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Abstract—Recently, source-level software models are increasingly used
for software simulation in TLM (Transaction Level Modeling)-based
virtual prototypes of multicore systems. A source-level model is generated
by annotating timing information into application source code and allows
for very fast software simulation.

Accurate cache simulation is a key issue in multicore systems design
because the memory subsystem accounts for a large portion of system
performance. However, cache simulation at source level faces two major
problems: (1) as target data addresses cannot be statically resolved during
source code instrumentation, accurate data cache simulation is very
difficult at source level, and (2) cache simulation brings large overhead
in simulation performance and therefore cancels the gain of source level
simulation. In this paper, we present a novel approach for accurate
data cache simulation at source level. In addition, we also propose a
cache modeling method to accelerate both instruction and data cache
simulation. Our experiments show that simulation with the fast cache
model achieves 450.7 MIPS (million simulated instructions per second)
on a standard x86 laptop, 2.3x speedup compared with a standard cache
model. The source-level models with cache simulation achieve accuracy
comparable to an Instruction Set Simulator (ISS). We also use a complex
multimedia application to demonstrate the efficiency of the proposed
approach for multicore systems design.

I. INTRODUCTION

With the growing complexity of embedded applications, Multipro-
cessor System-on-Chips (MPSoC) are increasingly used as hardware
platform of embedded systems. Design of such complex MPSoC
systems usually starts at system level, in order to fix some important
design issues in the early phases so that the design complexity of later
phases can be significantly reduced. Typical design decisions to be
made at system level include the number and type of processor cores
and hardware accelerators, exploration of the memory architecture
and the communication architecture, and task partitioning, mapping
and scheduling etc. Most of these decisions rely on simulations that
provide performance statistics.

Transaction Level Modeling (TLM) [1] has been proposed to
increase the simulation speed by abstracting communication details.
At transaction level the processing elements exchange data by calling
common interfaces provided by the communication model. TLM is
now a standard modeling style for system level design and is often
associated with SystemC, a standard system-level design language.
To obtain a system-level simulator of the whole system (often called
a Virtual Prototype (VP)), processor models should be connected
with TLM communication models. Traditional processor models are
often built based on Instruction Set Simulators (ISS). An ISS-based
processor model allows for cycle-accurate simulation of software.
However, ISS-based VP has several limitations: (1) ISSs simulate
too many unnecessary details of software execution and therefore
are often very slow. By applying some advanced technique such as
just-in-time dynamic binary translation state-of-the-art ISSs (JIT ISS)
are faster than traditional interpretive ISSs. However, the simulation
speed is still limited. Simulation speed of 33.5 MIPS is reported
in [2]. Similar speeds are reported by commercial ISSs such as
Synopsys CoMET VPM and nSim [3]. (2) They are very complex

and need large effort to develop. It is difficult (if not impossible)
to make VPs available in the early design phases for various design
choices. (3) Difficulties in other issues, such as integrating ISSs into
the SystemC environment and debugging.

Recently, Source-Level Simulation (SLS) has become a very
popular technique for software simulation at system level [4], [5],
[6], [7], [8], [9], [10], [11], [12]. A source-level model is actually
application source code annotated with low-level timing information
and is generated by source code instrumentation (SCI). Typical timing
information includes wait statements that can cause simulation delays
to capture the software execution times on the target processor and
TLM interface calls that send transactions to simulate the commu-
nication and memory system. Compared with ISS-based VP, SLS-
based VP has the following advantages: (1) Software simulation with
SLS is much faster. (2) Source-level models need much less effort
to generate. (3) Source-level models (annotated with approximate
timing) can be available in very early design phases, even before
instruction set and processor architecture are designed. (4) Debugging
is much easier. Any debugging tools used for debugging C/C++
programs on PC can be used to debug software simulated on SLS-
based VP.

To make SLS applicable for practical system design, a large
body of recent work is focused on various issues of SLS: (1)
accurate simulation of timing effects of processor’s microarchitecture
at source level [13], [14], [15], [16], (2) mapping between optimized
binary code and source code for accurate back-annotation of timing
information [7], [9], [11], [12], and (3) hybrid scheme for source
level simulation of software with target dependent code [10].

Yet, there is still no efficient method for data cache simulation
in SLS, which is however a critical issue in MPSoC design. The
difficulty in data cache simulation at source level is that data memory
accesses are only visible in low-level code and data addresses spec-
ified by register operations cannot be resolved at compile time. This
paper is dedicated to address this problem. We propose methods for
identifying memory accesses at source level and obtaining target data
addresses for accurate data cache simulation. Since cache simulation
will bring in a large overhead in simulation performance, we also
propose a novel method to reduce this overhead.

