
Machine Learning­based Anomaly Detection
for Post­silicon Bug Diagnosis

Andrew DeOrio, Qingkun Li, Matthew Burgess and Valeria Bertacco
Department of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor, MI 48109
{awdeorio, qinkunl, mattburg, valeria}@umich.edu

ABSTRACT

The exponentially growing complexity of modern processors in-

tensifies verification challenges. Traditional pre-silicon verifica-

tion covers less and less of the design space, resulting in increasing

post-silicon validation effort. A critical challenge is the manual de-

bugging of intermittent failures on prototype chips, where multiple

executions of a same test do not yield a consistent outcome.

We leverage the power of machine learning to support automatic

diagnosis of these difficult, inconsistent bugs. During post-silicon

validation, lightweight hardware logs a compact measurement of

observed signal activity over multiple executions of a same test:

some may pass, somemay fail. Our novel algorithm applies anomaly

detection techniques similar to those used to detect credit card fraud

to identify the approximate cycle of a bug’s occurrence and a set of

candidate root-cause signals. Compared against other state-of-the-

art solutions in this space, our new approach can locate the time of

a bug’s occurrence with nearly 4x better accuracy when applied to

the complex OpenSPARC T2 design.

1. INTRODUCTION
The complexity of modern chips intensifies verification chal-

lenges, and as a result an increasing share of the verification ef-

fort is shouldered by post-silicon validation. Focusing on the first

silicon prototypes, post-silicon validation poses critical new chal-

lenges such as intermittent failures, where multiple executions of a

same test do not yield a consistent outcome. These are often due

to on-chip asynchronous events and electrical effects, leading to

extremely time-consuming, if not unachievable, bug diagnosis and

debugging efforts.

Today, post-silicon validation is a largely manual, ad-hoc pro-

cess. Beginning with the first silicon prototypes, chips are con-

nected to a validation platform, which runs large volumes of tests

at high speed. Test outputs are then checked against a reference

model, or alternatively, they may self-check. When test outcomes

match, testing progresses. However, when they do not match, a

failure is identified and manual debugging begins. First the failure

must be reproduced, a challenge in itself for bugs that are sensitive

to subtle on-chip variations. When these bugs occur, different ex-

ecutions of the same test yield different results: some pass, while

others fail. Often, it is the failing executions that are most difficult

to obtain. Our focus is on these most difficult intermittent post-

silicon bugs.

The goal of the human effort during post-silicon validation is to

understand the correct operation of the design, and identify the root

cause of any deviation from correct operation, that is, the cycle and

critical signals involved in a bug occurrence. Machine learning,

a branch of artificial intelligence, shares a similar goal, learning

from examples and identifying the structure in a system. The large

volume of data generated by many post-silicon test executions sug-

gests that the application of machine learning is a promising solu-

978-3-9815370-0-0/DATE13/ c©2013 EDAA

tion, especially anomaly detection. For example, anomaly detec-

tion is often applied to automatically identify credit card fraud. In

a similar manner, this approach might be applied to identify hard-

ware bugs. Our goal is to unlock the potential of anomaly detection

techniques in the context of post-silicon debugging.

1.1 Contributions
To address the problem of post-silicon bug diagnosis, we have

explored the application of a number of machine learning tech-

niques. First, a hardware mechanism logs compact measurements

of observed signal activity over multiple executions of a same test:

some passing, some failing. We deploy the data collected from

passing testcases to develop a model of expected behavior. This

model is then used to evaluate the data from failing testcases, iden-

tifying anomalies and, from there, the time and location of a bug.

The goal of the system is to:

• Accelerate debugging by automatically identifying the ap-

proximate cycle and critical signals involved in a bug.

• Learn correct behavior from passing testcases and differenti-

ate failing behavior using anomaly detection techniques.

• Tolerate non-repeatable executions of the same test, differen-

tiating bugs from noise.

• Develop a solution that can be applied to any on-chip sub-

system, without requiring a-priori knowledge of the design.

In particular, we have investigated several machine learning tech-

niques: one based on supervised learning, and another on a one-

class learning approach (clustering). We have observed that su-

pervised learning is not a good match for the application of bug-

finding, while we have found success with a variation of clustering.

