, · · · , v+x /∈ Q for any arbitrary
invocation such that y ∈ {m, · · · ,M}. Therefore, the events
v+k , · · · , v

+
x can never be removed from V +

i . Thus, V +
i 6= ∅ on

exit to the last call to Algorithm 2, and Algorithm 1 returns
false (line 13).

(2.3) Partial order ≤ is violated: ∃k, j ∈ {1, · · · , N} :

(v+k ≤ v+j) ∧ (µ(j) = m) ∧ (µ(k) = t) ∧ (t ≥ m) and

TABLE II: Error characterization
ID Description Location
e1 Outstanding store overlooked by load to same address Store queue bypass
e2 Stores to same address committed out of program order Reorder buffer
e3 Incorrect value from outstanding store forwarded to requesting load Store queue bypass
e4 Incorrect value from cache sent to requesting load Data cache interface
e5 Violation of memory barrier Execution unit control
e6 Obsolete block read due to invalidation-mechanism malfunction Data cache bus interface
e7 Corrupted block read due to invalidation-mechanism malfunction Data cache bus interface
e8 Reset of validity bit precluded Cache control logic
e9 Correct value written by swap but returned value corrupted Data cache interface

e10 Obsolete value read due to precluded setting of dirty bit Cache control logic

∀y ∈ {t, · · · ,M} : v+j 6≡ v−y . Let match(i, v−y) be a call to
Algorithm 2. Since µ(j) = m holds, v+j was not removed from
V +
i for y such 1 ≤ y < m. Since (v+k ≤ v+j) ∧ (µ(k) = t) ∧

(t ≥ m), we conclude that D 6= ∅ for m ≤ y ≤ t. Therefore,
v+j was not removed from V +

i for such invocations. Since
∀y ∈ {t, · · · ,M} : v+j 6≡ v−y holds, we conclude that v+j /∈ Q
for y such t < y ≤ M . Therefore, v+j was not removed from
V +
i for such invocations. Since v+j is not removed after M

invocations of Algorithm 2, we have V +
i 6= ∅, and Algorithm

1 returns false.
Thus, Algorithm 1 always returns true for consistent se-

quences and false for inconsistent sequences.
Lemma 3: Algorithm local-behavior-ok, which is described

in [10], returns true iff the sequences (v+1 , v
+
2 , · · · , v

+
N) and

(v−1 , v
−
2 , · · · , v

−
M) are consistent.

Proof: Algorithm local-behavior-ok finds a proper match-
ing M [11] on a bipartite graph (V,E) with V = V +

i ∪ V
−
i ,

V +
i ∩V

−
i = ∅, and E = {(v+, v−) ∈ V +

i ×V
−
i : v+ ≡ v−} subject

to a partial order ≤ on the set V +
i , such that the following

holds: 1) M ⊆ E is a matching; 2) |M| = |V +
i |; 3) M =

{(v+, v−) ∈ E : v+ ≡ v−}; and 4) ∀(v+j , v
−
m), (v+k , v

−
t) ∈ M :

((v+j ≤ v+k) ∧ (m < t)) ∨ ((v+k ≤ v+j) ∧ (t < m)). Conditions 2
and 3 ensure that M induces a mapping µ : {1, 2, · · · , N} 7→
{1, 2, · · · ,M}, which is a function µ ⊆ R, i.e Clause 1 from
Definition 2 holds. Condition 1 ensures that µ is an injection,
i.e. Clause 2 from Definition 2 holds. Condition 4 guarantees
that ∀v+k , v

+
j ∈ V

+ : (v+k ≤ v+j) ∧ (µ(k) = t) ∧ (µ(j) = m) ⇒
(t < m), i.e. Clause 3 from Definition 2 holds.

Theorem 2: For any cache-coherent memory system and
for any MCM not requiring total store ordering2, Algorithm
3 returns true iff all the MCM’s axioms hold for the traces
induced by a given test case.

Proof: This theorem is proved in [10] for an algorithm
that is the same as Algorithm 3, except that we replace every
invocation of local-behavior-ok by an invocation of LOCAL-
BEHAVIOR-OK. Since, from Theorem 1 and Lemma 3, those
algorithms are indistinguishable for the same sequences, the
proof provided in [10] serves as a proof for this theorem.