The rest of this paper is organized as follows: Section II presents an
overview of related work. Then, Section III gives a brief introduction
to source code instrumentation. After that, the proposed cache model-
ing approach is described in detail in Section IV. Some experimental
results are shown in Section V. Finally, the paper is concluded in
Section VI.

II. RELATED WORK

In this section we only discuss about previous work on cache
simulation in SLS. For high-level data cache simulation, statistical
models [5] have been used to randomly generate cache misses
according to a pre-defined cache miss rate. This method is obviously
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not accurate enough to capture the data access pattern of a specific
program. In [16], code is added into source programs to calculate
the target data addresses of global variables at run time. This method
is limited to memory accesses to global variables, the target base
addresses of which can be obtained from the symbol table.

To date, the most widely used way of high-level data cache
simulation is using host data addresses [4], [15], [7], based on the
assumption that the same data allocated in the host memory and in the
target memory has very similar locality of reference. This is not true
if the target compiler and the host compiler allocate data in different
ways. Furthermore, it is also difficult to expose memory accesses in
source code.

A recent work [14] proposes to combine source level simulation
with static cache analysis. This approach is not suitable for design
space exploration of multicore systems for two reasons: (1) the
static cache analysis is pessimistic, i.e., it estimates only the worst
case, and (2) it cannot obtain the data addresses. For design space
exploration, compared to estimating cache misses or hits, it is of
more importance for the processor models to generate transactions
over the communication architecture to the target memory, in order
to evaluate the whole architecture. This can be precisely done, only
when the target addresses are known.

<func>: 01: int glb_arr[8], glb_var;
02

bb1

0x0074:  stwu r1,-48(r1)
0x0078:  lis     r9,385
0x007c:  li      r0,1
0x0080:  li      r3,0
0x0084:  lwz     r10,948(r9)
0x0088:  lis     r9,385
0x008c:  stw r0,8(r1)
  

02:
03: int func(){
04:    int loc_arr[8], i, loc_var = 0;
05:    loc_arr[0] = 1;

06:    for (i=0;i<8;i++) {
07:       if (glb var%2){

bb3

bb4

. . .
0x00a4:  addi    r8,r1,8
0x00a8:  beq- 0x00cc
0x00ac:  stw r10,0(r9)
0x00b0:  lwzx r0,r11,r8
. . .

bb2

07:       if (glb_var%2){

08:          glb_arr[i] = glb_var;
09:       } else {

10:          loc_arr[i] = glb_var;
11:       }

bb4
0x00c0:  bdnz+  0x00a8
0x00c4:  addi    r1,r1,48
0x00c8:  blr
0x00cc:  stwx r10,r11,r8
0x00d0:  b      0x00b0

bb5

bb6

12:       loc_var += loc_arr[i];
13:    }

14:    return loc_var;  
15: }

(a) Source Code (b) Target Instructions

Fig. 1. Example Program

III. SOURCE LEVEL SIMULATION

We will explain Source Level Simulation (SLS) by demonstrating
how it applies to the code in Figure 1(a). The idea of SLS is to
use application source code directly as function model. Since native
execution of source code by itself cannot provide estimates of exe-
cution time, annotation of timing information is needed. Automatic
generation of source-level simulation models consists of three steps:
timing analysis, mapping and timing annotation. Timing analysis is
aimed to estimate the execution time of each basic block. Some
timing effects such as the pipeline effects can be statically analyzed to
avoid repetitive dynamic simulation, while some other timing effects
such as the cache and branch prediction effects are highly context-
related and therefore must be dynamically simulated.

The back-annotation of timing information relies on the mapping
between binary code and source code. We adopt the method from [12]
for generating accurate mapping information for compiler-optimized
programs. For the example in Figure 1, the mapping established
between the source code and the basic blocks of binary code is
illustrated with dashed lines. Following this mapping the source
code is then annotated a call to a function containing the timing
information of the corresponding basic block. Finally, we obtain the
instrumented source code as shown in Figure 2. For example, bb 2()

03: int func(){

04:     int loc_arr[8], i, loc_var = 0;

05:     loc_arr[0] = 1;

bb_1();

06:     for (i=0;i<8;i++) {

. . .

void bb_2(){

ICACHE(0x00a8, 0x00a8);

cycles += 1;06:     for (i=0;i<8;i++) {

bb_2();

07:         if (glb_var%2){

bb_3(); 