2. MACHINE LEARNING BACKGROUND
Machine learning algorithms build statistical models from exam-

ples, which are then used to make predictions when faced with new

examples. For instance, in credit card fraud detection, algorithms

learn the normal behavior of a customer’s banking activity and then

monitor for anomalous behavior, which is flagged as fraudulent.

The nature of anomaly detection has many similarities to bug de-

tection in hardware designs.

An anomaly detection algorithm relies on input data, called train-

ing data, to learn the correct behavior of a system. Training data

can be labeled, often as passing (positive labels) or failing (negative

labels). Each datum is an example described by a set of characteris-

tics called features. After training, a machine learning algorithm is

deployed on unlabeled data, where it is used to classify new exam-

ples as passing or failing. For example, in credit card fraud detec-

tion, training data consists of a customer’s past transactions, which

are labeled as passing. Each example, a transaction, is described

by a number of features that can include the dollar amount, mer-

chant, location, time of day, etc. Once the model is trained, each

new test execution generates a new piece of data whose label is not

known. The goal of the anomaly detection algorithm is to classify

the example as either typical or fraudulent.

one test, many

executions

observed signal

activity

bug cycle

bug root

signal

test

post-si platform

anomaly

detection

algorithm

Our Contribution

Figure 1: Post-silicon anomaly detection proceeds in two phases.
First, multiple executions of a same test are run on the post­silicon
platform. Small hardware monitors record a compact measurement
of observed signal activity while many test executions pass, and
some fail. This data is then analyzed offline by ourmachine learning
algorithm, which builds a model of observed correct behavior from
passing testcases, and then uses anomaly detection to identify the
time and regions of the design where the failure occurred.

Post-silicon bug diagnosis fits well under the umbrella of anomaly

detection. For example, detecting bugs in hardware is analogous to

detecting fraudulent behavior in credit card transactions. In both

cases, only positive training data is available, and we explain why

this is the case in the next section. This challenging learning sce-

nario is called one-class learning, and it restricts the applicable al-

gorithms to only learn from positively labeled examples. Further-

more, in fraud detection, examples of fraudulent behavior are rare,

just as failing testcases during post-silicon validation are vastly out-

numbered by passing cases, especially for difficult-to-reproduce,

intermittent bugs.

3. ANOMALY DETECTION ALGORITHM
The goal of our anomaly detection approach is to locate the time

of a bug’s occurrence, and the critical signals involved during post-

silicon validation. Our system operates in two phases. First, it

collects data online during test execution, and then it analyzes this

data offline to localize the failure (Figure 1). During the collection

phase, multiple executions of the same test are run on the post-

silicon platform, some of these tests may pass while others fail. A

compact measurement of signal activity is recorded for a subset of

the design’s signals, along with the final test pass/fail result. Mea-

surements are recorded by either existing debug hardware, or by

simple custom units. One measurement is collected for each rel-

evant signal and each time step of execution, which comprises a

number of cycles. We measure the fraction of time the signal’s

value was one during the time step, an approach that has been

shown to be effective [5], and is the feature in our application. Once

measurements have been collected, we apply machine learning to

locate a bug. Each test execution is one example, and represents the

activity of many signals over many time steps. Our goal is to nar-

row down this search space to a few signals and execution cycles.

We explored a number of different machine learning approaches.

First, we investigated supervised learning, where both passing and

failing labels are required for training data. While we know the

final outcome of each post-silicon test, the origin of the bug is un-

known. In the cycles preceding a bug manifestation, the hardware

operates correctly, while afterward, its impact causes buggy behav-

ior in at least some signals. As a result, a failing testcase con-

tains both correct behavior (before the bug manifestation), as well

as incorrect behavior due to the impact of the bug (after the bug

manifestation). Thus, a “failure” on an entire test for the purpose

of supervised learning is only a partially correct label. Because

the occurrence time of a bug is unknown, we explored other tech-

niques.