Informally, Theorem 2 means that, for largely relaxed
models, when analyzing the behavior induced by a given test
case, our technique never overlooks actual errors nor raises
apparent errors. After establishing its verification guarantees,
we experimentally compared our checker with two post-
mortem checkers, as reported in the next section.

2E.g. Alpha’s and PowerPC’s Relaxed Order, Weak Ordering, etc.

VI. EXPERIMENTAL IMPACT

We used the framework GEM5 [12] to build platform in-
stances implementing Alpha’s MCM [3]. They were built with
distinct numbers of processors (p ∈ {2, 4, 8}) for a configu-
ration where (L1) instruction/data caches are private, the (L2)
unified cache is shared, and snooping is used for coherence.
We generated 240 random-instruction test cases by combining
distinct numbers of operations (n ∈ {2K, 4K, 8K, 16K}),
shared addresses (2, 4, 8, 16, 32), and instruction mixes (4).

Then we modeled ten distinct errors, which are described
in Table II. From the correct platform, we derived ten faulty
instances, each with a distinct error. Each test case was run on
every faulty platform, leading to 2400 use-case scenarios. Each
scenario was submitted to our checker and to two post-mortem
checkers: a conventional inference-based checker (INF) similar
to the one described in [2] and a checker based on extended
matching (EXM), developed in our previous work [10].

As an estimate for error coverage, we measured the percent-
age of the use cases for which an error was detected. As an
estimate for verification time, we measured the average test
case runtime. Since ours is an on-the-fly checker, this time
already captures the whole verification effort. However, for the
post-mortem checkers, we distinguish verification time from
effort, which also includes the time to generate the traces.

Fig. 1 shows the impact of test case size for a quad-core
system. On average, both ours and EXM found 92% of the
errors while INF found 77%. EXM is faster than INF by two
orders of magnitude. Our checker reaches the same coverage
as EXM’s but it requires approximately 1/4 of EXM’s average
verification time. Even when averaging only the test cases that
actually found an error (as if we could optimistically assume
full coverage in practice), EXM is still faster than INF by one
order of magnitude and ours is 3.5 times faster than EXM.

Fig. 2 shows the impact of processor upscaling for test
cases of fixed size (n = 16K). Notice that, within the
observed range, the effectiveness of our checker, as well as
EXM’s, is above 90%. Observe that EXM’s verification time
decreases with the number of processors, since its complexity
decreases with p for test cases of same size n (see Table
I). Of course, larger number of processors are expected to
require larger test cases to keep acceptable coverage, thereby
requiring higher verification time. Although the complexity
of our checker also decreases with p, a slight increase in
verification time is observed. This is due to the fact that, for
a given test case size, simulation takes longer for a larger
number of processors, because a larger number of threads must

2K 4K 8K 16K
0%

20%

40%

60%

80%

100%
C

ov
er

ag
e

10−1

100

101

102

103

104

Coverage Time
ours EXM INF

Ti
m

e
(s

)

Fig. 1: Impact of increasing test case sizes

p = 2 p = 4 p = 8
0%

20%

40%

60%

80%

100%

C
ov

er
ag

e

10−1

100

101

102

103

104

Coverage Time
ours EXM INF

Ti
m

e
(s

)

Fig. 2: Impact of processor upscaling

2
4

8 90%

80%

70%

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

E
ff
or
t
(s
)

Ours
EXM p

Coverage

Fig. 3: Impact of coverage and scalability on verification effort

be initialized. Besides, the simulation of the hardware design
representation also takes longer. We observed that, for each
new processor included in the platform, an overhead of 10%
is added to the simulation time.

We also evaluated how efficient the checkers are for reach-
ing the same coverage level. We excluded INF from the
evaluation, as its effort is orders of magnitude higher than
EXM’s and ours. For platforms with distinct number of
processors, we determined the verification effort to reach the
following coverage levels: 70%, 80%, and 90%. Fig. 3 displays
the required verification effort as a function of coverage and
number of processors (p). Our checker needs approximately
1/4 to 3/4 of the overall verification effort required by EXM to
reach the same coverage level when the number of processors
increases from 2 to 8. Observe that, for a given p, our checker’s
verification effort is less sensitive to the coverage level than
EXM’s. Note that the verification effort of both techniques
increases with processor upscaling for two reasons: 1) for a
fixed test case size, it takes longer to initialize a larger number
of threads and longer to simulate the hardware; 2) larger test
case sizes are required to reach the same coverage level. The

latter explains why the rate of growth is higher in Fig. 3 than
it is in Fig. 2 (where test case size is fixed).