08:             glb_arr[i] = glb_var;

09:         } else {

bb_6(); 

10:             loc_arr[i] = glb_var;

11:         }

bb_4();

12:         loc_var += loc_arr[i];

13:     }

bb_5();

14:     return loc_var;

15: }

cycles += 1;

pred_taken = BP(0x00a8);

}

void bb_3(){ //branch is not taken

if(pred_taken) //predicted as taken

cycels += BP_MISS_PENALTY;

ICACHE(0x00ac, 0x00ac);

}

. . .

void bb_6(){ //branch is taken

if(!pred_taken) //predicted as not taken

cycels += BP_MISS_PENALTY;

ICACHE(0x00cc, 0x00d0);

cycles += 1;

}

Fig. 2. Instrumented Source Code

. . .

void bb_2(){

ICACHE(0x00a8, 0x00a8);

cycles += 1;

pred_taken = BP(0x00a8);

}

void bb_3(){ 

if(pred_taken) //predicted as taken

cycels += BP_MISS_PENALTY;

ICACHE(0x00ac, 0x00ac);

}
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}

. . .

void bb_6(){ //branch is taken

if(!pred_taken)

cycels += BP_MISS_PENALTY;

ICACHE(0x00cc, 0x00d0);

cycles += 1;

}
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Cache model

Fig. 3. Instruction Cache Simulation

contains the timing information of bb2. The delay value that accounts
for the pipeline effects is accumulated by a variable cycles and the
function calls ICACHE(...) and BP(...) are for dynamic simulation
of the instruction cache and branch prediction effects, respectively.
Figure 3 illustrates instruction cache simulation. At simulation run-
time ICACHE(...) will send the instruction addresses to a cache
simulator, which then estimates whether a cache hit or a miss occurs
according to the current cache content. Unlike instruction addresses
which are known at compile time, data addresses are specified by
register operations and cannot be statically resolved. Therefore, data
cache simulation is not as easy as instruction cache simulation. The
problem of data cache simulation and our solutions are discussed in
the next section.

IV. THE PROPOSED APPROACH FOR DATA CACHE MODELING

A. Source Code Instrumentation for Data Cache Simulation

1) Identifying Memory Accesses: For correct source code instru-
mentation for data cache simulation, we need first to identify which
source line will generate how many memory accesses. For most
RISC processors, the actual memory accesses are visible only in the
binary code in form of load/store instructions. Due to the presence of
compiler optimizations, it is often error-prone to guess which source
variables will generate load/store instructions.

for (i=0;i<8;i++) {
DCACHE_READ(a_glb_var);

if (glb_var%2){
DCACHE_READ(a_glb_var);
glb_arr[i] = glb_var;

} else {
DCACHE_READ(a_glb_var);
loc_arr[i] = glb_var;

}
...

}



For example, in the above instrumented code, the global variable
glb var is supposed to generate memory accesses, and therefore,
DCACHE READ() is annotated at each use of glb var. These
DCACHE READ() are annotated in the loop and will be executed
for 8 times. Totally, data cache is simulated 24 times for glb var.
However, in reality, the load instruction generated by glb var is
moved out of the loop by the compiler and will be executed only
once. Obviously, this identification of memory accesses at source
level will result in a large simulation error.

Our solution is to identify the memory accesses at binary level.
The method is illustrated in Figure 4 using the same example.
Since the load instruction generated by glb var is in bb1, only
one DCACHE READ() is annotated in bb 1(), independent of the
position of the source variable. The relation between the source
variable and the load instruction (illustrated as the dashed line) is
only used to obtain the address of the memory access a glb var.
This relation can be obtained from the debugging information. In this
example, glb var is a global variable, so a glb var can be statically
resolved and obtained from the symbol table. In other cases, the
address can be an expression that generates data addresses at runtime.
This issue is discussed in the next sub-section.

void bb_1(){

. . .

DCACHE_READ(a_glb_var);

}

03: int func(){

04:     int loc_arr[8], i, loc_var = 0;

05:     loc_arr[0] = 1;

bb_1();

06:     for (i=0;i<8;i++) {

07:       if (glb_var%2){

08:          glb_arr[i] = glb_var;

09:       } else {

10:          loc_arr[i] = glb_var;

11:       }

. . .

. . .

Fig. 4. Method for Identifying Memory Accesses

2) Obtaining Data Addresses: Typical ways of memory allocation
for different variables include static memory allocation, dynamic
memory allocation and automatic memory allocation. According to
the complexity of addressing, we group all memory accesses into six
categories:

• Category 1: Accesses made in a function’s prologue and
epilogue for building up and cleaning up the call stack frame.
The memory locations referenced by these accesses change with
the location of the stack frame and cannot known statically.
In addition, these memory accesses are done automatically and
hidden from the programmer.