3.1 Anomaly Detection Using Clustering
Unlike supervised learning, which requires training data with

both positive and negative labels, one-class learning requires only

a single label. We applied a variation of clustering, which groups

examples with similar characteristics. When clustering is applied

to anomaly detection, the clusters represent correct behavior, while

examples that fall outside the clusters could indicate buggy behav-

ior. In our application, the passing label is valid throughout the test,

and the label of failing examples is unknown. Thus, our training

data, was organized by test, and the passing label.

A number of clustering algorithms are present in the machine

learning literature [2], among them is k-means clustering. The ob-

jective of k-means clustering is to assign examples to clusters to

minimize the aggregate distance from each example to the center

of its cluster. In other words, the algorithm partitions examples into

k clusters, minimizing the sum-of-squares distance within clusters.

Figure 2 shows a hypothetical example of clustering applied to

two signals during one time step. The X-axis represents the ob-

served activity (feature values) for signal A during the time step,

while the Y-axis represents the values for signal B. Green (light

gray) dots plot the value pairs measured for these signals. A model

for this passing behavior is built using clusters (Figure 2, left),

shown by the blue circles on the plot. The number of clusters is

a parameter of the algorithm, two in this example.

Next, data collected during failing test executions are plotted in

the middle of Figure 2. Some measurements fall inside the clus-

ters, which indicate similar behavior to known-correct test execu-

tions. Others fall outside the clusters, and are identified as anoma-

lies. When the number of anomalies exceeds a threshold, a bug is

identified (Figure 2, right).

Signal A feature value

S
ig

n
a
l

B
fe

a
tu

re

v
a

lu
e

3 anomalies:

bug found

no anomalies:

no bug detectedclustering

activity of

passing

tests

activity of

failing tests

activity of

failing tests

Figure 2: Example of anomaly detection using clustering. Clus­
tering applied to measurements (feature values) from two signals
during a single time step, which is a preset number of cycles.

3.2 Scaling to Many Signals and Time Steps
The previous example showed clustering applied to two features,

the feature values from two signals during one time step. In prac-

tice, the values from a design will include many signals and many

time steps. At first, we considered all features at once: all signals

during all time steps. In this case, the clustering algorithm con-

sidered each signal at every time step to be a dimension, totaling

to the number of signals multiplied by the number of steps. There

were two problems with this approach. First, since all time steps

were considered at the same time, a single analysis comprised ac-

tivity preceding a bug manifestation, as well as activity following

it. Thus, a combination of passing and failing behavior fell under

the same failing label, since the testcase failed in the end. The con-

flation of these passing portions of the test with failing portions of

the test led to inaccurate bug localization. The second problem was

with high dimensionality, a limiting factor of clustering algorithms.

3.2.1 Two­Step Anomaly Detection

In order to more precisely differentiate the correct behavior that

precedes a bug manifestation from the failing behavior that follows

time detection

1: for each time step:

2: for each module:

3: signals = get_signals(module)

4: if find_anomaly(signals, time step):

5: bug_time = current time step

6: goto 7

signal detection

7: for each signal in design:

8: if find_anomaly(signal, bug_time):

9: bug_signals += signal

10: return bug_time, bug_signals

Figure 3: Pseudocode for two-step detection algorithm, which
first detects the time of a bug occurrence by analyzing groups of
signals with the find anomaly routine (Figure 4). Signals are
divided by module in order to limit the dimensionality of the prob­
lem. Following a successful time localization, signal detection
determines which signals were involved using a second anomaly
detection step.

it, we separated time localization and signal localization. Each time

step is analyzed separately, considering all signals within a step to-

gether. From this analysis, we can identify which time step presents

a sufficient number of anomalies to reveal the occurrence of a bug.

Once the time step is identified, a second round of clustering-based

anomaly detection identifies the responsible bug signals. The pseu-

docode in Figure 3 shows an overview of this process. First, time

detection proceeds, considering each time step independently (line

1). Next, signals are grouped by module (line 2) and the algorithm

performs anomaly detection on the examples from signals in the

module (line 4). This process continues through each time step as

long as no bug is found. When anomaly detection finds an error,

the bug time is recorded as the current time step (line 5) and the al-

gorithm moves to the second phase, ignoring any future time steps

(line 6). Signal detection (lines 7-9) examines each signal individ-

ually, performing a second anomaly detection, a one-dimensional

application of clustering. Upon completion, the algorithm returns

both the bug signals and bug time (line 10).