These experimental results, combined with the theoretical
guarantees, allows us to draw a big picture in the next section.

VII. CONCLUSIONS AND FUTURE WORK

Although conventional checkers based on inferences are
crucial to post-silicon testing (due to observability limitations),
our experiments showed that their reuse is inadequate for the
pre-silicon verification of relaxed MCMs. We showed that the
tailoring of consistency checkers to pre-silicon verification
pays off, since it leads to speed-ups of 1 or 2 orders of
magnitude, as compared to a conventional checker without
backtracking [2]. This also allows us to conclude that back-
tracking does not pay off for pre-silicon verification, since it
would lead to even larger runtimes for essentially the same ver-
ification guarantees provided by the checker proposed in [10]
and by the one proposed in this paper. Besides, backtracking
limits the long-term scalability of inference–based checkers
to handle largely relaxed MCMs. The proposed technique
needs approximately 1/4 to 3/4 of the overall verification effort
required by a post-mortem checker with the same scalability.

Although our technique provenly offers superior verification
guarantees as compared to the approach proposed in [4], as
future work, we intend to compare their verification efforts.

REFERENCES

[1] S. V. Adve and K. Gharachorloo, “Shared memory consistency models:
A tutorial,” IEEE Computer, vol. 29, no. 12, pp. 66–76, 1996.

[2] S. Hangal, D. Vahia, C. Manovit, J.-Y. Lu, and S. Narayanan, “TSOTool:
a program for verifying memory systems using the memory consistency
model,” in 31st ACM/IEEE International Symposium on Computer
Architecture (ISCA), 2004, pp. 114–123.

[3] R. L. Sites and R. T. Witek, Alpha AXP architecture reference manual
(2nd ed.). Newton, MA, USA: Digital Press, 1995.

[4] O. Shacham, M. Wachs, A. Solomatnikov, A. Firoozshahian, S. Richard-
son, and M. Horowitz, “Verification of chip multiprocessor memory
systems using a relaxed scoreboard,” in 41st ACM/IEEE International
Symposium on Microarchitecture (MICRO), 2008, pp. 294–305.

[5] C. Manovit and S. Hangal, “Efficient algorithms for verifying memory
consistency,” in 17th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2005, pp. 245–252.

[6] A. Roy, S. Zeisset, C. Fleckenstein, and J. Huang, “Fast and generalized
polynomial time memory consistency verification,” in Computer Aided
Verification (CAV), ser. Lecture Notes in Computer Science. Springer,
2006, vol. 4144, pp. 503–516.

[7] C. Manovit and S. Hangal, “Completely verifying memory consistency
of test program executions,” in IEEE Symposium on High-Performance
Computer Architecture (HPCA), 2006, pp. 166–175.

[8] Y. Chen, Y. Lv, W. Hu, T. Chen, H. Shen, P. Wang, and H. Pan, “Fast
complete memory consistency verification,” in IEEE 15th International
Symposium on High Performance Computer Architecture (HPCA), 2009,
pp. 381–392.

[9] W. Hu, Y. Chen, T. Chen, C. Qian, and L. Li, “Linear time memory
consistency verification,” IEEE Transactions on Computers, vol. 61,
no. 4, pp. 502–516, 2012.

[10] E. A. Rambo, O. P. Henschel, and L. C. V. Santos, “On ESL verifi-
cation of memory consistency for system-on-chip multiprocessing,” in
ACM/IEEE Design, Automation, and Test in Europe Conference (DATE),
2012, pp. 9–14.

[11] G. Marcilio, L. C. V. Santos, B. Albertini, and S. Rigo, “A novel
verification technique to uncover out-of-order DUV behaviors,” in 46th
ACM/IEEE Design Automation Conference (DAC), 2009, pp. 448–453.

[12] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and S. Reinhardt,
“The M5 simulator: Modeling networked systems,” IEEE Micro, vol. 26,
no. 4, pp. 52–60, 2006.