• Category 2: Accesses to a local scalar variable that could not fit
into the designated registers or to a local composite variable (i.e.
data structure) with a constant index or a fixed pointer. The data
of such variables is allocated in the stack frame of the function
call. The memory locations change with the location of the stack
frame.

• Category 3: Accesses to a global/static scalar variable or
accesses to a (global/static) composite variable with a constant
index or a fixed pointer will always reference the same memory
location. Since memory for global/static variables is statically
allocated, the memory locations of the accesses in this category
can be known at compile-time.

• Category 4: Accesses to a global/static composite variable with
a variable index or a moving pointer. The base address of a
global/static composite variable can be known at compile-time,
but the offset to the base address changes dynamically.

• Category 5: Accesses to a local composite variable with a
variable index or a moving pointer. Since local composite

16:  void bb_1(){

17:   DCACHE_WRITE(GPR(1)-48, 4);

18:  GPR(1) = GPR(1) – 48;

19:   DCACHE_READ(A_glb_var);

20:   DCACHE_WRITE(GPR(1)+8, 4);

21:      ba_loc_arr = GPR(1) + 8;

22:  }

. . .

23:  void bb_5(){

24:  GPR(1) = GPR(1) + 48;

25:  }

. . .

03: int func(){

04:     int loc_arr[8], i, loc_var = 0;

05:     loc_arr[0] = 1;

bb_1();

06:     for (i=0;i<8;i++) {

. . .

13:     }

bb_5();

14:     return loc_var;

15: }

Fig. 5. Simulating the Stack Pointer for Obtaining Data Addresses

variables are usually allocated in the stack frame, the base
address of a local composite variable changes with the location
of the stack frame. Moreover, the offset to the base address also
changes dynamically.

• Category 6: Accesses to a dynamically allocated variable. Its
base address is known only at runtime after it is allocated in the
heap. If it is a composite variable and is accessed by a moving
pointer, the offset to the base address also changes dynamically.

In the example in Figure 1, there are 6 load/store instructions. The
first one (stwu r1,-48(r1)) is used to build a stack frame and belongs
to Category 1. As discussed before, the second one (lwz r10,948(r9))
is generated by a global scalar variable (glb var at line 7) and
therefore belongs to Category 3. The third load/store instruction (stw
r0,8(r1)) is generated by access to a local array with a constant index
(loc arr[0] at line 5) and therefore belongs to Category 2. The fourth
one is generated by access to a global array with a variable index i
(glb arr[i] at line 8) and is in Category 4. The last two load/store
instructions are generated by accesses to a local array with a variable
index i (loc arr[i] at line 10 and line 12) and belong to Category 5.

Previous work considers only memory accesses made by global
variables [16] or uses host data addresses for data cache simula-
tion [15], [4], [7], based on the assumption that the same data
allocated in the host memory and in the target memory has very
similar locality of reference. Using the former method, only memory
accesses in Category 3 and Category 5 are covered, while using the
latter method, there are two problems: (1) the difference between the
locality of target data and host data will lead to cache simulation
errors, and (2) as discussed before, it is very error-prone to identify
memory accesses at source level. In addition, memory accesses made
in a function’s prologue and epilogue are not visible in the source
code and therefore cannot be taken into account in the previous
approaches.

Our approach is aimed to obtain the target addresses of memory
accesses in all the aforementioned categories. Except for Category 3,
target data addresses of other memory accesses cannot be statically
resolved. Therefore, instead of constant values, we need to annotate
code to dynamically generate data addresses at simulation runtime.
For memory accesses in Category 1 and Category 2, our solution is
based on the observation that the memory locations of local variables
change due to dynamic allocation of the stack frame every time a
function is called, whereas the local variables (those that do not fit
into registers) are usually assumed to reside at a fixed offset from
the stack pointer. The offset of a local variable to the stack pointer
can be obtained by decoding load/store instructions. Therefore, if
the content of the stack pointer can be maintained in the source-
level simulation, the target data addresses of the local variables can
be obtained. Figure 5 illustrates the code annotated for simulating
operations on the stack pointer. Here, we demonstrate our method
with PowerPC processors, but similar rules can be established for



other widely used RISC processors. In PowerPC processors, GPR 1 is
dedicated as the stack pointer. In bb 1(), which contains the prologue
of the function, the stwu instruction (store word with update) stores
the old stack pointer and grows the stack to build a new stack frame.
Code at line 17 and 18 simulate this operation. The address of the
stw instruction in Category 2 is obtained by adding an offset 8 to
GPR 1. Therefore, GPR(1)+8 is annotated to generate the address
at runtime. In bb 5(), the addi instruction shrinks the stack and the
stack frame is deleted before the return of the function.