The anomaly detection clustering algorithm (Figure 4) begins

with examples from passing testcases (line 2), calculating clusters

that model correct behavior. We use an implementation of k-means

clustering in a multidimensional space, where each dimension cor-

responds to a feature (line 3). For example, in the case of the time

detection, each signal corresponds to a dimension. Our implemen-

tation begins with an initial guess for the location of each cluster’s

center in this space, called a centroid. The guess is chosen at ran-

dom, and refined during the clustering process. Next, each example

is assigned to the nearest centroid, and the sum-of-squares distance

of examples mapped to a centroid is computed. The following step

calculates a new centroid for each cluster, identifying the point with

minimum sum-of-square distance to all the examples in the cluster.

At this point, examples are reassigned based on the new centroid lo-

cations and then centroids are iteratively recomputed until the algo-

rithm converges. Convergence occurs when the centroid locations

no longer change.

After clusters are computed, failing examples are compared to

the clusters to determine whether they are consistent with normal

behavior. Each failing example is considered (lines 4-5), and the

algorithm determines if the example falls within a cluster (line 6).

This is accomplished by first computing the radius of each cluster,

that is, the distance from the centroid of the cluster to its furthest

point. Next, we determine whether each potentially failing exam-

1: find_anomaly(signals, time):

calculate clusters

2: pass_egs = get_pos_egs(signals, time)

3: clusters = cluster(pass_egs)

test each failing example

4: fail_egs = get_neg_egs(signals, time)

5: for each example in fail_egs

count anomalies

6: if example is outside all clusters:

7: anomalies += 1

8: if anomalies > threshold:

9: return true

10: return false

Figure 4: Pseudocode for clustering, used to detect anomalies.
Passing examples are grouped into clusters, modeling correct be­
havior. Each failing example is then compared to the clusters and
those that fall outside are counted as anomalies. When the number
of anomalies exceeds a threshold, the function identifies an error.

ple falls within one of the cluster’s radii. If an example falls within

any cluster, it is not an anomaly. Otherwise, if it is located out-

side every cluster, then the example is counted as an anomaly (line

7). The algorithm accumulates the total number of anomalies; if

the total exceeds a threshold, the function terminates, identifying

a bug (lines 8-9). If the number of anomalies remains below the

threshold, no bug is flagged (line 10).

3.3 Dimensionality
Experimentally, we found that considering all signals from a

large design at once resulted in too high a dimensionality, on the

order of 10,000. This is because k-means clustering is NP-hard

with respect to the number of dimensions. We first tried using prin-

ciple component analysis (PCA) [2] to identify the most relevant

signals. When we applied PCA to the group of passing signals, the

result was a small group of the most noisy signals. This is because

noisy signals provide the best means to differentiate among passing

test cases (as opposed to quiescent signals). Unfortunately, many

potential bug signals were overlooked in this process.

Thus, we developed a heuristic to group signals by module. The

number of signals in a module varied widely in the OpenSPARC

T2 design, from a few to several thousands, so we capped the num-

ber of signals in a group to 500, in order to ensure fast algorithm

execution. At first, this approach also had limitations: the number

of signals in a group affects the quality of results, thus modules

with just a handful of signals were too sensitive to minimal pertur-

bations. Thus, we additionally balanced the partitions with a range

of 100 – 500 signals per group. Modules with less than 100 sig-

nals were grouped together by parent module, and the signals from

modules with more than 500 signals were partitioned into groups of

approximately 500. We found experimentally that this solution is

effective in mitigating the complexity of k-means clustering, while

maintaining good quality of results.

3.4 Anomaly Detection Parameters
Two parameters affect the sensitivity and accuracy of our anomaly

detection approach: the number of clusters and the anomaly thresh-

old. During time localization, the number of clusters and the thresh-

old determine when the time step of a bug occurrence is identified.