For memory accesses in Category 4 we can obtain the base
addresses of composite variables from the symbol table and calculate
at runtime the target addresses by adding dynamically obtained
offsets to the base addresses. Array variables are the most widely
used composite variables. In an array the data elements are stored
contiguously. The offset of the currently pointed element to the base
address can be calculated as follows:

O f f settarget = (Addrhost −BaseAddrhost)∗
sizetarget

sizehost
(1)

where (Addrhost −BaseAddrhost) calculates the offset of the host
address, which is then translated to the offset of the target address
considering the difference of the size of the same data type on
the target processor (sizetarget ) and on the host machine (sizehost ).
For memory accesses in Category 4 BaseAddrtarget is statically
known and both Addrhost and BaseAddrhost can be obtained at
runtime by using the dereference operator (&), we can dynamically
calculate Addrtarget for data cache simulation. This approach is
illustrated using the global array glb arr[ ] in Figure 6 (assume that
sizehost = sizetarget ).

For some other data structures where the memory for the data
elements is not contiguously allocated, address offsets obtained
during native execution are not the same as the target address offsets,
leading to a certain estimation error. However, compared to other
methods that directly use the host addresses, our method can better
capture the locality of reference of the target data. Furthermore,
such data structures are not heavily used in embedded applications,
compared to arrays.

The addressing of memory accesses in Category 5 is more com-
plicated. It involves both the base address that changes with the call
stack frame and the dynamically changing offset. The problem can
be solved by combining the solution for Category 2 and the one for
Category 4. Namely, we can obtain the base address at runtime by
simulating the stack pointer and calculate the offset by referring to
the host addresses. This approach is also illustrated in Figure 6 using
the global array glb arr[ ].

For memory accesses in Category 6, we need to simulate the heap
pointer to obtain the base address of each newly allocated variable.
Unlike the simulation of the stack pointer, the operations on the
heap pointer are not visible in the binary code. We use a heap
manager, which is part of our runtime simulation system, to manage
the heap pointer. At runtime, when a new variable is allocated, the
heap manager assigns the current value of the heap pointer to the
base address of this variable and then grows the heap by the size of
the variable. When a variable is freed, the heap pointer moves down
accordingly. The offset to the base address can be obtained by the
method introduced before.

Limitation: a limitation of our method is that it has difficulty in
dealing with pointer aliasing. If a variable is accessed with a pointer
that aliases it, manual analysis is needed to find out which variable
this pointer points to.

i &(glb_arr[i]) (addr_t)&(glb_arr[i]) –

(addr_t)glb_arr

ba_glb_arr+(addr_t)&(glb

_arr[i]) – (addr_t)glb_arr

Iteration 1 0 0x404160 0 0xaf30

Iteration 2 1 0x404164 4 0xaf34

Iteration 3 2 0x404168 8 0xaf38

Cache

simulator

Cache

simulator
0xaf34
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. . .

06:    for (i=0;i<8;i++) {

07:       if (glb_var%2){

08:          glb_arr[i] = glb_var;

09:       } else {

10:          loc_arr[i] = glb_var;

. . .

addr_t ba_glb_arr = 0xaf30; // from symbol table

addr_t ba_loc_arr = GPR(1) + 8;

. . .

06:    for (i=0;i<8;i++) {

07:       if (glb_var%2){

DCACHE_WRITE ( ba_glb_arr + (addr_t)&    

(glb_arr[i]) – (addr_t)glb_arr, 4 );

08:          glb_arr[i] = glb_var;

09:       } else {

DCACHE_WRITE ( ba_loc_arr + (addr_t)&     

(loc_arr[i]) – (addr_t)loc_arr, 4 );  

10:          loc_arr[i] = glb_var;

. . .