When the number of clusters is small, for example, a single cluster,

there is a risk of widely dispersed data causing a very large cluster.

Many unnecessary regions are encapsulated by the large cluster:

this situation is called underfitting (Figure 5a). The consequence

(a) underfitting (b) overfitting (c) good fit

Figure 5: Determining the number of clusters. When the number
of clusters is too small (a), underfitting occurs, which can lead to
many missed anomalies. On the other hand, too many clusters
results in overfitting (b), where a cluster may encompass only a
single example. In this case, nearly every newexample is considered
an anomaly. A good fit balances these two extremes (c).

of underfitting is missed anomalies, which are mistaken for correct

behavior. On the other hand, too many clusters may cause overfit-

ting (Figure 5b), which in the extreme, leads to a single example for

each cluster. The result is an overly sensitive algorithm. Finding a

balance, as in Figure 5c, is important to an effective algorithm. We

discuss later in the paper how to find this balance experimentally.

In addition to the number of clusters, the second parameter gov-

erning the accuracy and effectiveness of our algorithm is the anomaly

detection threshold. This is expressed as a percentage of the total

failing examples under consideration. A higher threshold leads to

a less-sensitive bug-finding algorithm, while low thresholds lead

to high sensitivity. In practice, finding the proper threshold can

begin with the first passing testcases. An initial threshold can be

defined by testing passing executions against other passing execu-

tions, gradually increasing the threshold until no bug is found.

3.5 Limitations
While we have found the clustering approach to bug detection

to be effective with a set of bugs on the OpenSPARC T2 design,

the approach does have a few limitations. First, the algorithm ana-

lyzes executions in time steps (a number of cycles), and each time

step is considered independently. If one bug causes several subtle

perturbations that span multiple time steps, the system may miss it.

Bugs that cause only a small delay in one time step suffer a similar

problem. Indeed, our approach is most effective for bugs that are

detectable within one time step.

A second limitation is training data generation. More training

data enables more accurate bug detection, and a possible solution

would be to train ahead of post-silicon validation using emulation.

4. EXPERIMENTAL EVALUATION
We evaluated our anomaly-based bug detection algorithm on the

industrial-size OpenSPARC T2 design [11], detecting a set of sim-

ulated failures. 10 program workloads were used for testing, taken

from those provided with the OpenSPARC distribution. Test lengths

ranged from about 60,000 cycles to 1.2 million cycles. Table 1

describes the injected bugs, the same bugs used in [5]. The 10

injected errors include functional bugs, where the design logic is

modified, electrical failures, where a signal in the design is tem-

porarily altered, and manufacturing faults, which are modeled as

stuck-at faults. Faults and failures were injected by forcing a signal

in the design for a number of cycles.

First, each test was run 100 times without any bug injection, each

time with a different random seed introducing variable memory la-

tency and communication delays. Simulated on-chip hardware col-

lected feature measurements in time steps of 512 cycles (1 time

step) for each top-level control signal in the single core (cmp1)

Bug description

PCX gnt SA stuck-at in PCX grant

XBar elect electrical error in crossbar

BR fxn functional bug in branch logic

MMU fxn functional bug in mem ctrl

PCX atm SA stuck-at in PCX atomic grant

PCX fxn functional bug in PCX

XBar combo combined electrical errors in Xbar/PCX

MCU combo combined electrical errors in mem/PCX

MMU combo combined functional bugs in MMU/PCX

EXU elect electrical error in execution unit

Table 1: Injected errors in the OpenSPARC T2 design included
functional, electrical and manufacturing (stuck­at) failures.

version of the design. There were a total of 41,743 signal bits.

The measurements from these 1,000 test executions (10 tests x 100

random seeds) constituted our training data. Next, we injected the

bugs, one at a time, running each test with 10 random seeds for a

total of 1,000 buggy executions (10 tests x 10 bugs x 10 random

seeds). We used this data as unknown examples for identification.