SCI

(c) Run-time calculation of target data addresses

(b) Annotation for data cache simulation

(a) Source code

Fig. 6. Approach for Obtaining Target Addresses of Array Variables

0348915

ICACHE(first_addr, last_addr);ICACHE(first_addr, last_addr); ICACHE(tag, index);ICACHE(tag, index); if(mru_tag[index] == tag) hit++;
else ICACHE(tag,  index);
if(mru_tag[index] == tag) hit++;
else ICACHE(tag,  index);

offsetindextagAddress Word:

ICACHE(0x008c, 0x00a4); if(mru_tag[8] == 0x0) hit++;
else ICACHE(0x0,  8);

if(mru tag[9] == 0x0) hit++;

ICACHE(0x0,  8);

ICACHE(0x0,  9);

ICACHE(0x0 10);
Original Annotation

( _ g[ ] ) ;
else ICACHE(0x0,  8);

if(mru_tag[10] == 0x0) hit++;
else ICACHE(0x0,  8);

ICACHE(0x0,  10);

Offline Address Decoding

Early Desicion of Cache HitEarly Desicion of Cache Hit

Fig. 7. Techniques for Fast Cache Modeling

B. Fast Cache Modeling

At runtime, the annotated function calls will trigger simulation of
the caches in an interpretive manner. The pseudo code of instruction
cache simulation is presented in Algorithm 1. As shown, for each
cache line the whole loop is executed once. This will introduce a
large overhead to simulation performance.

Algorithm 1 Instruction Cache Simulation
1: Definitions:
2: nWays: cache associativity
3: nSets: the number of cache sets
4: linesize: cache line size
5: Input:
6: first addr: the first instruction address of a basic block
7: last addr: the last instruction address of a basic block
8:
9: address← AlignAddress( f irst addr)

10: while address≤ last addr do
11: (tag, index)←DecodeAddress(address)
12: way← Search(tag, index)
13: if way == 0 then
14: cache miss
15: wait(cycles∗T ) //T: time of each CPU cycle
16: cycles← 0
17: Send out a transaction for memory access
18: way← ReplaceLine(tag, index)
19: end if
20: address+= linesize
21: end while
22: UpdateAge(way, index)

To reduce this overhead, we apply two techniques in the cache
model. The first one is to move the workload of address decoding
from simulation runtime to instrumentation time. This is feasible for
all the instruction cache accesses and part of data cache accesses,
the addresses of which are known during the instrumentation. This



TABLE I
COMPARISON OF SIMULATION RESULTS BETWEEN ISS AND SLS
ISS SLS (with cache model)

Data cache hits Data cache misses Cycle count Data cache hits Data cache misses Cycle count Cycle count error

nsichneu 2024 7 12461 2024 7 11385 -8.6%
crc 1207 36 12830 1207 36 10726 -16.4%
compress 1238 61 3957 1238 61 3927 -0.8%
ludcmp 517 27 3461 517 27 3276 -5.3%
blowfish 56718 268 169145 56718 268 168898 -0.1%
matmult 26682 154 101748 26682 154 97458 -4.2%
coremark 93152456 87 371302183 93152335 85 351155007 -5.4%

technique is illustrated in Figure 7. Addresses are decoded to get
tag and index bits during source code instrumentation and function
calls ICACHE(tag, index) are annotated instead. For instruction cache
simulation, if the instruction addresses of a basic block cross n cache
lines, n calls to the cache model will be annotated. As shown in
the example in Figure 7, the cache line size is 16 bytes and the
basic block, the instruction addresses of which range from 0x008c
to 0x00a4, crosses three cache lines, so three function calls are
annotated.

The second technique is to make early decision of cache hits to
bypass tag searching in the cache model. The idea is based on the fact
that if the tag of the current address is the same as the most recently
used tag in the same cache set, this cache access will certainly hit
cache. This technique is also illustrated in Figure 7. We create an
array mru tag[nSets] to record the most recently used tag of each
cache set. If data cache and instruction cache are separate, two such
arrays are needed. If the condition mru tag[index] == tag evaluates
to true, then the cache simulation can be skipped. If the target data
cache uses the write back scheme, each cache line has a dirty bit and
each write access may have to update the corresponding dirty bit.
In this case, we need an extra array mru dBit[nSets] to record the
dirty bit of the most recently accessed cache line of each cache set.
For each cache write, only when both conditions, mru tag[index]
== tag and mru dBit[index] == 1, evaluate to true, we can skip
the cache simulation. In the case of a cache hit, if it is found that
mru dBit[index] == 0, we still need to access the cache model to
find out the cache line and set the dirty bit. The combination of the
two techniques will significantly improve the cache simulation speed.

V. EXPERIMENTAL RESULTS

In the experiments, we first evaluate the proposed cache simulation
approach in terms of simulation accuracy and speed by means of a set
of benchmark programs. A PowerPC processor with 16KB instruction
cache and 16KB data cache was selected as the target processor.
Then, we use a case study of a video application to demonstrate how
the proposed approach facilitates memory architecture exploration in
MPSoC design.