4.1 Bug Localization
The ideal bug localization system identifies a small group of sig-

nals shortly after the occurrence of a bug. The evaluation criteria

for our machine learning-based approach to bug finding includes

the number of signals, as well as the time from bug injection to bug

detection. It is also helpful to know whether the exact bug injec-

tion signal is among those that were detected. This minimizes the

number signals and cycles that a validation engineer must analyze

during the debugging process. Furthermore, any statistical system

is subject to false positives and false negatives. False positives oc-

cur where our solution detects a bug that was not yet injected, and

false negatives denote a missed bug. Our goal is to minimize both

false negatives and false positives.

In our first study, we examined the types of outcomes for bug

detection for each of the 10 bugs. Figure 6 shows the percent-

age of each of five outcomes, over all 10 testcases. The chart first

shows those testcases where the anomaly detection algorithm iden-

tified the exact root signal of the bug among those signals detected

(dark green at the top of the bars). In other bug/testcases pairs, we

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
e

rc
e

n
ta

g
e

 o
f

Te
st

ca
se

s

exact

signal

detected

other

signals

detected

no bug

effect

false

negative

false

positive

Figure 6: Bug detection outcomes among 10 testcases run on
the OpenSPARC T2, showing the percentage of testcases where
the exact bug root signal was identified and those where signals
exhibiting secondary effects were identified. Additionally, the chart
shows bug/testcase combinations where the bug had no effect, as
well as false negatives and false positives.

0

200

400

600

800

1,000

B
u

g
 d

e
te

ct
io

n
 l

a
te

n
cy

,
cy

cl
e

s

fr
o

m
 i

n
je

ct
io

n
 t

o
 d

e
te

ct
io

n

Figure 7: Bug detection latency (cycles), from bug injection to
bug detection, averaged over all testcases for each bug.

observed a second outcome, where the bug is detected by its sec-

ondary effects on other signals (light green). For two bugs, only

secondary effects were observed: BR fxn and MMU fxn. In both

cases, the exact root signal of the bug was not among those avail-

able for observation. When a bug was not detected, it was some-

times due to the bug having no effect on a particular testcase, thus

the testcase passed (gray). A small number of false positives were

observed, where noise was mis-categorized as a bug (red). Finally,

our system did not detect the bug in some bug/testcase combina-

tions, shown as false negatives (orange). One bug (EXU elect)

was particularly difficult to locate, due to effects that did not ex-

hibit significant difference from normal activity. For all other bugs,

our system was able to detect them eventually. Furthermore, in all

cases where the exact root signal was observable and signals were

identified, the exact root signal was among them.

In addition to investigating the outcomes of our approach, we

also recorded the bug detection latency. This latency is the number

of cycles from bug injection to bug detection. Figure 7 shows the

detection latency for each bug, averaged over all testcases exposing

the bug. Some bugs were detected quickly, especially those that

had high impact on the system. Others were detected after some

time, when the accumulation of the bug’s impact on the system

had become detectable. The EXU elect bug was not detected.

On average, our system was able to detect bugs very quickly after

injection, only 336 cycles, averaged over the bugs. The cycles are

measured from the middle of the time step, which was 512 cycles.

The number of signals detected also has an impact on the de-

bugging process. This is determined by the signal detection phase

of the machine learning algorithm. Figure 8 shows the number of

signals detected, on average, for each bug. No signals were iden-

tified for the EXU elect bug, since no bug was detected. On

the other hand, a single signal was detected for the PCA gnt SA

bug, which was the exact root signal of the bug. Overall, among

the 41,743 signals in the OpenSPARC T2 top-level, the anomaly

detection algorithm identified 347, averaged over the bugs. This

represents 0.8% of the total signals. Thus, our approach is able to

reduce the pool of signals by 99.2%.

4.2 Tuning Parameters
A number of parameters affects the accuracy and effectiveness

of our solution. Both the number of clusters and the anomaly de-

tection threshold affect the sensitivity of the approach, including

the number of false positives and negatives, as well as the detection

latency. The quantity of training data is also important.

The number of clusters was explored in our next study, where

we ran bug detection with different numbers of clusters, each time

testing all bug/testcase pairs with a threshold of 0.5. For each at-

0

200

400

600

800

1,000

N
u

m
b

e
r

o
f

si
g

n
a

ls
 d

e
te

ct
e

d

Figure 8: Number of signals detected for each bug, averaged over
all testcases. No signals were identified for the EXU elect bug,
since no bug was detected. A single signal, the exact bug root cause
signal, was identified for the PCX gnt SA bug.

tempted bug detection, we recorded false negatives and false pos-

itives (Figure 9). We observed a trade-off between false negatives

and false positives. With a single cluster, the data were under-fit,

resulting in many false negatives. On the other hand, when many

clusters were used, over-fitting occurred, resulting in false posi-

tives. The sum of false negatives and positives was minimized with

2 clusters, which we used in subsequent studies. Different numbers

of clusters could be useful with more training data, which would

help avoid the case of over-fitting. Finally, we noted that the aver-

age detection latency exhibited a decreasing trend as the number of

clusters increases.

The anomaly detection threshold is shown in Figure 10, varied

from 0.1 to 0.9 with 2 clusters. First, we noted a trade-off in the

number of false negatives and false positives. When the threshold

was low, the system required very few anomalies to detect a bug,

resulting in many false positives. On the other hand, with a high

threshold, the system was insensitive, and false negatives domi-

nated. With a threshold of 0.5, the sum of false negatives and false

positives is minimized, and we used this value for our other experi-

ments. False negatives and positives were balanced by the detection

latency, which was also impacted by the threshold. As the threshold

increased, the time from bug detection to bug injection increased.

The quantity of training data also impacted results. Figure 11

plots the number of anomalies over time for one signal, with a bug

injected at cycle 50,000. With 10 training examples, the first plot

exhibits noise that is nearly as strong as the signal. On the other

hand, the second plot was generated using 100 training examples,

and exhibits a much better signal-to-noise ratio, shown by the clear

delineation of low amplitude noise before the bug and high strength

signal after. Thus, we found that with more training data, the sys-

tem was better able to differentiate noise from buggy behavior.

0

10

20

30

40

50

0 2 4 6 8 10

N
u

m
b

e
r

o
f

fa
ls

e

n
e

g
a

ti
v

e
s/

p
o

si
ti

v
e

s

Number of clusters

false negatives

false positives

sum

Figure 9: Effect of number of clusters on quality of results, show­
ing the trade­off between false negatives and false positives.

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

N
u

m
b

e
r

o
f

fa
ls

e

n
e

g
a

ti
v

e
s/

p
o

si
ti

v
e

s

Anomaly detection threshold

false negatives

false positives

sum

Figure 10: Effect of anomaly detection threshold on results,
showing the trade­off between false negatives and false positives.

5. RELATED WORK
The theory of anomaly detection has been studied extensively

in the machine learning community [4]. Another application of

anomaly detection utilizing similar methodologies to ours is credit

card fraud detection [3]. Here, fraudulent activities are rare, and the

authors introduce an algorithm that clusters legitimate transactions

into groups. If a new transaction falls outside the account’s clus-

ters, an anomaly is detected and an alert is raised on the account.

This application is similar to the bug diagnosis problem in that the

available training data lacks negative examples. Both applications

seek to identify behavior that falls outside the norm.

Traditional post-silicon debugging is a predominately manual

process, which begins when the first prototypes are available. En-

gineers run tests on the prototype, checking the outputs for correct-

ness. Often, reproducing the bug is difficult [7], requiring many ex-

ecutions to capture. Next, debugging begins, where on-chip logic

analyzers [12] and flexible debugging infrastructures [1] trace sig-

nal activity. Engineers use these tools to gather information for

manual debugging. Our goal is to automate this process, narrowing

the search space of bug times and locations.

Several prior works have addressed the problem of bug diag-

nosis. At the circuit level, functional bugs have been addressed

by recording circuit traces using scan chains, and then comparing

failing results against passing results [10]. In the software world,

bug reports are automatically analyzed to find errors [8]. During

post-silicon debugging, the BLoG/IFRA solution [9] localizes bugs

within a processor core. In contrast to these works, we provide a

flexible algorithm that is not specific to any particular subsystem.