A. Evaluation of the Proposed Approach for Cache Simulation

Since our major contribution is the method for data cache simu-
lation. We show only the data cache simulation results in Table I.
MicroLib PowerPC ISS [17] was used as a reference to evaluate the
simulation accuracy. It is an functional interpretive ISS. We extended
it with a microarchitecture model for performance simulation. As
shown, seven benchmark programs were tested. CoreMark is an open-
source EEMBC benchmark [18], Blowfish is a well-known cipher, and
the other programs are from Mälardalen WCET Benchmarks [19].
We select them because we need benchmarks with source code
completely available. For programs with many library calls or target
dependent code, a hybrid simulation scheme as proposed in [10] is
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needed. Although most selected programs do not stress much data
cache, they are enough to demonstrate the accuracy of our cache
modeling method.

As shown in Table I, our SLS allows for very accurate estimation
of data cache hits and misses. The geometric mean of the cycle
count error is 2.8%, mainly caused by ignoring branch prediction
effects. When branch prediction effects are also simulated, the error
is reduced to 1.2% on average. When cache effects are ignored,
then the geometric mean of the error becomes 12.6%. Figure 8
shows the normalized cycle counts of all programs obtained by
simulation using only SLS, SLS with cache model, and SLS with
both cache and branch prediction models. The normalized cycle
count (= CycleCountSLS

CycleCountISS
× 100%) represents the simulation accuracy.

As shown in Figure 8, the importance of cache simulation increases
when the cache size becomes smaller. When the cache size is reduced
from 16KB to 4KB, ignoring cache effects results in the geometric
mean of the error of 19.3%. Here, we assume a cache miss leads
to a fixed delay of 10 cycles. When this delay is larger, the cache
simulation will be more important.

Figure 9 illustrates the simulation speed of the ISS, SLS, SLS with
a standard cache ($) model (cf. Algorithm 1), SLS with the proposed
fast cache model, SLS with both cache and branch prediction (bp)



TABLE II
SIMULATION OF THE SEQUENTIAL PROGRAM

ISS SLS Sim. Error
Simulated cycle count 55217100 56120311 1.6%
Data cache hits 10142102 10145222 0.0%
Data cache misses 526022 522902 -0.6%

ISS SLS Speedup
Simulation time 10.16s 0.12s 84.5
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models, and also the native execution speed. The measurement was
done on a laptop equipped with Intel Core i5-3360M CPU@2.80GHz
and 4GB RAM. The average simulation speed of SLS is 2421 MIPS.
It achieves 475x speedup compared to the ISS (5.1 MIPS on ave.).
Although this ISS cannot represent the state-of-the-art, the speed of
SLS is also much faster than a fast JIT ISS with microarchitecture
modeled (20 – 50 MIPS). When caches are simulated using a standard
cache model, the average speed of SLS is reduced to 200 MIPS. Using
our fast cache model instead increases the simulation speed to 451
MIPS and achieves 2.3x speedup, compared to the standard cache
model.

B. Case Study of MPSoC Design

The proposed cache simulation method is applied in memory sys-
tem exploration of an MPSoC to justify its efficiency. The application
is a video Downscaler, which converts the original CIF video frames
(352x288) to the frames with a lower resolution (132x128). It consists
of 8 tasks. The tasks are mapped to a SMP architecture with 3
PowerPC cores. Each core has a L1 data cache and instruction cache.
All the cores share a L2 cache.

Given a sequential implementation of the application, we use
our source code instrumentation approach to annotate the timing
information into the source code. Table II shows the accuracy of
the source-level model compared to the ISS. Then, the application
is partitioned into a set of tasks which are mapped to the processor
cores.

So far, we always assume a fixed delay for a cache miss. Now
that the whole system is simulated, the delay caused by a cache
miss is dynamically determined by the bus and memory simulation.
In Figure 10 we show the performance of the system with differ-
ent configurations. The performance is represented with the video
processing rate in frames per second (fps). The simulation time of
processing 10 video frames ranges from 56 seconds to 159 seconds,
mainly depending on the configuration of the memory sub-system.
More cache misses lead to more time-consuming simulations of the
bus and the memory. This fast simulation speed allows for evaluation
of many system configurations in a very short time.

VI. CONCLUSIONS

This paper presented an efficient approach for accurate data cache
simulation in source-level simulation (SLS). The most difficult issue

in source-level data cache simulation is the way of obtaining data
addresses. We grouped the memory accesses into six categories and
proposed methods for obtaining data addresses of memory accesses
in each category. In addition, we also presented a fast cache model
to reduce the simulation slowdown due to the cache simulation.
The experiments showed high simulation accuracy as well as high
performance (x2.3 speedup) of the proposed cache model. SLS with
the proposed cache model can achieve an average speed of 451 MIPS.
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[2] I. Böhm, B. Franke, and N. Topham, “Cycle-accurate performance
modelling in an ultra-fast just-in-time dynamic binary translation in-
struction set simulator,” in Proceedings of the International Conference
on Embedded Computer Systems (IC-SAMOS), vol. 10, 2010, pp. 1–10.

[3] “Synopsys,” http://www.synopsys.com/.
[4] T. Kempf, K. Karuri, S. Wallentowitz, G. Ascheid, R. Leupers, and

H. Meyr, “A SW performance estimation framework for early system-
level-design using fine-grained instrumentation,” in Proceedings of
DATE, 2006, pp. 468–473.

[5] Y. Hwang, S. Abdi, and D. Gajski, “Cycle-approximate retargetable
performance estimation at the transaction level,” in Proceedings of the
conference on Design, automation and test in Europe (DATE’08), 2008.

[6] T. Meyerowitz, M. Sauermann, D. Langen, and A. Sangiovanni-
Vincentelli, “Source-level timing annotation and simulation for a hetero-
geneous multiprocessor,” in Proceedings of the conference on Design,
automation and test in Europe (DATE’08), 2008.

[7] Z. Wang and A. Herkersdorf, “An Efficient Approach for System-
Level Timing Simulation of Compiler-Optimized Embedded Software,”
in Proceedings of the 46th Annual Design Automation Conference
(DAC’09), San Francisco, California, July 2009, pp. 220–225.

[8] J. Schnerr, O. Bringmann, A. Viehl, and W. Rosenstiel, “High-
performance timing simulation of embedded software,” in Proceedings
of the Design Automation Conference, Anaheim, USA, June 2008.

[9] Z. Wang, K. Lu, and A. Herkersdorf, “An approach to improve accuracy
of source-level TLMs of embedded software,” in Proceedings of the
Conference on Design, automation and test in Europe (DATE’11), 2011.

[10] Z. Wang and J. Henkel, “Hycos: hybrid compiled simulation of em-
bedded software with target dependent code,” in Proceedings of the
eighth IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis (CODES-ISSS 2012), 2012, pp. 133–142.

[11] S. Stattelmann, O. Bringmann, and W. Rosenstiel, “Fast and Accurate
Source-Level Simulation of Software Timing Considering Complex
Code Optimizations ,” in Proceedings of the 48th Annual Design
Automation Conference (DAC’11), San Diego, California, 2011.

[12] Z. Wang and J. Henkel, “Accurate source-level simulation of embedded
software with respect to compiler optimizations,” in Proceedings of the
conference on Design, automation and test in Europe (DATE’12), 2012.

[13] Z. Wang, A. Sanchez, and A. Herkersdorf, “SciSim: A Software Per-
formance Estimation Framework using Source Code Instrumentation,”
in Proceedings of the 7th International Workshop on Software and
Performance (WOSP’08), Princeton, NJ, USA, Jun 2008, pp. 33–42.

[14] S. Stattelmann, G. Gebhard, C. Cullmann, O. Bringmann, and W. Rosen-
stiel, “Hybrid source-level simulation of data caches using abstract cache
models,” in Proceedings of the conference on Design, automation and
test in Europe (DATE’12), 2012.

[15] E. Cheung, H. Hsieh, and F. Balarin, “Memory subsystem simulation
in software tlm/t models,” in Proceedings of the 2009 Asia and South
Pacific Design Automation Conference, ser. ASP-DAC ’09, 2009, pp.
811–816.

[16] A. Pedram, D. Craven, and A. Gerstlauer, “Modeling cache effects at the
transaction level,” in Analysis, Architectures and Modelling of Embedded
Systems, vol. 310. Springer Boston, 2009, pp. 89–101.

[17] D. Perez, G. Mouchard, and O. Temam, “MicroLib: A case for the
quantitative comparison of micro-architecture mechanisms,” in Pro-
ceedings of the 37th annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Computer Society, 2004, pp. 43–54.

[18] “CoreMark Benchmark,” http://www.coremark.org/.
[19] “Mälardalen WCET Benchmarks,” http://www.mrtc.mdh.se/projects/

wcet/benchmarks.html.