Guzey, et al. [6] applied machine learning to a hardware design

for the purpose of increasing the coverage of pre-silicon simula-

tion. They record the bit-vectors of constrained-random test inputs,

0

2

4

6

8

10

0 20,000 40,000 60,000 80,000#
 o

f
a

n
o

m
a

li
e

s

10 training examples

0

2

4

6

8

10

0 20,000 40,000 60,000 80,000

#
 o

f
a

n
o

m
a

li
e

s

Time (cycles)
bug injection

100 training examples

Figure 11: Effect of training data quantity, showing the number
of anomalies observed over time for one bug’s root signal. The
first chart (a) was trained using 10 examples, while the second was
trained with 100. There is a much better signal­to­noise ratio in the
second, making the time of the bug more clearly identifiable.

building a model of a test’s behavior. This model is then used to

compute the similarity of a new test to previous tests. While [6]

focuses on the similarity of two tests, our approach aims to identify

that of corresponding signals in multiple runs of a same test.

BPS [5] proposed an automated approach to bug diagnosis with

a specialized algorithm that considers each time and each signal

independently. In contrast, this work leverages a formalized algo-

rithm that takes into account the interactions among signals. As a

result, we are able to detect the time of a bug occurrence within

336 cycles of its injection, on average, while BPS required 1,273

cycles. Table 2 shows clustering in comparison with BPS [5] and

IFRA [9].

IFRA [9] BPS [5] Clustering

description level architectural only Xlogic and architectural

design complexity single core only Xwhole chip

type of bugs electrical Xfunctional, electrical, mfg.

required obervability pipeline stages Xhigh level signals, flexible

signal interactions? N/A no Xyes

spatial localization ∼10,000 gates (block) X75 avg. 347 avg.

temporal localization Xexact cycle 1,273 cyc avg. X336 cyc avg.

Table 2: Clustering compared with IFRA [9] and BPS [5].

6. CONCLUSIONS AND FUTUREWORK
We have presented a machine learning-based approach to post-

silicon bug diagnosis. Based on anomaly detection techniques, our

algorithm builds a model of correct on-chip signal activity from

passing test executions. This model is then applied to detect aber-

rant behaviors, or anomalies, identifying a bug’s time and location.

There are a number of directions for future work in the applica-

tion of machine learning techniques to post-silicon bug diagnosis.

While we found clustering to be effective, we would also like to

investigate the use of one-class support vector machines (SVM).

Additionally, an exploration of new features used to define exam-

ples might improve results.

7. REFERENCES
[1] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin,

G. Memmi, and D. Miller. A reconfigurable design-for-debug
infrastructure for SoCs. In Proc. DAC, 2006.

[2] C. M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2007.

[3] R. J. Bolton, D. J. Hand, and D. J. H. Unsupervised profiling
methods for fraud detection. In Proc. Credit Scoring and
Credit Control, 2001.

[4] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
detection: A survey. ACM Computing Surveys, 41(3), 2009.

[5] A. DeOrio, D. S. Khudia, and V. Bertacco. Post-silicon bug
diagnosis with inconsistent executions. In Proc. ICCAD,
2011.

[6] O. Guzey, L.-C. Wang, J. R. Levitt, , and H. Foster.
Increasing the efficiency of simulation-based functional
verification through unsupervised support vector analysis.
IEEE Trans. CAD of ICs and Systems, 29(1), 2010.

[7] D. Josephson. The manic depression of microprocessor
debug. In Proc. ITC, 2002.

[8] B. R. Liblit. Cooperative bug isolation. PhD thesis,
University of California at Berkeley, Berkeley, CA, USA,
2004. AAI3183833.

[9] S.-B. Park, A. Bracy, H. Wang, and S. Mitra. BLoG:
Post-silicon bug localization in processors using bug
localization graphs. In Proc. DAC, 2010.

[10] P. D. Peter Dahlgren and I. Parulkar. Latch divergency in
microprocessor failure analysis. In Proc. ITC, 2003.

[11] Sun microsystems OpenSPARC. http://opensparc.net/.
[12] L. Whetsel. An IEEE 1149.1 based logic/signature analyzer

in a chip. In Proc. ITC, 1991.

